用于激光焊接热塑树脂部件的方法和装置的制作方法

文档序号:3004572阅读:159来源:国知局
专利名称:用于激光焊接热塑树脂部件的方法和装置的制作方法
技术领域
本发明涉及一种用于激光焊接热塑树脂部件的方法和装置。具体地,本发明涉及一种通过使由可透射激光束的透射性热塑树脂形成的部件与由可吸收激光束的吸收性热塑树脂形成的部件熔融而使它们接合的方法和装置。
背景技术
为响应近年来减小各种领域的元件例如汽车元件的重量和成本的需要,经常利用树脂材料制成这种部件并且将这种部件形成为树脂模制品。当要形成具有复杂形状的树脂模制品时,预先模制多个由树脂模制品制成的构件,然后通过焊接将这些构件接合在一起以便提高生产率。
专利文献1中公开了一种用于激光焊接上述类型的热塑树脂部件的方法的常规示例。在此方法内,可透射作为热源的激光束的透射性树脂和不可透射激光束的非透射性树脂之间的接触边界被来自透射性树脂材料一侧的激光束照射以便加热并熔融,从而焊接这两种树脂。具体地,由透射性树脂材料和非透射性树脂材料之间的接触界面形成的至少一个接触面被加热并软化。在将透射性树脂材料和非透射性树脂材料相互挤压在一起时,执行激光束照射。
专利文献1JP专利公报(Kokai)No.2004-188802A发明内容在上述用于激光焊接树脂部件的方法中,在接触界面软化之后执行激光焊接。因此,即使在树脂之间的接触界面中存在很大间隙,仍可在执行激光束照射时消除该间隙。因此,可控制焊接缺陷的产生。但是,该方法是有问题的,由于当冷却焊接区域时存在不充分和不均匀的结晶,所以例如已经证明焊接强度是不足的,并且强度的变化很大。此外,在焊接高熔点的树脂部件时或者为了防止由于焊接件所放置的环境的很大影响导致焊接性能变化,需要高输出的激光,这导致高的设备成本。
这些问题是由待焊接树脂部件的不同区域处的冷却速度不同引起的—冷却速度的不同是由部件的结构热容量导致的,从而使不同位置的结晶度不同。另一原因是冷却速度随着待焊接的树脂部件所放置的环境而变动。
鉴于上述问题,本发明的一个目的是提供一种通过使用激光束照射由热塑树脂材料构成的两个部件来激光焊接这两个部件的方法和装置,由此可实现高焊接强度并可减小强度变化。本发明的另一个目的是提供一种用于激光焊接热塑树脂部件的装置,该装置不容易受环境因素影响并具有简单的结构,因此,即使焊接高熔点树脂部件,仍可使用设备成本低的低功率激光获得恒定的焊接性能。
为实现上述目的,本发明提供了一种用于激光焊接热塑树脂部件的方法,该方法包括使由可透射激光束的透射性热塑树脂构成的第一部件与由可吸收激光束的吸收性热塑树脂构成的第二部件相接触,熔融它们的接触面,并焊接这两个部件,该方法还包括使所述第一部件和第二部件相互接触,在低于所述两个部件的熔融温度的温度下至少预加热这两个部件的接触面,使用从第一部件一侧照射的激光束照射所述接触面,熔融这两个部件的至少一个接触面,然后在低于熔融部分的熔融温度的温度下后加热该熔融部分。
用于预加热和后加热的温度优选地高于玻璃化转变温度,该玻璃化转变温度低于热塑树脂的熔融温度。优选地,在使两个部件相互接触时,挤压它们以使它们相互紧密接触。
在上述的根据本发明的用于激光焊接热塑树脂部件的方法中,使第一部件和第二部件相互接触,至少预加热这两个部件的接触面,然后使用从第一部件一侧照射的激光束照射所述接触面。在两个部件中至少一个的接触面熔融之后,后加热该熔融部分。因此,可通过预加热减小温度变化,并可通过后加热防止接触面处的熔融部分骤冷。熔融部分的温度能够因冷却速度的不均匀性的减小而降低,从而可增加结晶度和结晶均匀性。因此,可增加焊接部分的强度,并且减少强度的变化。此外,由于预加热两个部件,所以即使使用的激光射束为低输出,仍可获得焊接强度变化减小的稳定的焊接部分。
在根据本发明的用于激光焊接热塑树脂部件的方法的优选实施例中,通过加热容纳两个部件的空间内部来执行对接触面的预加热和对熔融部分的后加热。在此激光焊接方法内,将所述两个部件容纳在例如壳体内的空间中,并且使用加热器等加热该壳体的内部以形成高温环境。这样,可将这两个部件预加热到预定温度,从而可减小部件内的温度变化。由于后加热接触面上已通过激光束照射而熔融的熔融部分以防止该熔融部分骤冷并允许温度缓慢降低,所以焊接部分内的结晶度可均匀地增加,可提高强度并减小强度的变化。即,由于骤冷会使熔融部分成为非结晶的,所以可通过缓慢冷却实现高的结晶度。
在根据本发明的用于激光焊接热塑树脂的方法的另一优选实施例中,通过向两个部件吹热空气来执行对接触面的预加热和对熔融部分的后加热。在此激光焊接方法内,因为通过向两个部件吹热空气加热这两个部件以将它们预加热到预定温度,所以可消除温度变化。通过向熔融的接触面吹热空气,可防止熔融部分骤冷并使该部分能缓慢冷却。因此,接触面处的熔融部分内的结晶度可均匀地增加,可提高强度并减小强度的变化。
优选地,使用从第一部件一侧照射的预备激光束通过照射两个部件的至少一个接触面来执行对接触面的预加热以及对熔融部分的后加热。特别地,优选将至少一个接触面加热到其软化的程度。在此激光焊接方法内,由于使用预备激光束照射两个部件的至少一个接触面以使其被加热并软化,所以可减小由于两个部件的形状等导致的温度变化。在至少一个接触面被激光射束照射并熔融之后,在低于该接触面的熔融温度的温度下使用该预备激光束加热该接触面,由此该接触面可缓慢冷却。结果,焊接部分的强度增加并且强度的变化减小。
在根据本发明的用于激光焊接热塑树脂部件的方法的另一优选实施例中,该方法包括使由可透射激光束的透射性热塑树脂构成的第一部件与由可吸收激光束的吸收性热塑树脂构成的第二部件相接触,使用激光束熔融它们的接触面,并焊接这两个部件,该方法还包括使所述第一部件和第二部件相互接触,使用从第一部件一侧照射的激光束照射所述接触面,熔融所述两个部件的至少一个接触面,在低于这两个部件的熔融部分的熔融温度的温度下后加热该熔融部分,然后另外在更低的温度下后加热该熔融部分。
根据此激光焊接方法,使用从第一部件一侧照射的激光束照射第一部件和第二部件的接触面,将这两个部件的至少一个接触面熔融并焊接。此后,在低于熔融温度的温度下后加热该焊接部分,然后另外在更低的温度下后加热该熔融部分,从而可使该熔融部分缓慢冷却。这样,可均匀地增加熔融部分内的结晶度、减小焊接强度的变化并且提高焊接强度。
本发明还提供了一种用于激光焊接热塑树脂部件的装置,其中使由可透射激光束的透射性热塑树脂构成的第一部件与由可吸收激光束的吸收性热塑树脂构成的第二部件相接触,使用从第一部件一侧照射的由激光束生成装置发射的激光束照射这两个部件的接触面,以使至少一个接触面熔融并接合,该装置包括用于在低于第一部件和第二部件的至少一个接触面的熔融温度的温度下预加热该接触面的预加热装置;用于使用从第一部件一侧照射的激光束照射第一和第二部件的至少一个接触面的激光束生成装置;以及用于在低于熔融接触面的熔融温度的温度下后加热该接触面的后加热装置。
根据此激光焊接装置,在使第一部件和第二部件相互接触并且至少预加热它们的接触面之后,这两个部件的至少一个接触面熔融。因此,可获得稳定的熔融状况。此外,由于在熔融之后后加热该熔融部分,所以可防止熔融部分骤冷并使该部分能缓慢冷却。结果,可均匀地增加焊接部分内的结晶度、可提高焊接强度并且减小强度的变化。
优选地,预加热装置和后加热装置包括用于容纳第一部件和第二部件的壳体以及用于加热该壳体内部的加热装置。在此实施例内,使用加热器等加热该壳体的内部空间以用于预加热和后加热,从而可通过在利用激光束熔融这两个部件的接触面之前进行预加热来减小各部件内的温度变化,并可实现均匀的熔融状况。另外,由于后加热熔融部分以防止其快速冷却而相反使其缓慢冷却,所以可均匀地增加结晶度、可提高焊接强度并且减小强度的变化。
优选地,预加热装置和后加热装置包括用于加热第一部件和第二部件的热空气供应装置。该热空气供应装置可设置成向容纳这两个部件的壳体内吹送热空气。从而将热空气吹向第一和第二部件以将它们预加热到预定温度。然后,熔融至少一个结合表面以便焊接这两个部件,接着后加热该熔融部分以使其缓慢冷却。这样,可均匀地增加结晶度、可提高焊接强度并且减小强度的变化。
在又一实施例中,本发明提供了一种用于激光焊接热塑树脂部件的装置,其中使由可透射激光束的透射性热塑树脂构成的第一部件与由可吸收激光束的吸收性热塑树脂构成的第二部件相接触,使用由激光束生成装置生成的激光束照射接触面以使所述接触面熔融并使所述部件接合,其中该激光束生成装置包括用于在低于接触面的熔融温度的温度下预加热所述接触面的第一加热装置;用于使至少一个接触面熔融的第二加热装置;以及用于在低于所述接触面的熔融温度的温度下后加热该接触面的第三加热装置。
这三个加热装置提供给接触面的能量级不同。
根据此用于激光焊接热塑树脂部件的装置,使用具有低能量密度的第一加热装置至少预加热两个部件的接触面以减小温度变化。使用具有高能量密度的第二加热装置使至少一个接触面熔融,然后使用具有低能量密度的第三加热装置使该接触面缓慢冷却。这样,可均匀地增加焊接部分内的结晶度、可提高其强度提高并且减小强度的变化。此外,由于在至少一个接触面熔融之前使用第二加热装置预加热该接触面,所以可焊接高熔点的树脂部件而不必使用高输出激光束。
优选地,所述第一、第二和第三加热装置分离由单个激光束生成装置生成的激光束,第二加热装置构成主加热装置并具有顶帽(top-hat)分布类型的强度分布,而第一和第三加热装置生成具有高斯分布类型的强度分布的激光束。根据此结构,可使用单个激光束生成装置来执行预加热、用于熔融至少一个接触面的主加热以及用于使熔融部分缓慢冷却的后加热。因此,可简化装置的结构,另外可增加焊接强度并减小强度的变化。
优选地,所述第一、第二和第三加热装置各自包括单独的激光束生成装置,其中第二加热装置构成主加热装置并生成具有顶帽分布类型的强度分布的激光束,而第一和第三加热装置生成具有高斯分布类型的强度分布的激光束。在此结构内,具有低能量密度的第一和第三加热装置分别构成预加热装置和后加热装置,而使用具有高能量密度的第二加热装置来熔融至少一个接触面。这样,可增强焊接强度并减小强度的变化。此外,可自由调节预加热装置和后加热装置的输出,从而可根据这两个部件的形状调节焊接部分的状况。
所述第一、第二和第三加热装置各自包括单独的激光束生成装置,其中第二加热装置构成主加热装置并生成其焦点位置与所述接触面重合的激光束,而第一和第三加热装置生成其焦点位置没有与所述接触面重合的激光束。根据这种结构,可通过在预加热期间、接触面的熔融期间以及后加热期间调节具有相同输出的所述三个激光束生成装置的焦点位置来改变能量密度。因此,可增加焊接强度并且可减小强度的变化。
在根据本发明的用于激光焊接热塑树脂部件的装置的另一实施例中,使由可透射激光束的透射性热塑树脂构成的第一部件与由可吸收激光束的吸收性热塑树脂构成的第二部件相接触,使用激光束照射这两个部件的接触面以使之熔融并使这两个部件接合,该装置包括用于使用从该第一部件一侧照射的激光束照射所述第一和第二部件以使至少一个接触面熔融的激光束生成装置;以及用于移动该激光束生成装置并调节所生成的激光束的焦点位置的焦点调节移送装置,其中,通过调节激光束的焦点位置来调节用以加热接触面的能量密度。
在如此构造的激光焊接装置内,使用由激光束生成装置发射的激光束来照射两个部件的接触面以使激光束散焦。这样,可利用低能量密度加热接触面,由此预加热接触面而不使它们熔融,从而可减小温度的变化。然后,使用聚焦在接触面上的激光束照射接触面以利用高能量密度加热并熔融它们。然后使用未聚焦在接触面上的激光束照射接触面,从而用低能量密度加热它们以用于后加热。这样,可使接触面的熔融部分缓慢冷却,以便能均匀地增加结晶度,由此增加焊接强度并且减小强度的变化。
在根据本发明的激光焊接方法和装置中,用作可透射激光束的透射性热塑树脂的树脂类型没有特别的限制,而是可使用任何树脂,只要该树脂是热塑性的并且能够透射作为热源的激光束即可。示例包括诸如尼龙6(PA6)或尼龙66(PA66)的聚酰胺(PA)、聚乙烯(PE)、聚丙烯(PP)、苯乙烯-丙烯腈共聚物、聚对苯二甲酸乙二醇酯(PET)、聚苯乙烯、ABS、聚甲基丙烯酸甲酯(PMMA)、聚碳酸酯(PC)以及聚对苯二甲酸丁二醇酯(PBT)。可根据需要添加着色剂或者诸如玻璃纤维或碳纤维的加强纤维。“透射激光束”是指树脂相对于激光束的透射率优选为20%或更大,更优选为50%或更大,再优选为80%或更大,特别优选为90%或更大。
用作可吸收激光束的吸收性热塑树脂的树脂类型没有特别的限制,而是可使用任何树脂,只要该树脂是热塑性的并且能够吸收作为热源的激光束而不使激光束透射即可。示例包括诸如尼龙6(PA6)或尼龙66(PA66)的聚酰胺(PA)、聚乙烯(PE)、聚丙烯(PP)、苯乙烯-丙烯腈共聚物、聚对苯二甲酸乙二醇酯(PET)、聚苯乙烯、ABS、聚甲基丙烯酸甲酯(PMMA)、聚碳酸酯(PC),聚对苯二甲酸丁二醇酯(PBT)和PPS,其中可混合预定的着色剂,例如碳黑、染料或颜料。可根据需要添加诸如玻璃纤维或碳纤维的加强纤维。“吸收激光束”在此是指树脂的透射率优选为10%或更小,更优选为5%或更小,还优选为1%或更小。
对于用作透射性热塑树脂材料或吸收性热塑树脂材料的树脂的组合,该组合优选为相容材料的组合。这种组合的示例包括尼龙6和尼龙66、PET和PC、PC和PBT的组合,以及相同类型的树脂的组合,例如尼龙6和尼龙6或者尼龙66和尼龙66。
在根据本发明的激光焊接方法和装置中,例如可根据可透射激光束的透射性树脂材料的吸收光谱以及该材料的厚度(透射长度)合适地选择照射两个部件的接触面的激光束的类型。这种激光束的示例包括Nd:玻璃(钕3+:玻璃)激光、Nd:YAG(钕3+:YAG)激光、红宝石激光、氦氖激光、氪激光、氩激光、H2激光、N2激光和半导体激光。更优选的示例为Nd:YAG激光(激光束的波长1060nm)以及半导体激光(激光束的波长500~1000nm)。
激光束的输出功率优选地为10~900W。如果激光束的输出功率小于10W,则难以使树脂部件的接触面熔融。如果输出功率超过900W,则树脂材料会气化或者性质变化。
根据本发明的用于激光焊接热塑树脂部件的方法和装置,可高焊接强度地均匀焊接由热塑树脂构成的两个部件,从而可实现恒定的焊接性能。另外,该方法和装置使得即使这些树脂部件具有高熔点,仍可使用具有低设备成本的低输出激光将它们焊接在一起,并且焊接强度高且强度变化小。根据本发明,焊接部分不会产生毛边等,从而可提高焊接树脂材料的质量。


图1示出根据本发明的第一实施例的激光焊接装置的主要部分;图2示出根据本发明的第二实施例的激光焊接装置的主要部分;图3示出根据本发明的第三实施例的激光焊接装置的主要部分;图4示出根据本发明的第四实施例的激光焊接装置的主要部分;
图5示出根据本发明的第五实施例的激光焊接装置的主要部分;图6示出根据本发明的第六实施例的激光焊接装置的主要部分。
具体实施例方式
下面,参照

根据本发明的用于激光焊接热塑树脂部件的方法和装置的第一实施例。图1示出根据本实施例的用于激光焊接热塑树脂部件的装置的主要部分。
在图1所示实施例的激光焊接装置1内,使由可透射激光束的透射性热塑树脂制成的第一部件2与由可吸收激光束的吸收性热塑树脂制成的第二部件3相接触,并且通过使用激光束熔融这两个部件的接触面4而使这两个部件接合。激光焊接装置1包括用于在低于第一部件2和第二部件3的熔融温度的温度下至少预加热它们的接触面4的预加热装置20、用于使用激光束从第一部件2一侧照射接触面4以熔融该第一部件2和第二部件3的至少一个接触面的激光束发生器10以及用于将已熔融的接触面4后加热到低于它们的熔融温度的温度的后加热装置20A。
预加热装置20将两个部件2和3加热到它们未熔融的温度,例如高于玻璃化转变温度(Tg)的温度。后加热装置20A也将这两个部件2和3加热到它们不会熔融的温度。在本实施例中,预加热装置和后加热装置包括可容纳这两个部件的壳体21以及用于加热该壳体内空间的加热装置例如加热器22。这样,壳体21和加热器22都用于预加热和后加热。因此,可在焊接各自的接触面之前使用加热器将所述两个部件加热到预定温度,然后在焊接之后通过使用加热器加热焊接区域来缓慢冷却这两个部件,从而防止焊接区域骤冷。
激光束发生器10包括激光振荡器11和经由光纤与该激光振荡器联接的激光头12。由激光头生成的激光束是半导体激光束,其波长例如为940nm,输出功率优选地在大约10~900W的范围内。激光头12上连接有移送机构13,以用于在焊接期间以例如0.1~5m/min的处理速度移送激光头。对于移送机构13,可根据需要使用各种不同构型。示例包括其中工业机器人与激光头12联接的构型、其中使用二维或三维台架移动部件的构型、其中通过光学透镜和镜件的组合控制焦点位置的构型以及其中使用多个激光头同时照射多个部位的构型。
第一部件2例如由作为透射性热塑树脂材料的玻璃加强尼龙6材料制成。第二部件3例如由混合有碳黑或着色剂的玻璃加强尼龙6材料制成。由吸收性热塑树脂材料制成的第二部件3因混合碳黑或着色剂而具有激光束吸收特性。第二部件3因此吸收激光束、存储该激光束的能量并发热。
激光焊接装置1还设有用于挤压两个部件2和3以使它们相互紧密地贴附的夹紧机构15。该夹紧机构15用于防止在使用激光束熔融两个部件中至少一个的接触面以焊接并接合所述部件—这将使熔融部分的体积增加—时这两个部件相互分离。因此,夹紧机构15用于允许均匀地焊接这两个部件。夹紧机构15可以以各种不同的方式配置。例如,该夹紧机构可包括弹簧机构,从而可将这两个部件相互压在一起。也可将该夹紧机构设计成从上方挤压放置在基座等上的两个部件。或者,该夹紧机构可使用流体压力例如水压或压缩空气来进行挤压操作。
形成第一部件2并且可透射激光束的透射性热塑树脂材料的激光束透射率优选地为20%或更大,更优选为50%或更大,再优选为80%或更大,特别优选为90%或更大。形成第二部件3并且可吸收激光束的吸收性热塑树脂材料的激光束透射率优选地为10%或更小,更优选为5%或更小,尤其优选为1%或更小。形成第二部件3的树脂材料几乎不能透射激光束;因此可将该树脂材料称为非透射性热塑树脂材料。第二部件3几乎不能使照射该第二部件的激光束透射,相反该第二部件吸收大部分激光束。结果,激光束的能量存储在第二部件内,使得该第二部件发热。
下面将说明根据本实施例构造的用于热塑树脂部件的激光焊接装置1的操作。在激光焊接装置1的壳体21内,将第一部件2和第二部件3放置成一个在另一个之上,然后通过夹紧机构15将它们挤压成紧密贴附的状态。将这两个部件层叠成使得具有透射性的部件2与激光头12相对。当向壳体21的加热器22提供能量时,壳体21内的温度增加,由此将两个部件2和3预加热到预定温度。此预定温度优选高于两个部件的玻璃化转变温度(Tg)。例如,两个部件的熔融温度为约200~250℃,而玻璃化转变温度为约80~90℃。这样,这两个部件2和3作为一个整体被预加热。
在两个部件2和3已被均匀地预加热之后,起动激光振荡器11以利用来自激光头2的激光束R照射这两个部件的焊接区域。从可透射激光束的第一部件2一侧照射激光束R,以使激光束聚焦在接触面4上。由于激光束R经由激光头的照射透镜聚焦在接触面上,所以可吸收激光束的第二部件3在接近接触面4的上部区域内发热。当向接触面传送预定量的能量时,第二部件3的接近接触面4的区域开始熔融。接着第一部件2的接触面熔融。结果,当两个熔融部分6熔合时第一部件2和第二部件3熔合。因此,通过在焊接两个部件的接触面4时移动激光头12以延伸熔融部分6,可使这两个部件的焊接部分连续延伸。由于使用加热装置20预先将这两个部件预加热到预定温度,所以即使使用低输出的激光也可获得稳定的熔融状态。
此后,起动加热器22以执行后加热,由此防止两个部件2和3骤冷。在约80~90℃的温度下执行后加热,以便防止温度为200~250℃或更高的熔融部分过快地降低温度。如果熔融部分骤冷,则结晶度将减小并且焊接强度变低。但是,根据本发明,焊接部分7的结晶度可由于通过后加热步骤进行的缓慢冷却而均匀地增加。因此,可增加焊接强度并且减小强度的变化。此外,没有从焊接部分7突出毛边,从而可提高焊接部分的质量。应指出,可以包括在激光束照射期间连续地执行预加热和后加热,或者可在激光束发生器10操作期间停止预加热和后加热。
参照图2说明本发明的第二实施例,该图示出根据第二实施例的激光焊接装置的主要部分。与前面的实施例相比,本实施例的特征在于,用于预加热和后加热的装置包括用于向两个部件吹送热空气的热空气供应装置。其它基本相同的元件用相同标号指示,并且将省略对它们的详细说明。
参见图2,根据第二实施例的激光焊接装置1A包括热空气供应装置25,该装置用作预加热装置和后加热装置。例如包括电加热器和风扇(未示出)的热空气供应装置使用风扇向待焊接部件吹送由电加热器产生的热,以进行预加热或后加热。根据待焊接部件合适地设定由电加热器产生的热量或者由风扇吹送的空气量。例如,当两个部件小且待焊接部分窄时,将电加热器产生的热量或风扇产生的空气量设定得较低。优选地,在本实施例中,预加热或后加热的温度也设定为高于两个部件的玻璃化转变温度。
根据如此构造的第二实施例,由于通过起动热空气供应装置25预加热待焊接的两个部件2和3,所以可减小这两个部件的温度波动。此外,由于预加热这两个部件,所以可利用低输出的激光束均匀地熔融高熔点树脂部件。在通过起动激光束发生装置10熔融两个部件的接触面之一之后,通过提供热空气使熔融部分6缓慢冷却。因此,焊接部分7内的结晶度可均匀地增加,从而可得到具有高焊接强度和低强度变化的焊接部分。用于预加热这两个部件的热空气供应装置可构造成将热空气吹入容纳这两个部件的壳体。或者,可仅将热空气吹向这两个部件而不使用壳体。
参照图3说明本发明的第三实施例,该图示出根据第三实施例的激光焊接装置的主要部分。与前面的实施例相比,第三实施例的特征在于,用于加热和熔融第一和第二部件2和3以及用于执行预加热和后加热的加热装置包括低能量密度预加热装置,通过该预加热装置分离由单个激光束发生装置生成的激光束;用于熔融接触面的高能量密度主加热装置;以及低能量密度后加热装置。其它基本相同的元件用相同标号指示,并且将省略对它们的详细说明。
参见图3,本实施例的激光焊接装置1B包括作为光学装置的透镜32,该透镜用于将激光束发生装置30的激光头31生成的激光束相对于进行焊接的方向分为中部、前部和后部。具体地,激光束发生装置使用透镜32将激光头31生成的激光束分成作为低能量密度预加热激光束的激光束R1,该激光束具有高斯分布;作为高能量密度主加热激光束的激光束R2,该激光束具有顶帽分布;以及作为低能量密度后加热激光束的激光束R3,该激光束具有高斯分布。作为预加热激光束的激光束R1相对于移送机构13的移送方向位于前部。作为后加热激光束的激光束R3相对于移送方向位于后部。作为主加热激光束的激光束R2位于中心位置。分离装置可包括合适的光学装置例如光束分裂器。
因此,已经通过透镜32的激光束的能量分布在俯视图内的形状为沿移送方向延长的椭圆形,并具有顶帽形(高亮度)高中心部分,而强度相对于移送方向沿高斯曲线朝前部和后部逐渐减小(低亮度)。换句话说,中心处激光束R2具有高能量密度,而相对于移送方向在前部和后部的激光束R1和R3具有低能量密度。
具有高能量密度的激光束R2从可透射激光束的第一部件一侧照射,由此强烈地加热并熔融部件2和3中至少一个的接触面(具体为可吸收激光束的第二部件3的接触面)。用作预加热装置的低能量密度激光束R1和用作后加热装置的低能量密度激光束R3的能级使得它们不能使两个部件2和3的接触面熔融。预加热激光束R1和后加热激光束R3可具有相同或不同的输出功率。为减少焊接时间,可使预加热装置的输出功率大于后加热装置的输出功率。因此,可根据这两个部件合适地设定各个激光束的输出功率。
在如此构造的激光焊接装置1B内,通过光学装置32将激光头31生成的激光束分成三个组分,其中激光束R1从图的左端至少将两个部件2和3的接触面4加热到所述部件不会熔融的程度。当移送机构13移动激光头时,预加热部分5延伸,利用激光束R2照射预加热部分5,从而接触面熔融并形成熔融部分6。当移送机构继续移动激光头时,预加热部分5和熔融部分6延伸,利用激光束R3照射熔融部分以进行后加热。后加热激光束R3防止熔融部分6快速冷却并使其能缓慢冷却,从而形成焊接部分7。当激光束R3移动到这两个部件的右端时,焊接操作结束。
因此,在焊接期间,使用预加热激光束R1将第一部件2和第二部件3加热到它们不会熔融的程度,例如到高于它们的玻璃化转变温度的温度,从而可减小温度变化。当用激光束R2熔融两个部件时,可得到均匀的熔融状态,从而可在不影响部件形状等的情况下均匀地熔融这两个部件。此后,用后加热激光束R3加热部件以缓慢冷却,由此可均匀地增加结晶度,并且可提高焊接强度。由于均匀的熔融状态,所以可减小强度变化。可通过增加移送机构的移送速率—即通过以较高速度移动激光头来得到低能量密度的预加热激光束R1和后加热激光束R3,从而可减小照射能量密度。低能量密度预加热激光束R1和后加热激光束R3以及激光束R2可在许多情况下逐渐照射以调节输出。在本实施例中,由于将单个激光束发生器生成的激光束分散以用于预加热、主加热和后加热,所以可简化装置结构。
参照图4说明本发明的第四实施例,该图示出根据第四实施例的激光焊接装置的主要部分。与前面的实施例相比,本实施例的特征在于用于预加热、主加热和后加热的装置35包括各自的激光束发生器。具体地,用于预加热的激光束发生器36构成低输出生成部件,用于主加热的激光束发生器37构成高输出生成部件,用于后加热的激光束发生器38构成低输出生成部件。其它基本相同的元件用相同标号指示,并省略对它们的详细说明。
参见图4,本实施例的激光焊接装置1C包括激光束生成装置35,该装置包括用于预加热的激光束发生器(第一加热装置)36、用于主加热的激光束发生器(第二加热装置)37以及用于后加热的激光束发生器(第三加热装置)38。激光束生成装置35的主加热激光束发生器37产生具有顶帽强度分布的激光束R5,可使用该激光束执行高能量密度加热。主加热激光束发生器37发出顶帽形的激光束,该激光束从第一部件一侧照射两个部件2和3的接触面,从而可强烈地加热所述接触面中的至少一个(即,吸收激光束的第二部件3的表面)并使其熔融。
预加热激光束发生器36和后加热激光束发生器38分别产生具有高斯强度分布的预加热激光束R4和后加热激光束R6,可使用所述激光束执行低能量密度加热。预加热和后加热激光束发生器36和38用具有高斯分布的激光束照射两个部件2和3的接触面以加热这些接触面。激光束R4和R6不具有足以熔融树脂的能量,优选地将接触面附近的区域加热到例如高于玻璃化转变温度的温度,以使该区域可软化。这三个激光束发生器以预定的间隔连接,并且利用未示出的移送机构沿这两个部件移动。
根据此实施例,当焊接第一和第二部件2和3时,使用来自激光束发生器36的预加热激光束R4从第一部件2一侧照射这两个部件的接触面,该激光束发生器36构成第一加热装置。第二部件3吸收激光束从而被预加热。结果,接触面被加热到未熔融的温度。通过移送机构13缓慢地移动预加热区域,并使用来自激光束发生器37的高能量密度激光束R5照射预加热部分5,从而至少一个接触面被加热并熔融。然后,经由熔融部分6焊接这两个部件,并且通过移送机构延伸焊接部分。
此后,用来自激光束发生器38的低能量密度后加热激光束R6照射焊接部分,从而防止焊接部分骤冷而相反使该部分缓慢冷却。因此,当移送机构操作时缓慢冷却的区域增加。这样,在两个部件2和3焊接之前,接触面被来自激光束发生器36的激光束R4预加热,被来自激光束发生器37的激光束R5熔融,然后通过激光束发生器38的激光束R6缓慢冷却。由于使用激光束R4进行预加热,所以可在温度变化较小的状态下使用激光束R5熔融焊接部分。由于在熔融之后使用激光束R6缓慢冷却熔融部分,所以可提高结晶的程度和均匀性,由此可增强焊接强度并且减小强度变化。激光束R4、R5和R6不限于顶帽或高斯分布型,并且它们各自的输出可改变以使激光束R5具有高能量密度而激光束R4和R6具有低能量密度。在本实施例中,由于可通过调节三个激光束发生器的能量密度来根据需要调节用于预加热、主加热和后加热的热量,所以可根据两个部件的形状或体积执行最优焊接。
参照图5说明本发明的第五实施例,该图示出根据第五实施例的激光焊接装置的主要部分。激光焊接装置1D包括作为激光束生成装置40的激光束发生器41,其构成用于预加热的加热装置41;用于主加热的激光束发生器42;以及用于后加热的激光束发生器43。用于预加热的激光束发生器41从可透射激光束的第一部件2的方向照射这两个部件。调节激光头中照射透镜的焦点以使其不与这两个部件2和3的接触面重合。具体地,预加热激光束R7聚焦在接触面上方,从而减小接触面处的能量密度。
在用于主加热的激光束发生器42内,激光头中的照射透镜聚焦成其焦点与接触面重合。因此,主加热激光束发生器42在接触面处产生高能量密度,从而可使用从第一部件2一侧照射的激光束R8加热并熔融接触面。用于后加热的激光束发生器43也从第一部件2一侧照射部件,并且其激光头中的照射透镜调节成焦点不与接触面重合。具体地,用于后加热的激光束R9聚焦在接触面上方,从而减小在接触面处的能量密度。其它基本相同的元件用相同标号指示,并省略它们的详细说明。
在如此构造的激光焊接装置1D内,由预加热激光束发生器41生成的预加热激光束R7没有聚焦而是在接触面上模糊(blur),从而以低能量密度执行预加热。结果,两个部件2和3的接触面没有熔融,而相反形成预加热部分5。由于来自主加热激光束发生器42的激光束R8聚焦在两个部件2和3的接触面上,所以激光束集中为单个具有高能量密度的点,接触面被快速加热和熔融,由此形成熔融部分6。预加热使得熔融温度稳定并使熔融状态均匀,通过预加热可将接触面的温度保持在一定水平上。
此后,使用后加热激光束发生器43生成的后加热激光束9低能量密度地加热熔融部分6,从而在形成焊接部分7时防止熔融部分快速冷却。因此,通过冷却熔融部分形成的焊接部分7内的结晶度可均匀地增加,从而可提高焊接强度。此外,由于熔融状态均匀,所以可减小焊接强度的变化。因此,根据本实施例,可沿垂直方向调节这三个激光束发生器,从而可执行三种加热即预加热、主加热和后加热,通过主加热熔融至少一个接触面,通过后加热使熔融部分能缓慢冷却。预加热、主加热和后加热中产生的热量可自由调节。
参照图6说明本发明的第六实施例,该图示出根据本实施例的激光焊接装置的主要部分。与前面的实施例相比,本实施例的特征在于使用单个激光束生成装置执行用于使熔融部分缓慢冷却的第一和第二后加热,以及用于使接触面熔融的主加热。具体地,将单个激光头生成的激光束从可透射激光束的第一部件一侧照射,并聚焦在两个部件的接触面上以进行主加热。接下来执行第一后加热,其中使由同一激光头生成的激光束散焦。然后,执行第二后加热,其中使由同一激光头生成的激光束进一步散焦。
参见图6,激光焊接装置1E包括用于熔融两个部件2和3的接触面中的至少一个的激光束发生器50以及用于移送激光束发生器并调节由此生成的激光束的焦点位置的焦点调节移送装置51。通过调节激光束的焦点来调节用以加热接触面的能量的密度。具体地,焦点调节移送装置51使激光束发生器50的激光头垂直以及水平移动,从而可移动激光头生成的激光束的焦点位置。通过调节激光束的焦点位置,激光束可聚焦并且可执行高能量密度加热。另一方面,可通过使激光束散焦以照射较宽区域来执行低能量密度加热。
在如此构造的激光焊接装置1E内,当焊接两个部件2和3时,从第一部件一侧照射激光束R10,同时将激光束发生器50内的激光头所生成的激光束的焦点调节为与接触面重合。结果,至少一个接触面被高能量密度地加热并从而熔融。然后沿水平方向移动激光束发生器50内的激光头以延伸熔融部分6。在激光头移动预定行程之后,熔融步骤完成,激光束照射终止,并且激光头返回其初始位置(第一扫描)。
此后,通过焦点调节移送机构51将激光头升高以使照射激光束R11的焦点位置移动离开接触面,从而激光能量集中的位置移动到接触面上方,此时执行低能量密度的第一后加热(第二扫描)。当在熔融接触面处的树脂的温度高于玻璃化转变温度时需要执行第一后加热。因此,照射激光束R11沿水平方向移动,而激光束R11集中的位置移动离开接触面。这样,可向熔融部分传送低密度激光能量,从而可防止熔融部分骤冷并允许该部分缓慢冷却。结果,可延长提供超过玻璃化转变温度的能量的能量的时间,从而可形成具有均匀提高的结晶度的焊接部分7。然后,通过焦点调节移送机构51将激光头移动预定行程,第一后加热完成,激光头返回初始位置。
此后,通过焦点调节移送机构51进一步提升激光头以相对于接触面进一步移动照射激光束R12的焦点位置,从而激光能量集中的位置移动到接触面上方更远的位置,此时执行低能量密度的第二后加热(第三扫描)。当熔融接触面处的树脂的温度高于玻璃化转变温度时也必须执行第二后加热。因此,当照射期间激光束沿水平方向移动,同时激光束R12集中的位置进一步远离接触面时,向熔融部位提供能量密度更低的激光能量。结果,熔融部分更缓慢地冷却并且可更多地延长缓慢冷却时间,从而超过玻璃化转变温度的状态可维持更长时间。这使得可形成高度结晶化的焊接部分8,其中结晶度更均匀地提高。
因此,根据第六实施例,在执行主加热时,使激光头的照射透镜的焦点位置与接触面重合,从而两个部件的接触面可被激光头强烈加热并熔融,这样部件2和3可焊接在一起。焊接部分的温度为大约200~250℃。此后,执行第一后加热,其中激光头中照射透镜的焦点位置不与两个部件的接触面重合,从而部件被轻微地加热并缓慢地冷却。然后,执行第二后加热,其中焦点位置进一步远离以便更轻微地加热熔融部分。结果,超过玻璃化转变温度的状态可维持更长时间,从而熔融部分的结晶度可均匀地提高。因此,通过两次轻微地加热焊接部分,可使焊接部分的结晶程度更高,可提高焊接强度,并可减小强度变化。尽管在本实施例中使用激光头执行三次扫描,但也可通过沿圆周三次移动激光头以通过圆周运动执行扫描。
尽管已说明本发明的实施例,但本发明并不局限于上述实施例,而是可在权利要求所述的本发明的范围和精神内进行各种改变和修改。例如,构成激光束生成装置的激光振荡器可与激光头成一体地组合在一起,并以可自由移动的方式安装在壳体内。另外,尽管激光束生成装置已被说明为直线移动,但是该生成装置也可沿曲线移动或者沿圆周移动,以使该激光束生成装置能返回初始位置。
关于热塑树脂,当然示例并不局限于上述那些,而是可包括通用热塑树脂、通用工程塑料、超级工程塑料和热塑弹性体。优选地,构成第一部件并可透射激光束的透射性热塑树脂具有高透射率,而构成第二部件并可吸收激光束的吸收性热塑树脂具有低透射率。优选这两个部件之间的透射率相差很大。
工业适用性根据本发明,第一和第二部件由具有不同激光束透射率的材料制成;即,前者由透射性热塑材料制成而后者由吸收性热塑材料制成,从而可提高焊接强度并减小强度变化。此外,在焊接部分不会形成毛边,因此可提高焊接部分的质量。本发明可用于焊接各种不同类型的树脂产品或部件。
权利要求
1.一种用于激光焊接热塑树脂部件的方法,该方法包括使由可透射激光束的透射性热塑树脂构成的第一部件与由可吸收激光束的吸收性热塑树脂构成的第二部件相接触,使用激光束熔融它们的接触面,以及焊接这两个部件,所述方法还包括使所述第一部件和所述第二部件相互接触,在低于所述两个部件的熔融温度的温度下至少预加热这两个部件的接触面,使用从所述第一部件一侧照射的激光束照射所述接触面,熔融所述两个部件的至少一个所述接触面,然后在低于熔融部分的熔融温度的温度下后加热该熔融部分。
2.根据权利要求1的用于激光焊接热塑树脂部件的方法,其特征在于,通过加热容纳所述两个部件的空间的内部来执行对所述接触面的预加热和后加热。
3.根据权利要求1的用于激光焊接热塑树脂部件的方法,其特征在于,通过向所述两个部件吹热空气来执行对所述接触面的预加热和后加热。
4.根据权利要求1的用于激光焊接热塑树脂部件的方法,其特征在于,使用从所述第一部件一侧照射的预备激光束照射所述两个部件的至少一个所述接触表面,从而执行对所述接触面的预加热和后加热。
5.一种用于激光焊接热塑树脂部件的方法,该方法包括使由可透射激光束的透射性热塑树脂构成的第一部件与由可吸收激光束的吸收性热塑树脂构成的第二部件相接触,使用激光束熔融它们的接触面,以及焊接这两个部件,所述方法还包括使所述第一部件和所述第二部件相互接触,使用从所述第一部件的一侧照射的激光束照射所述接触面,熔融所述两个部件的至少一个所述接触面,在低于所述两个部件的熔融部分的熔融温度的温度下后加热该熔融部分,然后另外在更低的温度下后加热所述熔融部分。
6.一种用于激光焊接热塑树脂部件的装置,其中使由可透射激光束的透射性热塑树脂构成的第一部件与由可吸收激光束的吸收性热塑树脂构成的第二部件相接触,使用激光束熔融这两个部件的接触面以使这两个部件相接合,所述装置包括用于在低于所述第一部件和所述第二部件的至少一个接触面的熔融温度的温度下预加热该接触面的预加热装置;用于使用从所述第一部件一侧照射的激光束照射所述第一部件和所述第二部件的至少一个接触面的激光束生成装置;以及用于在低于熔融接触面的熔融温度的温度下后加热该接触面的后加热装置。
7.根据权利要求6的用于激光焊接热塑树脂的装置,其特征在于,所述预加热装置和所述后加热装置包括用于容纳所述第一部件和所述第二部件的壳体,以及用于加热所述壳体内部的加热装置。
8.根据权利要求6的用于激光焊接热塑树脂的装置,其特征在于,所述预加热装置和所述后加热装置包括用于加热所述第一部件和所述第二部件的热空气供应装置。
9.一种用于激光焊接热塑树脂材料的装置,其中使由可透射激光束的透射性热塑树脂构成的第一部件与由可吸收激光束的吸收性热塑树脂构成的第二部件相接触,使用由激光束生成装置生成且从所述第一部件一侧照射的激光束照射这两个部件的至少一个接触面并使之熔融以使这两个部件相接合,所述激光束生成装置包括用于在低于所述接触面的熔融温度的温度下预加热该接触面的第一加热装置;用于使至少一个所述接触面熔融的第二加热装置;以及用于在低于所述接触面的熔融温度的温度下后加热该接触面的第三加热装置。
10.根据权利要求9的用于激光焊接热塑树脂部件的装置,其特征在于,所述第一加热装置、所述第二加热装置和所述第三加热装置分离由单个激光束生成装置生成的激光束,所述第二加热装置构成主加热装置并具有顶帽分布类型的强度分布,而所述第一加热装置和所述第三加热装置生成具有高斯分布类型的强度分布的激光束。
11.根据权利要求9的用于激光焊接热塑树脂部件的装置,其特征在于,所述第一加热装置、所述第二加热装置和所述第三加热装置各自包括单独的激光束生成装置,所述第二加热装置构成主加热装置并生成具有顶帽分布类型的强度分布的激光束,而所述第一加热装置和所述第三加热装置生成具有高斯分布类型的强度分布的激光束。
12.根据权利要求9的用于激光焊接热塑树脂部件的装置,其特征在于,所述第一加热装置、所述第二加热装置和所述第三加热装置各自包括单独的激光束生成装置,所述第二加热装置构成主加热装置并生成其焦点位置与所述接触面重合的激光束,而所述第一加热装置和所述第三加热装置生成其焦点位置没有与所述接触面重合的激光束。
13.一种用于激光焊接热塑树脂材料的装置,其中使由可透射激光束的透射性热塑树脂构成的第一部件与由可吸收激光束的吸收性热塑树脂构成的第二部件相接触,使用激光束照射这两个部件的接触面以使之熔融并使这两个部件相接合,所述装置包括用于使用从所述第一部件一侧照射的激光束照射所述第一部件和所述第二部件以使至少一个所述接触面熔融的激光束生成装置;以及用于移动所述激光束生成装置并调节所生成的激光束的焦点位置的焦点调节移送装置,其中,通过调节激光束的焦点位置来调节用以加热所述接触面的能量密度。
全文摘要
一种用于激光焊接由热塑树脂材料制成的两个部件的方法和装置,其中焊接强度高并且强度变化小。使由可透射激光束的透射性热塑树脂构成的第一部件与由可吸收激光束的吸收性热塑树脂构成的第二部件相接触。使用激光束熔融接触面以使这两个部件接合。在低于这两个部件的至少一个接触面的熔融温度的温度下至少使用预加热装置预加热该接触面。然后,使用从第一部件一侧照射的由激光束发生器生成的激光束照射接触面,以使这两个部件的至少一个接触面熔融。然后,在低于熔融部分的熔融温度的温度下使用后加热装置后加热该熔融部分,由此使熔融部分能缓慢冷却。优选地在高于两个部件的玻璃化转变温度的温度下执行预加热和后加热。
文档编号B23K26/42GK1951676SQ20061013181
公开日2007年4月25日 申请日期2006年10月12日 优先权日2005年10月19日
发明者渡边敏雄, 中岛毅彦, 中村秀生, 森博志, 藤田进, 中谷光伸 申请人:丰田自动车株式会社, 纳幕尔杜邦公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1