液晶装置的制造方法及液晶装置的制作方法

文档序号:2744437阅读:100来源:国知局
专利名称:液晶装置的制造方法及液晶装置的制作方法
技术领域
本发明涉及液晶装置的制造方法及液晶装置。
背景技术
液晶装置具备在对置配置的一对基板间夹持液晶层的液晶单元、配置在液晶单元 的两外侧的一对偏振光板。液晶装置利用偏振光而进行显示,因此将液晶层的液晶分子的 取向方向和一对偏振光板的光轴设定为构成规定的位置关系。因此,在将偏振光板粘贴在 液晶单元的工序中,若在液晶单元和偏振光板的规定的配置位置产生偏移,则不能获得所 期望的光学特性(对比度等),导致显示品质的降低。 因此,提出了以设置在液晶单元的一个基板上的对准标记为基准来进行与偏振光 板的外形的对位的方法(例如,参照专利文献l)。另外,提出了以主偏振光镜的光轴为基准 来进行液晶单元的取向方向和偏振光板的光轴的对位的方法(例如,参照专利文献2及专 利文献3)。[专利文献l]日本特开2000-221461号公报;
[专利文献2]日本特开平8-201801号公报;
[专利文献3]日本特开2003-107452号公报。 然而,在上述专利文献1所记载的方法中,由于通过对准标记和偏振光板的外形 进行对位,因此在偏振光板的外形和光轴存在偏移的情况下,存在相对于液晶单元难以准 确地使偏振光板的光轴对位这一问题。在上述专利文献2及专利文献3所记载的方法中, 由于以主偏振光镜的光轴为基准,使液晶单元的取向方向和各偏振光板的光轴独立对位而 进行粘贴,因此存在以下问题,即,对位及粘贴工序变多而使工时增加,并且在主偏振光镜 的位置存在偏移时,该偏移会反映在液晶单元和偏振光板的对位中。

发明内容
本发明为了解决所述课题的至少一部分而提出,能够作为以下的方式或应用例实 现。[应用例1]本应用例的液晶装置具备相互对置配置的第一基板以及第二基板; 夹在所述第一基板和所述第二基板之间的液晶层;配置在所述第一基板以及所述第二基板 的两外侧的一对偏振光体;设置在所述第一基板的至少一个部位且具有偏振光分离功能的 第一光学元件;有助于显示的显示区域,所述第一光学元件配置在所述显示区域之外。
根据该结构,液晶装置具有在粘贴偏振光体时作为偏振光体的对位基准的第一光 学元件。因此,能够以第一光学元件的光轴为基准而使偏振光体的光轴光学上与规定的位 置一致,从而能够减少液晶单元和偏振光体的相对的位置偏移。由此,能够抑制液晶装置的 对比度降低,从而能够提高液晶装置的显示品质。[应用例2]以上述应用例的液晶装置为基础,所述第一光学元件的光轴也可以与 所述第一基板上的所述液晶层的取向方向平行配置,所述一对偏振光体中的至少一个偏振光体的光轴与所述第一光学元件的光轴平行配置。 根据该结构,在将偏振光体粘贴到液晶单元时,在相对于第一光学元件的光轴偏 振光体的光轴变为规定的位置时,透过液晶单元的设有第一光学元件的区域和偏振光体的 光的强度变为最大。因此,在测定光的强度时,能够在光的强度大的一侧优选使用灵敏度高 的测定设备。[应用例3]以上述应用例的液晶装置为基础,所述第一光学元件的光轴也可以与 所述第一基板上的所述液晶层的取向方向正交配置,所述一对偏振光体中的至少一个偏振 光体的光轴与所述第一光学元件的光轴正交配置。 根据该结构,在将偏振光体粘贴在液晶单元时,在相对于第一光学元件的光轴偏 振光体的光轴变为规定的位置时,透过液晶单元的设有第一光学元件的区域和偏振光体的 光的强度变为最小。因此,在测定光的强度时,能够在光的强度小的一侧优选使用灵敏度高 的测定设备。[应用例4]以上述应用例的液晶装置为基础,所述第一光学元件也可以设置在两 个以上的部位。 根据该结构,由于第一光学元件设置在两个以上的部位,因此能够在两个以上不
同的位置,以第一光学元件的光轴为基准而使第一偏振光体的光轴光学上与规定的位置一
致。由此,能够进一步准确地进行第一偏振光体相对于液晶单元的对位。[应用例5]以上述应用例的液晶装置为基础,设置在所述两个以上的部位的所述
第一光学元件也可以具有设置在第一部位、且具有与所述第一基板上的所述液晶层的取
向方向平行配置的光轴的光学元件;设置在与所述第一部位不同的第二部位、且具有与所
述第一基板上的所述液晶层的取向方向正交配置的光轴的光学元件。 根据该结构,在透过与液晶层的取向方向平行配置有光轴的光学元件和偏振光体 的光的强度变大时,透过与液晶层的取向方向正交配置有光轴的光学元件和偏振光体的光 的强度变小。因此,若以两者的光的强度的测定值的差变为最大的方式确定位置关系,则能 够进一步准确地进行偏振光体相对于液晶单元的对位。[应用例6]以上述应用例的液晶装置为基础,所述第一光学元件也可以配置在俯 视时与所述液晶层不重叠的位置。 根据该结构,液晶层不夹在第一光学元件和偏振光体之间。因此,在以第一光学元 件的光轴为基准而使偏振光体的光轴光学上与规定的位置一致时,排除液晶层所导致的光 学影响,因此能够更加准确地进行偏振光体相对于液晶单元的对位。[应用例7]以上述应用例的液晶装置为基础,所述第一基板也可以具有俯视时与 所述第二基板不重叠的伸出部,所述第一光学元件配置在所述伸出部。 根据该结构,由于俯视时第一光学元件不与液晶层和第二基板重叠,因此液晶层
和第二基板不夹在第一光学元件和偏振光体之间。因此,在以第一光学元件的光轴为基准
而使偏振光体的光轴光学上与规定的位置一致时,排除液晶层和第二基板所导致的光学影
响,因此能够更进一步准确地进行使偏振光体相对于第一光学元件的对位。[应用例8]以上述应用例的液晶装置为基础,所述第一光学元件也可以具备条状
排列的金属反射膜。 根据该结构,能够使用线栅偏振光镜作为第一光学元件。
[应用例9]以上述应用例的液晶装置为基础,所述第一光学元件也可以具备棱镜 阵列和在所述棱镜阵列上形成的介电体干涉膜。 根据该结构,能够使用具有在棱镜阵列上形成的介电体干涉膜的光学元件作为第 一光学元件。[应用例10]以上述应用例的液晶装置为基础,还可以具备反射显示区域,其排 列在所述显示区域;第二光学元件,其设置在所述第一基板的所述反射显示区域且具有偏 振光分离功能。 根据该结构,若使作为偏振光体的对位基准的第一光学元件和设置在反射显示区 域的第二光学元件构成同样的结构,则能够在形成第二光学元件的工序中一起形成第一光 学元件。[应用例11]以上述应用例的液晶装置为基础,所述一对偏振光体中的至少一个 也可以具备偏振光板和层叠在所述偏振光板上的光学补偿板。 根据该结构,即使在偏振光体具有偏振光板和光学补偿板时,也能够减少液晶单 元和第一偏振光体及第二偏振光体的相对的位置偏移。[应用例12]本应用例的液晶装置的制造方法包括准备液晶单元的工序,所述 液晶单元具备相互对置配置的第一基板以及第二基板、夹在所述第一基板和所述第二基板
之间的液晶层、设置在所述第一基板的至少一个部位且具有偏振光分离功能的第一光学元 件;第一工序,其中,在使第一偏振光体与所述液晶单元的所述第一基板以及所述第二基板 中的一个基板的外侧对置配置的状态下,使所述液晶单元和所述第一偏振光体中的至少一 方在对置的面内旋转,测定透过所述液晶单元的设有所述第一光学元件的区域和所述第一 偏振光体的光的强度;第二工序,其中,根据所述光的强度的测定结果,确定所述第一偏振 光体相对于所述第一光学元件在相对的面内的位置关系,并将所述第一偏振光体粘贴在所 述液晶单元的所述一个基板上。 根据该结构,通过以第一光学元件的光轴为基准而使第一偏振光体的光轴光学上 与规定的位置一致,确定第一偏振光体相对于液晶单元的相对的位置关系。因此,能够减少 液晶单元和第一偏振光体的相对的位置偏移。由此,抑制液晶装置的对比度等光学特性降 低,从而能够提高液晶装置的显示品质。进而,由于在同一工序中确定一个偏振光体和液晶 单元的位置关系并且将该偏振光体粘贴在液晶单元,因此能够抑制对位及粘贴所导致的工 时增加。[应用例13]以上述应用例的液晶装置的制造方法为基础,在所述第一工序中,也 可以将所述第一偏振光体以与所述第一基板对置的方式配置在所述液晶单元的所述第一 基板的外侧。 根据该结构,由于将第一偏振光体配置在设有第一光学元件的第一基板的外侧,
因此液晶层不夹在第一光学元件和第一偏振光体之间。因此,在以第一光学元件的光轴为
基准而使第一偏振光体的光轴在光学上与规定的位置一致时,排除液晶层所导致的光学影
响。由此,能够进一步准确地进行第一偏振光体相对于液晶单元的对位。[应用例14]以上述应用例的液晶装置的制造方法为基础,所述第一光学元件的
光轴也可以与所述第一基板上的所述液晶层的取向方向平行配置,在所述第二工序中,以
使所述光的强度最大的方式来确定所述第一偏振光体相对于所述第一光学元件的相对的位置关系。 根据该结构,在测定透过液晶单元的设有第一光学元件的区域和第一偏振光体的 光的强度时,能够在光的强度大的一侧优选使用灵敏度高的测定设备。[应用例15]以上述应用例的液晶装置的制造方法为基础,所述第一光学元件的 光轴也可以与所述第一基板上的所述液晶层的取向方向正交配置,在所述第二工序中,以 使所述光的强度最小的方式来确定所述第一偏振光体相对于所述第一光学元件的相对的 位置关系。 根据该结构,在测定透过液晶单元的设有第一光学元件的区域和第一偏振光体的 光的强度时,能够在光的强度小的一侧优选使用灵敏度高的测定设备。[应用例16]以上述应用例的液晶装置的制造方法为基础,所述第一光学元件也 可以具备条状排列的金属反射膜。 根据该结构,能够使用线栅偏振光镜作为第一光学元件。[应用例17]以上述应用例的液晶装置的制造方法为基础,所述第一光学元件也 可以具备棱镜阵列和在所述棱镜阵列上形成的介电体干涉膜。 根据该结构,能够使用具有在棱镜阵列上形成的介电体干涉膜的光学元件作为第 一光学元件。[应用例18]以上述应用例的液晶装置的制造方法为基础,所述第一光学元件也 可以设置在两个以上的部位。 根据该结构,由于第一光学元件设置在两个以上的部位,因此能够在两个以上不
同的位置,以第一光学元件的光轴为基准而使第一偏振光体的光轴光学上与规定的位置一
致。由此,能够进一步准确地进行第一偏振光体相对于液晶单元的对位。[应用例19]以上述应用例的液晶装置的制造方法为基础,设置在所述两个以上
的部位的所述第一光学元件也可以具有设置在第一部位、且具有与所述第一基板上的所
述液晶层的取向方向平行配置的光轴的光学元件;设置在与所述第一部位不同的第二部
位、且具有与所述第一基板上的所述液晶层的取向方向正交配置的光轴的光学元件。 根据该结构,在透过与液晶层的取向方向平行配置有光轴的光学元件和第一偏振
光体的光的强度变大时,透过与液晶层的取向方向正交配置有光轴的光学元件和第一偏振
光体的光的强度变小。因此,若以两者的光的强度的测定值的差变为最大的方式确定位置
关系,则能够进一步准确地进行第一偏振光体相对于液晶单元的对位。[应用例20]以上述应用例的液晶装置的制造方法为基础,所述第一光学元件也 可以配置在俯视时与所述液晶层不重叠的位置。 根据该结构,即使将第一偏振光体配置在第一基板及第二基板中的任意一个基板 的外侧,液晶层也不夹在第一光学元件和第一偏振光体之间,因此,在以第一光学元件的光 轴为基准而使第一偏振光体的光轴光学上与规定的位置一致时,排除液晶层所导致的光学 影响。[应用例21]以上述应用例的液晶装置的制造方法为基础,所述第一基板也可以 具有俯视时与所述第二基板不重叠的伸出部,所述第一光学元件配置在所述伸出部。
根据该结构,即使将第一偏振光体配置在第一基板及第二基板中的任意一个基板 的外侧,俯视时第一光学元件也不与液晶层和第二基板重叠,因此液晶层和第二基板不夹在第一光学元件和第一偏振光体之间。因此,在以第一光学元件的光轴为基准而使第一偏 振光体的光轴光学上与规定的位置一致时,排除液晶层和第二基板所导致的光学影响。由 此,能够进一步准确地进行第一偏振光体相对于液晶单元的对位。[应用例22]以上述应用例的液晶装置的制造方法为基础,所述液晶单元也可以 具备排列在有助于显示的显示区域的反射显示区域,所述第一光学元件配置在所述反射显 示区域。 根据该结构,在进行半透射反射型液晶装置中的第一偏振光体的对位时,能够利 用配置在反射显示区域的光学元件作为对位的基准。[应用例23]以上述应用例的液晶装置的制造方法为基础,所述液晶单元还可以 具备反射显示区域,其排列在有助于显示的显示区域;第二光学元件,其设置在所述第一 基板的所述反射显示区域且具有偏振光分离功能。 根据该结构,若使作为第一偏振光体的对位基准的第一光学元件和配置在反射显 示区域的第二光学元件构成同样的结构,则能够在形成第二光学元件的工序中一起形成第 一光学元件。[应用例24]以上述应用例的液晶装置的制造方法为基础,在所述第二工序后,还
可以包括第三工序,其中,在使第二偏振光体与所述液晶单元的所述第一基板以及所述第
二基板中的另一个基板的外侧对置配置的状态下,使所述液晶单元和所述第二偏振光体中
的至少一方在对置的面内旋转,测定透过所述液晶单元的没有设置所述第一光学元件的区
域、所述第一偏振光体以及所述第二偏振光体的光的强度;第四工序,其中,根据所述光的
强度的测定结果,确定所述第二偏振光体相对于所述第一偏振光体和所述液晶单元在相对
的面内的位置关系,并将所述第二偏振光体粘贴在所述液晶单元的所述另一个基板上。 根据该结构,相对于在第二工序中使光轴与规定的位置一致而粘贴有第一偏振光
体的液晶单元,由于使第二偏振光体的光轴光学上与规定的位置一致,因此能够减少液晶
单元和第二偏振光体的位置偏移。[应用例25]以上述应用例的液晶装置的制造方法为基础,所述第一偏振光体及 所述第二偏振光体中的至少一个也可以具备偏振光板和层叠在所述偏振光板上的光学补 偿板。 根据该结构,即使在偏振光体具有偏振光板和光学补偿板时,也能够减少液晶单
元和第一偏振光体及第二偏振光体的相对的位置偏移。 1998


图1是表示第一实施方式的液晶装置的简要结构的图。
图2是表示第一实施方式的液晶装置的电结构的等效电路图。
图3是说明第一实施方式的液晶装置的像素的结构的图。
图4是沿图3(a)中的B-B'线的剖面图。
图5是说明第一实施方式的线栅偏振光镜的图。
图6是说明液晶装置的光学设计条件的图。
图7是说明第一实施方式的液晶装置的制造方法的流程图。
图8是说明第一实施方式的偏振光板的粘贴方法的图。
图9是说明第一实施方式的偏振光板的粘贴方法的图。
图10是说明第一实施方式的偏振光板的粘贴方法的图。
图11是说明第二实施方式的线栅偏振光镜的图。
图12是表示第三实施方式的液晶装置的简要结构的俯视图。 图13是表示第四实施方式的液晶装置的简要结构的俯视图。 图14是说明第五实施方式的液晶装置的简要结构的图。 图15是表示第六实施方式的光学元件的简要结构的图。 图16是说明变形例1的液晶装置的制造方法的图。 图17是说明变形例3的液晶装置及液晶装置的制造方法的图。 符号说明2-显示区域,4-像素,10-元件基板,10a-伸出部,ll-基板,12-扫描
线,13-信号线驱动电路,14-信号线,15-扫描线驱动电路,16-像素电极,16a-开口部,
17-公共配线,18-公共电极,19-保持电容,20-TFT元件,20&-半导体层,20(1-漏极电极,
20g-栅极电极,20s-源极电极,22-栅极绝缘层,24-绝缘层,24a_接触孔,28、36_取向膜,
30-对置基板,31-基板,32-遮光层,34-滤色层,35-外涂层,40-液晶层,41-密封剂,42-驱
动IC,44、45-偏振光板,44a、45a-透射轴,46、48_偏振光体,47、49-光学补偿板,50-液晶
单元,52-保持部,56-光源,57-光,58-感光部,60、62、64_线栅偏振光镜,60a、62a、64a-透
射轴,60b 、 62b-反射轴,61 、 63-金属反射膜,70-介电体干涉膜棱镜,70a_透射轴,70b_反射
轴,71-棱镜阵列,72-凸条,74-介电体干涉膜,100、110、120、130、140、150、200-液晶装置。
具体实施例方式以下,参照附图对本实施方式进行说明。需要说明的是,在所参照的附图中,为了 易于理解地表示结构,适当地改变各结构要素的层厚和尺寸的比率、角度等。
(第一实施方式)
〈液晶装置> 首先,参照附图对第一实施方式的液晶装置进行说明。图l是表示第一实施方式 的液晶装置的简要结构的图。具体而言,图l(a)是液晶装置的俯视图,图l(b)是沿图l(a) 中的A-A线的剖面图。图2是表示第一实施方式的液晶装置的电结构的等效电路图。图3 是说明第一实施方式的液晶装置的像素的结构的图。具体而言,图3(a)是表示从对置基板 侧观察的像素的结构的俯视图,图3(b)是表示液晶单元的取向方向的图。图4是沿图3(a) 中的B-B线的剖面图。此外,在图3(a)中省略了对置基板的图示。 第 一 实施方式的液晶装置100例如是具有作为开关元件的TFT (ThinFilm Transistor :薄膜晶体管)元件的有源矩阵型液晶装置,并且是FFS (Fringe-Field Switching :边缘场转换)方式的透射型液晶装置。 如图l(a)及(b)所示,液晶装置100具备液晶单元50。液晶单元50具备作为第 一基板的元件基板10、与元件基板10对置配置的作为第二基板的对置基板30、夹持在元件 基板10和对置基板30之间的液晶层40。将元件基板10和对置基板30经由框状的密封剂 41相互对置地粘贴。液晶层40封入由元件基板10、对置基板30以及密封剂41围成的空 间中。 显示区域2是在液晶装置100中有助于显示的区域。显示区域2位于由密封剂41 围成的区域、即封入有液晶层40的区域内。在元件基板10设有作为第一光学元件的线栅偏振光镜60。线栅偏振光镜60配置在由密封剂41围成的区域内、显示区域2之外。线栅 偏振光镜60具有偏振光分离功能。 元件基板10比对置基板30大,具有相对于对置基板30伸出的部分即伸出部10a。 在该伸出部10a安装有用于驱动液晶层40的驱动IC42。 如图1 (b)所示,在元件基板10的外侧的面配置有作为第一偏振光体的偏振光板 44。在对置基板30的外侧的面配置有作为第二偏振光体的偏振光板45。虽然未图示,但是 在偏振光板44的一侧与偏振光板44对置配置有背光灯等照明装置。 如图2所示,在显示区域2形成有多条扫描线12、多条信号线14和多条公共配线 17。多条扫描线12和多条公共配线17分别相互大致平行地配置。多条信号线14分别与 多条扫描线12和多条公共配线17交叉而配置。与扫描线12及公共配线17和信号线14 的交叉对应而设有像素4。 像素4以在相互相邻的像素4彼此之间空出间隔的方式呈矩阵状配置。像素4有 助于红(R)、绿(G)、蓝(B)任意一种显示,有助于R、G、B的各显示的三个像素4构成一个像 素群。在液晶装置100中,通过在各像素群中适当改变三个像素4的各自的亮度,能够进行 各种颜色的显示。 在每个像素4上形成有像素电极16、用于控制像素电极16的TFT元件20。另外, 在每个像素4上形成有用于在与像素电极16之间产生横向电场的公共电极18。公共电极 18与公共配线17电连接。 TFT元件20的源极电极20s(参照图3(a))与从信号线驱动电路13延伸的信号 线14电连接。来自信号线驱动电路13的数据信号S1、S2、…、Sn以线次序供给到信号线 14。 TFT元件20的栅极电极20g(参照图3(a))是从扫描线驱动电路15延伸的扫描线12 的一部分。来自扫描线驱动电路15的扫描信号G1、G2、…、Gn以线次序供给到扫描线12。 TFT元件20的漏极电极29d(参照图3(a))与像素电极16电连接。 数据信号S1、S2、…、Sn通过使TFT元件20—定期间内变为导通状态,而将规定 的时间(夕< S >夕")经由信号线14写入像素电极16。这样,经由像素电极16将写入了 液晶层40的规定电平的数据信号在与公共电极18之间保持一定期间。这里,在像素电极 16和公共电极18之间形成有保持电容19,与例如施加了源极电压的时间相比能够将像素 电极16的电压保持更长的时间。由此,改善电荷的保持特性,液晶装置100能够进行对比 度高的显示。 接下来,对液晶装置100的结构进行说明。如图3(a)所示,在像素4上设有像素 电极16、用于在与像素电极16之间产生横向电场的公共电极18、用于控制像素电极16的 TFT元件20。 像素电极16形成为长方形状,具有多个狭缝状的开口部16a。狭缝状的开口部 16a相互平行地形成在例如沿信号线14的延伸方向的方向。像素电极16经由贯通绝缘层 24 (参照图4)的接触孔24a与TFT元件20的漏极电极20d电连接。像素电极16由具有透 光性的导电材料形成,例如由ITO(铟锡氧化物Indium Tin Oxide)构成。
公共电极18形成为长方形状,且设置成俯视时与像素电极16重叠。公共电极18 在一个边部与公共配线17重叠,在该部分与公共配线17电连接。公共电极18由具有透光 性的导电材料构成,例如由IT0构成。
TFT元件20具有栅极电极20g、半导体层20a、源极电极20a和漏极电极20d。栅极电极20g是扫描线12的一部分。半导体层20a形成在俯视时与栅极电极20g重叠的位置。源极电极20s是从信号线14分支的部分,以其局部覆盖半导体层20a的局部(源极侧)的方式形成。漏极电极20d以局部覆盖半导体层20a的局部(漏极侧)的方式形成。
如图4所示,元件基板10将基板11作为基体而构成,在基板11上具有TFT元件20、公共配线17、公共电极18、栅极绝缘层22、绝缘层24、像素电极16、取向膜28和线栅偏振光镜60(参照图5)。基板ll由具有透光性的材料构成,例如由玻璃、石英、树脂等构成。基板11也可以被由氧化硅(Si02)膜等构成的绝缘层覆盖。 在基板11的液晶层40侧形成有栅极电极20g、公共配线17和公共电极18。栅极绝缘层22以覆盖基板11、栅极电极20g、公共配线17和公共电极18的方式形成。在栅极绝缘层22上形成有半导体层20a、源极电极20s和漏极电极20d。 绝缘层24以覆盖栅极绝缘层22、半导体层20a、源极电极20s和漏极电极20d的方式形成。像素电极16形成在绝缘层24上。像素电极16和公共电极18经由栅极绝缘层22和绝缘层24对置,而形成将夹在像素电极16和公共电极18之间的栅极绝缘层22和绝缘层24作为介电体膜的保持电容。 在元件基板10上,若对像素电极16和公共电极18之间施加电压,则在狭缝状的开口部16a及其周边产生与元件基板10平行的方向的横向电场。通过该横向电场来控制液晶层40的液晶分子的取向。需要说明的是,像素电极16和公共电极18的配置并不局限于该方式。公共电极18也可以比像素电极16靠液晶层40侧配置。在这种结构的情况下,公共电极18具有狭缝状的开口部。 在像素基板10的与液晶层40相接的一侧形成有取向膜28。取向膜28例如由聚酰亚胺树脂构成。在取向膜28的表面,例如将在顺时针方向上相对于信号线14的延伸方向构成5度角度的方向作为取向方向(参照图3(b)),而施加摩擦处理等取向处理。
接下来,对置基板30位于液晶装置100的观察侧。对置基板30将基板31作为基体而构成,在基板31上具有遮光层32、滤色层34、外涂层(才一"'一 - 一卜層)35、取向膜36。 基板31由具有透光性的材料构成,例如由玻璃、石英、树脂等构成。遮光层32和滤色层34形成在基板31上。遮光层32配置在基板31上的相邻的像素4彼此之间的区域。滤色层34与像素4的区域对应而配置。滤色层34例如由丙烯树脂等构成,含有与R、 G、 B各色对应的颜色材料。外涂层35以覆盖遮光层32和滤色层34的方式形成。
在对置基板30的与液晶层40相接的一侧形成有取向膜36。取向膜36例如由聚酰亚胺构成。在取向膜36的表面,例如将在顺时针方向上相对于信号线14的延伸方向构成5度角度的方向作为取向方向(参照图3 (b)),而施加摩擦处理等取向处理。
液晶层40配置在元件基板10和对置基板30之间。液晶层40的液晶分子在像素电极16和公共电极18之间不产生电场的状态(关状态)下,沿着通过对取向膜28和取向膜36施加的取向处理而限制的取向方向(参照图3(b))水平地取向。另外,液晶层40的液晶分子在像素电极16和公共电极18之间产生电场的状态(开状态)下,沿着在与开口部16a的延伸方向正交的方向上产生的电场取向。这样,液晶层40中,利用基于关状态和开状态下的液晶分子的取向状态的差异的双折射性而对通过液晶层40的光赋予相位差。
接下来,对线栅偏振光镜60进行说明。图5是说明第一实施方式的线栅偏振光镜60的图。详细而言,图5(a)是表示线栅偏振光镜60的简要结构的立体图,图5(b)是沿图5(a)中的C-C线的剖面图。 如图5(a)及图5(b)所示,线栅偏振光镜60具有条状配置的多个金属反射膜61。金属反射膜61具有直线状的形状,且在基板11上相互大致平行地配置。金属反射膜61由光反射性高的金属构成,例如由铝构成。金属反射膜61的材料也可以是APC(银-钯-铜的合金)等。 金属反射膜61以规定的间距配置。金属反射膜61的配置间距设定为小于入射的光的波长,例如40nm 140nm左右。金属反射膜61的高度例如是100nm左右。金属反射膜61的宽度例如是100nm左右。 线栅偏振光镜60通过半导体工艺在形成TFT元件20等的工序中形成。因此,线栅偏振光镜60以与TFT元件20等同等的精度形成。另外,线栅偏振光镜60与粘贴元件基板10和对置基板30时为了对准(对位)而在元件基板10上设置的标记等对准而形成。
线栅偏振光镜60具有将入射光分离为偏振光状态不同的反射光和透射光的功能。线栅偏振光镜60反射入射光中与金属反射膜61的延伸方向平行的偏振光成分,并透射入射光中相对于金属反射膜61的延伸方向正交的偏振光成分。即,线栅偏振光镜60具有作为光轴的透射轴60a及反射轴60b。如图5 (a)所示,透射轴60a与金属反射膜61的延伸方向正交,反射轴60b与金属反射膜61的延伸方向平行。 此外,金属反射膜61可以形成在栅极绝缘层22上,也可以形成在绝缘层24上。另外,金属反射膜61也可以被由氧化硅(Si02)等构成的保护层覆盖。 接下来,对液晶装置100的光学设计条件进行说明。图6是说明液晶装置100的光学设计条件的图。偏振光板44、45具有作为光轴的透射轴及吸收轴。图6(a)示出偏振光板44的透射轴44a和偏振光板45的透射轴45a。偏振光板44的透射轴44a和偏振光板45的透射轴45a配置为相互正交。 如图6(b)所示,像素电极16的狭缝状的开口部16a沿信号线14的延伸方向延伸。在开状态下在像素电极16和公共电极18之间产生的电场的方向是与信号线14的延伸方向正交的方向、即沿扫描线12的延伸方向的方向。取向膜28、36的摩擦方向是在顺时针方向上相对于信号线14(开口部16a)的延伸方向构成5度角度的方向。
线栅偏振光镜60的透射轴60a与取向膜28、36的摩擦方向平行配置。因此,线栅偏振光镜60的透射轴60a是在顺时针方向上相对于信号线14(开口部16a)的延伸方向构成5度角度的方向。线栅偏振光镜60的反射轴60b是与取向膜28、36的摩擦方向正交的方向,即在顺时针方向上相对于信号线14(开口部16a)的延伸方向构成95度角度的方向。
偏振光板44的透射轴44a与取向膜28、36的摩擦方向平行,偏振光板45的透射轴45a与取向膜28、36的摩擦方向正交。即,偏振光板44的透射轴44a与线栅偏振光镜60的透射轴60a平行,偏振光板45的透射轴45a与线栅偏振光镜60的透射轴60b正交。因此,透过线栅偏振光镜60的直线偏振光透过了偏振光板44,但是不透过偏振光板45。
当偏振光板44、45的透射轴44a、45a配置在这样规定的位置时,在关状态下从照明装置向液晶装置100入射的光在偏振光板44的作用下被变换为与透射轴44a平行的直线偏振光而入射到液晶层40。然后,在同一偏振光状态下从液晶层40射出的直线偏振光由于其偏振光方向与偏振光板45的透射轴45a正交,因此由偏振光板45遮断,液晶装置100
变为暗显示。因此,液晶装置ioo是常黑模式。 然而,当取向膜28、36的摩擦方向和偏振光板44、45的透射轴44a、45a的相对位置关系产生偏离时,虽然在关状态下入射的光少量,但也会因该少量光的透过而导致对比度降低和背景色着色等显示品质的降低。因此,在将偏振光板44、45粘贴在液晶单元50时,以将透射轴44a、45a相对于取向膜28、36的摩擦方向配置在光学设计上的规定位置的方式,来准确地确定偏振光板44、45相对于液晶单元50的相对位置关系,这一点对于确保液晶装置100的显示品质而言比较重要。 因此,在液晶装置100中,作为将偏振光板44、45粘贴在液晶单元50时的对位的基准,将具有与取向膜28、36的摩擦方向平行的透射轴60a的线栅偏振光镜60设置在元件基板10上。S卩,以线栅偏振光镜60的透射轴60a为基准,对偏振光板44、45的任意一个透射轴进行光学性对位,由此,能够减少偏振光板44、45相对于液晶单元50 (取向膜28、36的摩擦方向)的位置偏移。 需要说明的是,在液晶装置100中,像素电极16的开口部16a的延伸方向和取向膜28、36的摩擦方向等的光学设计条件并不局限于上述方式。
〈液晶装置的制造方法〉 接下来,参照附图对第一实施方式的液晶装置的制造方法进行说明。图7是说明第一实施方式的液晶装置的制造方法的流程图。图8、图9及图IO是说明第一实施方式的偏振光板的粘贴方法的图。 在图7中,工序PI 1及工序P12是制造元件基板10的工序,工序P21及工序P22是制造对置基板30的工序。工序Pll以及工序P12与工序P21以及工序P22分别独立进行。工序P31及工序P32是组合元件基板10和对置基板30而准备液晶单元50的工序。工序P33是将一对偏振光板44、45粘贴在液晶单元50的工序。需要说明的是,这些工序中没有详细叙述的工序都能够适用公知的技术。 首先,对制造元件基板10的工序和制造对置基板30的工序进行说明。在工序Pll中,在基板11上形成TFT元件20、公共配线17、公共电极18、栅极绝缘层22、绝缘层24、像素电极16、线栅偏振光镜60等。 这里,线栅偏振光镜60通过半导体工艺在形成TFT元件20等的工序中形成。更具体而言,在基板11上形成由线栅偏振光镜60的形成材料构成的金属薄膜,使用例如光刻法,将该金属薄膜制成图案,由此形成具有条状配置的多个金属反射膜61的线栅偏振光镜60。由此,能够以与TFT元件20等相同的精度且不会使制造工序复杂化地形成线栅偏振光镜60。此外,作为形成线栅偏振光镜60的方法,也可以使用基于激光的二光束干涉曝光法或电子束曝光法等。 接着,在工序P12中,在形成有这些元件、电极等的元件基板10的表面形成取向膜28,对取向膜28的表面沿图6(b)所示的方向实施摩擦处理。 接下来,在工序P21中,在基板31上形成遮光层32、滤色层34、外涂层35等。接着,在工序P22中,在对置基板30的表面形成取向膜36,对取向膜36的表面沿图6 (b)所示的方向实施摩擦处理。 接下来,在工序P31中,进行元件基板10和对置基板30的粘贴。粘贴如下进行,即,在元件基板10或对置基板30涂敷密封剂41,进行对准后,使元件基板IO和对置基板 30接触,从而压接。接下来,在工序P32中,从密封剂41的开口部(注入口 )向元件基板 10和对置基板30之间注入液晶,并将注入口密封。通过以上步骤,准备液晶单元50。
接下来,参照图8、图9及图10,对工序P33中的偏振光板的粘贴方法详细地进行 说明。工序P33包括配置偏振光板44的第一工序、将偏振光板44粘贴在液晶单元50的第 二工序、配置偏振光板45的第三工序、将偏振光板45粘贴在液晶单元50的第四工序。
如图8所示,在第一工序中,在液晶单元50的元件基板10的外侧配置偏振光板 44。液晶单元50和偏振光板44分别通过保持部52保持相互平行。保持液晶单元50的对 置基板30侧,且偏振光板44保持为与元件基板10对置。另外,液晶单元50及偏振光板44 被保持为以液晶单元50的表面(元件基板10、对置基板30的表面)及偏振光板44的表面 的法线方向为旋转轴旋转自如。 保持部52具有例如吸附孔等,构成为能够固定吸附液晶单元50和偏振光板44的 结构。保持部52例如由具有透光性的材料构成。在保持部52的材料为非透光性时,也可 以在保持部52上设置透射光的贯通孔等。 接下来,在液晶单元50的对置基板30侧配置光源56。另外,在偏振光板44的与 液晶单元50的相反侧配置感光部58。然后,使来自光源56的光顺次入射到液晶单元50和 偏振光板44。此时,设于元件基板10的线栅偏振光镜60配置为位于从光源56向感光部 58的光的光路上。 接下来,如图9所示,维持使液晶单元50和偏振光板44对置的状态的同时,使液 晶单元50和偏振光板44中的至少一方在对置的面内旋转。这里,固定液晶单元50,使偏振 光板44旋转。然后,由感光部58对透过液晶单元50的设有线栅偏振光镜60的区域和偏 振光板44的光57进行感光,并测定光57的强度。此外,在图9中,省略了保持部52的图 示。 光源56可以使用例如发出具有可见光区域的波长的光的灯,也可以使用发光二
极管(LED)或激光二极管。另外,感光部58可以使用例如光万用表等,将光57的强度转换
为电信号而进行测定。或者,感光部58也可以使用亮度计来测定光57的亮度。 需要说明的是,优选相对于液晶单元50相对配置光源56,从而使从光源56射出的
光从液晶单元50的法线方向入射。另外,光源56和感光部58的位置关系在图上也可以上
下相反。 接下来,在第二工序中,根据光57的强度的测定结果以使光57的强度最大的方式 调整偏振光板44相对于液晶单元50在相对的面内的位置关系。此时,偏振光板44的透射 轴44a在与线栅偏振光镜60的透射轴60a (参照图6 (b))变成平行的位置上,光57的强度 变为最大。该光57的强度变为最大的位置就是偏振光板44的透射轴44a与取向膜28的 摩擦方向变成平行的规定的位置。 在光57的强度变为最大时,确定偏振光板44相对于线栅偏振光镜60 (液晶单元 50)在相对的面内的位置关系,并将偏振光板44粘贴在液晶单元50的元件基板10上。此 时,可以通过保持部52使偏振光板44向液晶单元50侧移动,也可以通过保持部52使液晶 单元50向偏振光板44侧移动。 接下来,如图10所示,在第三工序中,在液晶单元50的与粘贴有偏振光板44侧相反的一侧、即对置基板30的外侧,以与对置基板30对置的方式配置偏振光板45。液晶单元50和偏振光板45被保持为相互平行。虽然未图示,但液晶单元50和偏振光板45由保持部52保持。 在液晶单元50的粘贴有偏振光板44的一侧配置光源56,并在偏振光板45的与液晶单元50的相反侧配置感光部58。光源56和感光部58的位置关系也可以上下相反。然后,将来自光源56的光顺次入射到偏振光板44、液晶单元50和偏振光板45。此时,线栅偏振光镜60配置为位于从光源56向感光部58的光的光路上。 接着,维持使液晶单元50和偏振光板45对置的状态的同时,使液晶单元50和偏振光板45中的至少一方在对置的面内旋转。然后,由感光部58对透过液晶单元50的没有设置线栅偏振光镜60的区域、偏振光板44和偏振光板45的光57进行感光,并测定光57的强度。 接下来,在第四工序中,根据光57的强度的测定结果,以使光57的强度最小的方式调整偏振光板45相对于偏振光板44和液晶单元50在相对的面内的位置关系。此时,由于偏振光板44的透射轴44与元件基板10的取向膜28的摩擦方向(参照图6(b))平行配置,因此偏振光板45的透射轴45a在与偏振光板44的透射轴44a及对置基板30的取向膜36的摩擦方向(参照图6(b))正交的位置上,光57的强度变为最小。 在光57的强度变为最小时,确定偏振光板45相对于偏振光板44和液晶单元50在相对的面内的位置关系,并将偏振光板45粘贴在液晶单元50的对置基板30上。由此完成液晶装置IOO。此外,在偏振光板44、45从液晶单元50的外形超出时,可以将该超出部分切断。 根据上述第一实施方式,获得以下的效果。 (1)由于根据透过液晶单元50的设有线栅偏振光镜60的区域和偏振光板44的光57的强度的测定结果,来确定偏振光板44相对于液晶单元50的相对位置关系,因此,能够以线栅偏振光镜60的透射轴60a为基准,使偏振光板44的透射轴44a光学上与规定的位置一致。由此,能够减少液晶单元50和偏振光板44的相对的位置偏移。另外,由于使液晶单元50和偏振光板45光学上与规定的位置一致,其中,所述液晶单元50粘贴有使透射轴44a与规定的位置一致的偏振光板44,因此,能够减少液晶单元50的取向方向和偏振光板45的透射轴45a的位置偏移。其结果是,抑制液晶装置100的对比度降低和背景色的着色等显示品质的降低,从而能够提高液晶装置100的显示品质。 (2)由于在同一工序中分别进行偏振光板44相对于液晶单元50的对位和粘贴以及偏振光板45相对于液晶单元50的对位和粘贴,因此能够抑制对位及粘贴所导致的工时增加。 (3)在进行偏振光板44相对于液晶单元50的对位时,由于在设有线栅偏振光镜60的元件基板10的外侧配置偏振光板44,因此液晶层40不夹在线栅偏振光镜60和偏振光板44之间。由此,在以线栅偏振光镜60的透射轴60a为基准使偏振光板44的透射轴44a光学上与规定的位置一致时,排除液晶层40所导致的光学影响,从而能够进一步准确地进行偏振光板44相对于液晶层50的对位。 (4)在第二工序中,由于以透过液晶单元50的设有线栅偏振光镜60的区域和偏振光板44的光57的强度最大的方式确定位置关系,因此能够适当地在测定光57的强度时光的强度大的一侧使用灵敏度高的测定设备。 此外,在液晶装置100中,偏振光板44的透射轴44a也可以与取向膜28、36的摩 擦方向(线栅偏振光镜60的透射轴60a)正交,且偏振光板45的透射轴45a与取向膜28、 36的摩擦方向(线栅偏振光镜60的透射轴60a)平行。在这种情况下,在工序P33的第二 工序中,偏振光板44的透射轴44a在与取向膜28的摩擦方向(线栅偏振光镜60的透射轴 60a)正交的规定的位置上,光57的强度变为最小。 另外,液晶装置100也可以是关状态下从照明装置入射的光透过而成为亮显示的 常白模式。即使在液晶装置100为常白模式时,也能够适用本实施方式的液晶装置的制造 方法。在液晶装置100为常白模式时,将偏振光板44的透射轴和偏振光板45的透射轴相 互平行配置。因此,在工序P33的第四工序中,只要以光57的强度最大的方式调整偏振光 板45相对于偏振光板44和液晶单元50的相对位置关系即可。此时,偏振光板45的透射 轴45a在与偏振光板44的透射轴44a及对置基板30的取向膜36的摩擦方向平行的规定 的位置上,光57的强度为最大。 在本实施方式中,在工序P33的第二工序中,先进行偏振光板44的粘贴,然后在第 四工序中进行偏振光板45的粘贴,但也可以在第二工序中先进行偏振光板45的粘贴,然后 在第四工序中进行偏振光板44的粘贴。然而,在这种情况下,在第二工序中调整偏振光板 45相对于线栅偏振光镜60 (液晶单元50)的位置关系时,液晶层40和对置基板30夹在线 栅偏振光镜60和偏振光板45之间。
(第二实施方式)
〈液晶装置〉 接下来,参照附图对第二实施方式的液晶装置进行说明。图ll是说明第二实施方 式的线栅偏振光镜的图。详细而言,图ll(a)是表示线栅偏振光镜的简要结构的立体图,图 ll(b)是表示光学设计条件的图。 第二实施方式的液晶装置与第一实施方式的液晶装置相比,线栅偏振光镜的透射 轴及反射轴的方向不同,其他结构相同。对与第一实施方式共同的结构要素标注相同的符 号,省略其说明。 如图ll(a)所示,第二实施方式的液晶装置具有的线栅偏振光镜62具备条状配置
的多个金属反射膜63。线栅偏振光镜62具有作为光轴的透射轴62a及反射轴62b。 如图11 (b)所示,线栅偏振光镜62的透射轴62a与取向膜28 、 36的摩擦方向正交,
是在顺时针方向上相对于信号线14(开口部16a)的延伸方向构成95度角度的方向。线栅
偏振光镜62的反射轴62b与取向膜28、36的摩擦方向平行,是在顺时针方向上相对于信号
线14(开口部16a)的延伸方向构成5度角度的方向。 另外,偏振光板44的透射轴44a与线栅偏振光镜62的透射轴62a正交,偏振光板 45的透射轴45a与线栅偏振光镜62的透射轴62a平行。因此,透过线栅偏振光镜62的直 线偏振光没有透过偏振光板44,但透过偏振光板45。
〈液晶装置的制造方法> 接下来,对第二实施方式的液晶装置的制造方法进行说明。第二实施方式的液晶 装置的制造方法与第一实施方式的液晶装置的制造方法相比,不同点在于在第二工序中以 光57的强度最小的方式进行偏振光板44相对于液晶单元50的对位,除此之外的制造方法相同。以下,参照图9进行说明。 在本实施方式中,代替图9中的线栅偏振光镜60而在元件基板10上设有线栅偏振光镜62。在本实施方式的第一工序及第二工序中,对透过液晶单元50的设有线栅偏振光镜62的区域和偏振光板44的光57的强度进行测定,以光57的强度为最小的方式调整偏振光板44相对于线栅偏振光镜62 (液晶单元50)在相对的面内的位置关系。
此时,在偏振光板44的透射轴44a与线栅偏振光镜62的透射轴62a(参照图ll(b))正交的位置,光57的强度变为最小。该光57的强度变为最小的位置就是偏振光板44的透射轴44a与取向膜28的摩擦方向变为平行的规定的位置。 在根据光57的强度的测定结果光57的强度变为最小时,确定偏振光板44相对于液晶单元50 (线栅偏振光镜62)在相对的面内的位置关系,并将偏振光板44粘贴在液晶单元50的元件基板10上。 根据上述第二实施方式,获得以下的效果。 在第二工序中,由于以透过液晶单元50的设有线栅偏振光镜62的区域和偏振光板44的光57的强度最小的方式确定位置关系,因此在测定光57的强度时在光的强度小的一侧优选使用灵敏度高的测定设备。另外,在第四工序中,由于也以透过液晶单元50的没有设置线栅偏振光镜62的区域、偏振光板44以及偏振光板45的光57的强度最小的方式确定位置关系,因此同样在光的强度小的一侧优选使用灵敏度高的测定设备。因此,在向液晶单元50粘贴偏振光板44的工序和粘贴偏振光板45的工序这两者中,通过在光的强度小的一侧使用灵敏度高的测定设备,能够准确地进行偏振光板44、45相对于液晶单元50的对位。(第三实施方式)〈液晶装置及其制造方法> 接下来,参照附图对第三实施方式的液晶装置及其制造方法进行说明。图12是第三实施方式的液晶装置的简要结构的俯视图。 第三实施方式的液晶装置与第一实施方式的液晶装置相比,不同点在于线栅偏振光镜配置在由密封剂41围成的区域之外,除此之外的结构相同。对与第一实施方式共同的结构要素标注相同的符号,省略说明。 在图12(a)所示的液晶装置110的实例中,线栅偏振光镜60配置在由密封剂41围成的区域之外,即配置在俯视时不与液晶层40重叠的位置。 根据这样的结构,即使在第二工序中先进行偏振光板45向液晶单元50的粘贴时,液晶层40也不夹在线栅偏振光镜60和偏振光板45之间。因此,在以线栅偏振光镜60的透射轴60a为基准使偏振光板45的透射轴45a光学上与规定的位置一致时,排除液晶层40所导致的光学影响。由此,能够进一步准确地进行偏振光板45相对于液晶单元50的对位。
在图12(b)所示的液晶装置120的实例中,线栅偏振光镜60配置在元件基板10的伸出部10a。即,线栅偏振光镜60配置在俯视时不与液晶层40及对置基板30重叠的位置。 根据这样的结构,在第二工序中先进行偏振光板45向液晶单元50的粘贴时,液晶层40及对置基板30不夹在线栅偏振光镜60和偏振光板45之间。因此,在以线栅偏振光镜60的透射轴60a为基准使偏振光板45的透射轴45a光学上与规定的位置一致时,排除液晶层40及对置基板30所导致的光学影响。由此,能够更进一步准确地进行偏振光板45
相对于液晶单元50的对位。(第四实施方式)〈液晶装置及其制造方法> 接下来,参照附图对第四实施方式的液晶装置及其制造方法进行说明。图13是表 示第四实施方式的液晶装置的简要结构的俯视图。 第四实施方式的液晶装置与第一实施方式的液晶装置相比,不同点在于线栅偏振 光镜设置在两个以上的部位,除此之外的结构相同。对与第一实施方式共同的结构要素标 注相同的符号,省略其说明。 在图13(a)所示的液晶装置130的实例中,两个线栅偏振光镜60分别设置在元件 基板10的伸出部10a的第一位置和第二位置。第一位置和第二位置例如是相互分开的位 置。 在制造液晶装置130的工序P33的第一工序及第二工序中,分别与设有线栅偏振 光镜60的第一位置和第二位置对应而配置光源56及感光部58,由感光部58对透过液晶 单元50的设有第一位置上的线栅偏振光镜60的区域和偏振光板44的光57、透过液晶单 元50的设有第二位置上的线栅偏振光镜60的区域和偏振光板44的光57进行感光,并分 别测定光57的强度。 根据这样的结构,能够在液晶单元50的两个不同的部位并行地以各自的线栅偏 振光镜60的透射轴60a为基准使偏振光板44的透射轴44a光学上与规定的位置一致。因 此,能够进一步准确地进行偏振光板44相对于液晶单元50的对位。 在图13(b)所示的液晶装置140的实例中,线栅偏振光镜60设置在第一位置,线 栅偏振光镜62设置在第二位置。第一位置和第二位置是元件基板10的伸出部10a上的不 同位置,例如是相互靠近的位置。如上所述,线栅偏振光镜60的透射轴60a与取向膜28、36 的摩擦方向平行,线栅偏振光镜62的透射轴62a与取向膜28、36的摩擦方向正交。
在制造液晶装置140的工序P33的第一工序及第二工序中,与设有线栅偏振光镜 60的第一位置和设有线栅偏振光镜62的第二位置分别对应地配置光源56及感光部58,由 感光部58对透过液晶单元50的设有线栅偏振光镜60的区域和偏振光板44的光57、透过 设有线栅偏振光镜62的区域和偏振光板44的光57进行感光,并分别测定光57的强度。
透过液晶单元50的设有线栅偏振光镜60的区域和偏振光板44的光57的强度, 在偏振光板44的透射轴44a与线栅偏振光镜60的透射轴60a平行的位置变为最大。另一 方面,透过液晶单元50的设有线栅偏振光镜62的区域和偏振光板44的光57的强度,在偏 振光板44的透射轴44a与线栅偏振光镜62的透射轴62a正交的位置变为最小。
这里,如果两者的光57的强度的测定值存在差,则进行对位时的测定值的变化量 比取任意一方的测定值的情况大。这样,如果以两者的测定值的差最大的方式确定位置关 系,则能够更加准确地进行偏振光板44相对于液晶电池50的对位。 另外,根据液晶装置140的结构,可以与用于光的强度测定的测定设备的灵敏度 特性(在光的强度小的一侧灵敏度高,或在光的强度大的一侧灵敏度高)相对应地以线栅 偏振光镜60和线栅偏振光镜62中的任意一个线栅偏振光镜作为基准来进行偏振光板44 的对位。
需要说明的是,在本实施方式的液晶装置130U40的任意一个中,在第二工序中 先将偏振光板45粘贴在液晶单元50的情况下,能获得同等的效果。另外,在本实施方式的 液晶装置130U40中,线栅偏振光镜60或62也可以设置在三个以上的部位。在液晶装置 130中,也可以代替线栅偏振光镜60而设置线栅偏振光镜62。
(第五实施方式)
〈液晶装置〉 接下来,参照附图对第五实施方式的液晶装置进行说明。图14是说明第五实施方 式的液晶装置的简要结构的图。详细而言,图14(a)是表示从对置基板侧观察的像素的结 构的俯视图,图14(b)是表示光学设计条件的图。 第五实施方式的液晶装置与第一实施方式的液晶装置相比,不同点在于,是具有 反射显示区域的半透射反射性型,且在反射显示区域设有线栅偏振光镜,除此之外的结构 相同。对与第一实施方式共同的结构要素标注相同的符号,省略其说明。
如图14(a)所示,第五实施方式的液晶装置200是在像素4上具有透射显示区域 T和反射显示区域R的半透射反射型的液晶装置。液晶装置200具有与第一实施方式的液 晶装置100大致相同的结构,不同点在于代替线栅偏振光镜60而在反射显示区域R具有作 为第二光学元件的线栅偏振光镜64。此外,在图14(a)中,为了易于理解结构,对线栅偏振 光镜64标注斜线而进行表示。 线栅偏振光镜64具有与线栅偏振光镜60同样的结构。虽然未图示,但是线栅偏 振光镜64例如形成在基板11和公共电极18之间。线栅偏振光镜64和公共电极18之间 通过绝缘层或线栅偏振光镜64所具有的保护层等进行绝缘。 如图14(b)所示,线栅偏振光镜64的透射轴64a与取向膜28、36的摩擦方向平行 配置。因此,偏振光板44的透射轴44a与线栅偏振光镜64的透射轴64a平行,偏振光板45 的透射轴45a与线栅偏振光镜64的透射轴64a正交。
〈液晶装置的制造方法〉 接下来,对第五实施方式的液晶装置的制造方法进行说明。第五实施方式的液晶 装置的制造方法与第一实施方式的液晶装置的制造方法相比,不同点在于,在第一工序及 第二工序中,代替线栅偏振光镜60,将线栅偏振光镜64作为偏振光板的光学对位基准,除 此之外的制造方法相同。对与第一实施方式共同的结构要素标注相同的符号,省略其说明。
在本实施方式的第一工序及第二工序中,虽然未图示,但是进行以下操作测定透 过液晶单元50的设有线栅偏振光镜64的区域即反射显示区域R和偏振光板44的光57的 强度,并以光57的强度变为最大的方式调整偏振光板44相对于线栅偏振光镜64(液晶单 元50)在相对的面内的位置关系。此时,在偏振光板44的透射轴44a与线栅偏振光镜64 的透射轴64a(参照图14(b))平行的位置、即偏振光板44的透射轴44a与取向膜28的摩 擦方向平行的规定的位置,光57的强度变为最大。 另外,在第三工序及第四工序中,测定透过液晶单元50的没有设置线栅偏振光镜 64的区域即透射显示区域T、偏振光板44和偏振光板45的光57的强度,进行偏振光板45 相对于液晶单元50的对位和粘贴。 根据第五实施方式,在像液晶装置200那样的在反射显示区域R具有线栅偏振光 镜64的半透射反射型的液晶装置中,能够以线栅偏振光镜64的透射轴64a为基准使偏振光板44的透射轴44a光学上与规定的位置一致。由此,不需要设置对位用的线栅偏振光镜, 从而能够减少液晶单元50和偏振光板44的相对位置偏移。 此外,也可以构成为在第五实施方式的液晶装置200还设有上述实施方式中的对 位用的线栅偏振光镜60、62的结构。在这种情况下,在形成配置于反射显示区域R的线栅 偏振光镜64的工序中,能够一起形成对位用的线栅偏振光镜60、62。
(第六实施方式)
〈液晶装置〉 接下来,参照附图对第六实施方式的液晶装置进行说明。图15是表示第六实施方 式的光学元件的简要结构的图。详细而言,图15(a)是光学元件的立体图,图15(b)是沿图 15(a)中的D-D线的剖面图。图15(c)是说明光学设计条件的图。 第六实施方式的液晶装置与上述实施方式的液晶装置相比,不同点在于代替线栅 偏振光镜而具有介电体干涉膜棱镜,除此之外的结构相同。对与第一实施方式共同的结构 要素标注相同的符号,省略其说明。 如图15(a) 、 (b)所示,第六实施方式的液晶装置具备具有棱镜阵列71、在棱镜阵 列71上形成的介电体干涉膜74的光学元件作为第一光学元件。这里,将该光学元件称为 介电体干涉膜棱镜70。 棱镜阵列71形成在基板11上,并具有三棱柱状(棱形形状)的多个凸条72,所述 凸条72具有两个斜面。换言之,通过连续且周期性形成凸条72,构成截面为三角波状的棱 镜阵列71。棱镜阵列71例如由丙烯树脂等热硬化性或光硬化性的透明树脂构成。棱镜阵 列71的凸条72的高度例如为0. 5 ii m 3 P m左右,相互邻接的凸条72之间的间距例如为 1 li m 6 ii m左右。 介电体干涉膜74通过形成在棱镜阵列71上而具有反映多个凸条72所形成的三 角柱状(棱形形状)的斜面的表面。介电体干涉膜74是由折射率不同的两种材料构成的介 电体膜交替层叠多层的所谓的三维光子晶体结晶层。介电体干涉膜74例如通过将氧化钛 (Ti02)膜和氧化硅(Si02)膜交替层叠7层而形成。介电体膜的材料也可以是氧化钽(Ta205) 或硅(Si)。构成介电体干涉膜74的一层介电体膜的膜厚例如为10nm 100nm左右,介电 体干涉膜74的总膜厚例如为300nm 1 y m左右。 介电体干涉膜70具备将入射光分离为偏振光状态不同的反射光和透射光的功 能。如图15(a)所示,介电体干涉膜棱镜70反射入射光中与凸条72的延伸方向平行的偏 振光成分,并透射与凸条72的延伸方向正交的偏振光成分。即,介电体干涉膜棱镜70具有 作为光轴的透射轴70a及反射轴70b。透射轴70a与凸条72的延伸方向正交,反射轴70b 与凸条72的延伸方向平行。 如图15(c)所示,介电体干涉膜棱镜70的透射轴70a与取向膜28、36的摩擦方 向平行配置。因此,介电体干涉膜棱镜70的透射轴70a是在顺时针方向上相对于信号线 14(开口部16a)的延伸方向构成5度角度的方向。介电体干涉膜棱镜70的透射轴70b是 与取向膜28、36的摩擦方向正交的方向,是在顺时针方向上相对于信号线14(开口部16a) 的延伸方向构成95度角度的方向。因此,偏振光板44的透射轴44a与介电体干涉膜棱镜 70的透射轴70a平行,偏振光板45的透射轴45a与介电体干涉膜棱镜70的透射轴70a正 交。
根据介电体干涉膜棱镜70所要求的特性适当调整构成介电体干涉膜74的介电体 膜的层叠间距及凸条72的间距。介电体干涉膜74能够通过构成介电体干涉膜74的介电 体膜的层叠数目来控制其透射率(反射率)。即,通过减少介电体膜的层叠数目,来增大与 反射轴70b (凸条72的延伸方向)平行的直线偏振光的透射率,从而能够减低反射率。在 层叠有规定数目以上的介电体膜的情况下,与反射轴70b平行的直线偏振光的大部分被反 射。 通过介电体干涉膜74的调整,本实施方式的介电体干涉膜棱镜70设定为将入射
光中例如与反射轴70b平行的直线偏振光的70%左右反射,并将剩余的30%左右透射。需
要说明的是,介电体干涉膜74的表面也可以由树脂层覆盖而形成为平坦化。 在上述实施方式的液晶装置具备介电体干涉膜棱镜70作为第一光学元件来代替
线栅偏振光镜60、62时,或者在反射显示区域R具备介电体干涉膜棱镜作为第二光学元件
来代替线栅偏振光镜64时,均能够适用上述实施方式的液晶装置的制造方法,并且获得与
上述实施方式相同的效果。 此外,在代替线栅偏振光镜62而设有介电体干涉膜棱镜时,介电体干涉膜棱镜的 透射轴配置为与取向膜28、36的摩擦方向正交。因此,介电体干涉膜棱镜的透射轴与偏振 光板44的透射轴44a正交,并与偏振光板45的透射轴45a平行。
〈电子设备〉 上述实施方式的液晶装置例如能够搭载在移动电话机等电子设备上而使用。电子
设备也可以是便携式计算机、数码相机、数码摄像机、音频设备、液晶投影仪等。通过在显示
部具备上述实施方式的液晶装置,能够提供具有优越的显示品质的电子设备。 以上,对本发明的实施方式进行了说明,但对上述实施方式而言,能够在不脱离本
发明的宗旨的范围内施加各种变形。作为变形例考虑例如如下的结构。(变形例l) 第一实施方式的液晶装置是在元件基板10上设有线栅偏振光镜60的结构,但并 不局限于此。线栅偏振光镜60也可以设置在对置基板30。图16是说明变形例1的液晶装 置的制造方法的图。 如图16所示,在变形例1的液晶装置中,线栅偏振光镜60设置在对置基板30上。 对置基板30与元件基板10相比,较多地具有能够在显示区域2(参照图1)的周边配置线 栅偏振光镜60的空间。因此,通过在对置基板30上设置线栅偏振光镜60,来缓和配置线栅 偏振光镜60的场所的制约。 在变形例1的液晶装置中,优选在工序P33中先进行偏振光板45向液晶单元50 的粘贴。在工序P33的第一工序中,在液晶单元50的对置基板30的外侧配置偏振光板45。 然后,对透过液晶单元50的设有线栅偏振光镜60的区域和偏振光板45的光57的强度进 行测定,例如以光57的强度变为最小的方式确定偏振光板45相对于线栅偏振光镜60 (液 晶单元50)在相对的面内的位置关系,从而将偏振光板45粘贴在液晶单元50的对置基板 30上。 根据这样的方法,由于在设有线栅偏振光镜60的对置基板30的外侧配置偏振光 板45,因此液晶层40和元件基板10不夹在线栅偏振光镜60和偏振光板45之间。由此,在 以线栅偏振光镜60的透射轴60a为基准使偏振光板45的透射轴45a光学上与规定的位置一致时,排除液晶层40和元件基板10所导致的光学影响。此外,也可以代替线栅偏振光镜 60,而构成为设有线栅偏振光镜62或介电体干涉膜棱镜70的结构。
(变形例2) 上述实施方式的液晶装置构成为具有线栅偏振光镜或介电体干涉膜棱镜作为第 一光学元件或第二光学元件的结构,但并不局限于此。第一光学元件或第二光学元件只要 具有偏振光分离功能,也可以是其他的光学元件。
(变形例3) 上述实施方式构成为将偏振光板构成的偏振光体粘贴在液晶单元上的结构,但并 不局限于此。偏振光体除偏振光板之外具有光学补偿板的结构,也能够适用上述实施方式 的液晶装置的制造方法。图17是说明变形例3的液晶装置及液晶装置的制造方法的图。详 细而言,图17(a)是表示变形例3的液晶装置的简要结构的剖面图,图17(b)是说明液晶装 置的制造方法的图。 如图17(a)所示,变形例3的液晶装置150具有液晶单元50、配置在液晶单元50 的两外侧的偏振光体46和偏振光体48。偏振光体46具有偏振光板44和层叠在偏振光板 44上的光学补偿板47,光学补偿板47与元件基板10侧对置配置。偏振光体48具有偏振 光板45和层叠在偏振光板45上的光学补偿板49,光学补偿板49与对置基板30侧对置配 置。光学补偿板47、49例如通过进行液晶单元50和偏振光板44、45的光学补偿,实现液晶 装置的显示下的视角的扩大和背景色的着色的补偿等。 这里,在工序P33中,例如先进行偏振光体46向液晶单元50的粘贴,之后进行偏 振光体48的粘贴。如图17(b)所示,在第一工序及第二工序中,以光学补偿板47与元件基 板10侧对置的方式在液晶单元50的元件基板10的外侧配置偏振光体46。然后,以透过液 晶单元50的设有线栅偏振光镜60的区域和偏振光体46的光57的强度最大的方式,确定 偏振光体46相对于线栅偏振光镜60 (液晶单元50)在相对的面内的位置关系,从而将偏振 光体46粘贴在液晶单元50的元件基板10上。 接下来,虽然未图示,但在第三工序及第四工序中,以光学补偿板49与对置基板 30侧对置的方式在液晶单元50的对置基板30的外侧配置偏振光体48。然后,以透过液晶 单元50的没有设置线栅偏振光镜60的区域和偏振光体48的光57的强度最大的方式,确 定偏振光体48相对于线栅液晶单元50在相对的面内的位置关系,从而将偏振光体48粘贴 在液晶单元50的对置基板30上。 此外,偏振光体46、48也可以构成为在偏振光板44、45上层叠有两层以上的光学 补偿板的结构。另外,偏振光体46、48的任意一方也可以构成为不具备光学补偿板的结构。
(变形例4) 在上述实施方式中,液晶装置为FFS方式的液晶装置,但并不局限于此。液晶 装置也可以是与FFS同样利用与元件基板平行的方向的横向电场来进行液晶分子的取 向控制的IPS (In-Plane Switching :平面转换)方式的液晶装置。另外,液晶装置也 可以是通过在元件基板和对置基板之间产生的纵向电场来进行液晶分子的取向控制的 TN(Twisted Nematic :扭曲向列)方式、VA (Vertical Alignment :垂直配向)方式或 ECB(ElectricallyControlled Birefringence :电控双折射)方式等的液晶装置。这些液 晶装置也能够适用上述实施方式的液晶装置的结构及液晶装置的制造方法。
权利要求
一种液晶装置,其特征在于,具备相互对置配置的第一基板以及第二基板;夹在所述第一基板和所述第二基板之间的液晶层;配置在所述第一基板以及所述第二基板的两外侧的一对偏振光体;设置在所述第一基板的至少一个部位且具有偏振光分离功能的第一光学元件;有助于显示的显示区域,所述第一光学元件配置在所述显示区域之外。
2. 根据权利要求l所述的液晶装置,其特征在于,所述第一光学元件的光轴与所述第一基板上的所述液晶层的取向方向平行配置, 所述一对偏振光体中的至少一个偏振光体的光轴与所述第一光学元件的光轴平行配置。
3. 根据权利要求l所述的液晶装置,其特征在于,所述第一光学元件的光轴与所述第一基板上的所述液晶层的取向方向正交配置, 所述一对偏振光体中的至少一个偏振光体的光轴与所述第一光学元件的光轴正交配置。
4. 根据权利要求1 3中任一项所述的液晶装置,其特征在于, 所述第一光学元件设置在两个以上的部位。
5. 根据权利要求4所述的液晶装置,其特征在于, 设置在所述两个以上的部位的所述第一光学元件具有设置在第一部位、且具有与所述第一基板上的所述液晶层的取向方向平行配置的光轴 的光学元件;设置在与所述第一部位不同的第二部位、且具有与所述第一基板上的所述液晶层的取 向方向正交配置的光轴的光学元件。
6. 根据权利要求1 5中任一项所述的液晶装置,其特征在于, 所述第一光学元件配置在俯视时与所述液晶层不重叠的位置。
7. 根据权利要求6所述的液晶装置,其特征在于, 所述第一基板具有俯视时与所述第二基板不重叠的伸出部, 所述第一光学元件配置在所述伸出部。
8. 根据权利要求1 7中任一项所述的液晶装置,其特征在于, 所述第一光学元件具备条状排列的金属反射膜。
9. 根据权利要求1 7中任一项所述的液晶装置,其特征在于, 所述第一光学元件具备棱镜阵列和在所述棱镜阵列上形成的介电体干涉膜。
10. 根据权利要求1 9中任一项所述的液晶装置,其特征在于, 还具备反射显示区域,其排列在所述显示区域;第二光学元件,其设置在所述第一基板的所述反射显示区域且具有偏振光分离功能。
11. 根据权利要求1 10中任一项所述的液晶装置,其特征在于, 所述一对偏振光体中的至少一个具备偏振光板和层叠在所述偏振光板上的光学补偿板。
12. —种液晶装置的制造方法,其特征在于,包括准备液晶单元的工序,所述液晶单元具备相互对置配置的第一基板以及第二基板、夹在所述第一基板和所述第二基板之间的液晶层、设置在所述第一基板的至少一个部位且具 有偏振光分离功能的第一光学元件;第一工序,其中,在使第一偏振光体与所述液晶单元的所述第一基板以及所述第二基 板中的一个基板的外侧对置配置的状态下,使所述液晶单元和所述第一偏振光体中的至少 一方在对置的面内旋转,测定透过所述液晶单元的设有所述第一光学元件的区域和所述第 一偏振光体的光的强度;第二工序,其中,根据所述光的强度的测定结果,确定所述第一偏振光体相对于所述第 一光学元件在相对的面内的位置关系,并将所述第一偏振光体粘贴在所述液晶单元的所述 一个基板上。
13. 根据权利要求12所述的液晶装置的制造方法,其特征在于, 所述第一光学元件的光轴与所述第一基板上的所述液晶层的取向方向平行配置, 在所述第二工序中,以使所述光的强度最大的方式来确定所述第一偏振光体相对于所述第一光学元件的相对的位置关系。
14. 根据权利要求12所述的液晶装置的制造方法,其特征在于, 所述第一光学元件的光轴与所述第一基板上的所述液晶层的取向方向正交配置, 在所述第二工序中,以使所述光的强度最小的方式来确定所述第一偏振光体相对于所述第一光学元件的相对的位置关系。
15. 根据权利要求12 14中任一项所述的液晶装置的制造方法,其特征在于, 所述第一光学元件设置在两个以上的部位。
16. 根据权利要求15所述的液晶装置的制造方法,其特征在于, 设置在所述两个以上的部位的所述第一光学元件具有设置在第一部位、且光轴与所述第一基板上的所述液晶层的取向方向平行配置的光学 元件;设置在与所述第一部位不同的第二部位、且光轴与所述第一基板上的所述液晶层的取 向方向正交配置的光学元件。
17. 根据权利要求12 16中任一项所述的液晶装置的制造方法,其特征在于, 在所述第二工序后,还包括第三工序,其中,在使第二偏振光体与所述液晶单元的所述第一基板以及所述第二基 板中的另一个基板的外侧对置配置的状态下,使所述液晶单元和所述第二偏振光体中的至 少一方在对置的面内旋转,测定透过所述液晶单元的没有设置所述第一光学元件的区域、 所述第一偏振光体以及所述第二偏振光体的光的强度;第四工序,其中,根据所述光的强度的测定结果,确定所述第二偏振光体相对于所述第 一偏振光体和所述液晶单元在相对的面内的位置关系,并将所述第二偏振光体粘贴在所述 液晶单元的所述另一个基板上。
全文摘要
本发明提供一种减少液晶单元的光轴和偏振光板的光轴的位置偏移的液晶装置制造方法及液晶装置。所述液晶装置的制造方法包括准备液晶单元的工序,所述液晶单元具备夹持在相互对置配置的元件基板及对置基板之间的液晶层、设置在元件基板的至少一个部位且具有偏振光分离功能的线栅偏振光镜;第一工序,在使偏振光板与液晶单元的元件基板的外侧对置配置的状态下,使液晶单元和偏振光板中的至少一方在对置的面内旋转,测定透过液晶单元的设有线栅偏振光镜的区域和偏振光板的光的强度;第二工序,根据光的强度的测定结果,确定偏振光板相对于线栅偏振光镜在相对的面内的位置关系,并将偏振光板粘贴在液晶单元的元件基板上。
文档编号G02F1/1333GK101718924SQ20091017879
公开日2010年6月2日 申请日期2009年9月30日 优先权日2008年10月8日
发明者关琢巳, 土屋丰 申请人:精工爱普生株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1