溅射装置的制作方法

文档序号:12070587阅读:230来源:国知局
溅射装置的制作方法

本发明涉及一种形成氧化镁膜等绝缘材料膜的溅射装置。



背景技术:

近年来,使用利用了隧道磁阻(TMR:Tunneling Magneto Resistance)效应的MTJ(Magnetic Tunnel Junction)元件的磁随机存取存储器(MRAM:Magnetic Random Access Memory)备受关注。并且,正在研究使用结晶性氧化镁(MgO)膜作为由两块强磁性材料的电极层夹着隧道势垒层构成的MTJ元件的隧道势垒层。对于提高这类MTJ元件的特性,磁阻变化率(两侧的电极层的磁化平行时的隧道电阻(RP)与两侧的电极层的磁化反向平行时的隧道电阻(RAP)的变化率:MR比)是一个重要的要素,要尽量提高MR比,通常已知的是需要改进电极层和隧道势垒层的界面结构(界面上没有过多残留O和O2等)以及提高氧化镁的结晶性。另一方面,在上述氧化镁膜的成膜装置中,在要求批量生产性的同时,还要求可在待处理基板(例如的硅晶片)面内形成薄膜厚度分布不足1σ1%的薄膜。

作为可形成这样的氧化镁膜的成膜装置,已知有专利文献1中的下述的溅射装置,该装置包括:在设置了氧化镁制成的靶的真空室的内底部保持待处理基板与靶相对的台架;设置有向靶施加高频电力的溅射电源,以及向真空室内导入稀有气体的气体导入装置。并且,在台架上设置有以该台架的中心为旋转中心进行旋转驱动的驱动装置,同时配置在真空室的上部的靶由第一靶材和面积小于第一靶材的第二靶材构成且第一靶材和第二靶材相对于基板表面(成膜面)倾斜配置。此时,例如为降低由成膜时的氧离子造成的氧化镁膜的局部缺陷,考虑从各靶的中心向台架所保持的基板面内做垂线时的所谓的T-S间距离例如加长设置为190mm以上,且各靶的溅射面可不与基板相对设置。

此处,有时在MTJ元件的隧道势垒层中使用的氧化镁膜在其成膜后的工序中进行用来提高结晶性的退火处理。退火温度存在装置上的限制和由基膜结构等带来的限制,只能升温到700℃左右。因此,人们希望通过在使用溅射装置形成氧化镁膜时预先提高结晶性,实现更大的MR比。故此,本发明的发明人经过多方研究发现如果在向氧化镁的靶施加高频电力进行溅射时,在尽量抑制从靶飞散出的溅射粒子中主要为MgO的中性粒子所带有的(溅射)能量减少的同时使该溅射粒子到达成膜对象物(面)的话,则通过溅射粒子的迁移可进一步提高岩盐型结构的结晶性,增大MR比。

现有技术文献

专利文献

【专利文献1】专利公开2011-058073号公报



技术实现要素:

发明要解决的技术问题

本发明是基于上述认识实现的,其课题是提供一种能够以良好的薄膜厚度分布均匀性形成结晶性进一步提高的绝缘材料膜的溅射装置。

解决技术问题的方法

为解决上述技术问题,本发明的溅射装置,包括在设置了绝缘材料靶的真空室内保持待处理基板与该绝缘材料靶相对的台架;设置有旋转驱动台架的驱动装置,向绝缘材料靶施加高频电力的溅射电源,以及向真空室内导入稀有气体的气体导入装置;在该溅射装置中,其特征在于:基板与绝缘材料靶的溅射面之间的间隔设置在40mm~150mm的范围内。此外,作为绝缘材料靶,虽然最优选使用氧化镁制成的靶,但可以使用具有岩盐型结构的氧化钙、氧化钡、氧化锶以及氧化锆这样的氧化物靶和氟化镁、氟化钙、氟化钡、氟化锶以及氟化锆这样的氟化物靶。

采用本发明,确认了通过在以高频溅射形成绝缘材料膜时采用将所谓的T-S间距离设定在40mm~150mm的范围内的结构,从靶飞散出的溅射粒子中主要为绝缘材料(氧化物)的中性粒子以该溅射粒子所带有的(溅射)能量保持不变的状态到达基板,结果是通过溅射粒子的迁移可得到绝缘材料所固有的结晶性进一步提高了的绝缘材料膜,如果用其作为MTJ元件的隧道势垒层,则可增大MR比。此外,一旦T-S间距离大于150mm,则得不到结晶性良好的绝缘材料膜。再有,降低施加给绝缘材料靶的高频电力会使溅射粒子所带有的能量下降,这是不优选的。进而,优选在溅射时真空室内的压力设置为比以往例中的装置高0.1~0.2Pa,在通过降低靶电位减少负离子对膜造成的损害的同时,通过拉近T-S间距离将溅射粒子冲撞基板造成的能量减少抑制在最小限度内。

在本发明中,优选所述绝缘材料靶由配置在与台架所保持的基板平行的同一平面内且分别从该基板的中心偏移的、面积小于所述基板的面积的至少两片靶材构成。由此,通过将在分别溅射这些至少两片靶并在基板表面上成膜时的薄膜厚度分布进行统合,可将绝缘材料膜的形成所要求的、基板(例如Φ300mm的硅晶片)面内的薄膜厚度分布调整为不足1σ1%。

再有,在本发明中,优选还包括设置在所述平面内且具有吸气作用的金属制成的另一靶,以及向该另一靶施加直流电力的另一溅射电源。由此,通过溅射另一靶时的吸气效应,在形成绝缘材料膜前将真空室内的压力尽快地降低到5×10-7Pa,可批量生产得到绝缘材料固有的结晶性进一步提高了的绝缘材料膜。此时,为防止在各靶上发生所谓的交叉污染,优选包括有选择地屏蔽所述绝缘材料靶和所述另一靶的基板侧的面的屏蔽装置。

附图说明

图1是说明本发明实施方式溅射装置结构的示意图。

图2是示出靶和屏蔽装置平面图位置关系的示意图。

图3是示出确认本发明效果的实验结果的图表。

图4是示出确认本发明效果的实验结果的图表。

图5是示出确认本发明效果的实验结果的图表。

具体实施方式

以下参照附图以使用的硅晶片作为基板W,使用氧化镁制成的靶作为绝缘材料靶4,并在该基板表面形成绝缘材料膜即氧化镁膜为例,对本发明的溅射装置的实施方式进行说明。下文中,“上”“下”等表示方向的词语以图1为基准进行说明。

参照图1,SM是本实施方式的溅射装置,溅射装置SM具有限定处理室10的真空室1。真空泵12通过排气管11连接在真空室1的底壁上,可抽真空至规定压力(例如10-6Pa)。来自图外气源的气体导入管13连接在真空室1的侧壁上,可向真空室1中导入由质量流量控制器14控制流量的稀有气体。这些气体导入管13和质量流量控制器14构成本发明的“气体导入装置”。这种情况下,优选溅射时的真空室1内的压力设定在0.02~0.2Pa的范围内,在降低下述的靶电位的同时,抑制由溅射粒子冲撞基板W造成的能量减少。

保持基板W的台架2设置在处理室10内的下部。贯通真空室1的底壁并在处理室10内突出设置的作为驱动装置的电机3的驱动轴31连接在台架2上,可在溅射成膜时以基板W的中心为旋转中心并以规定的旋转速度进行旋转驱动。并且,在真空室1的上部与台架2相对地配置有氧化镁制成的靶4以朝向处理室10。此外,也可在台架2上连接另一高频电源,在成膜时向台架2施加规定的偏置功率。

氧化镁制成的靶4是由采用公知的方法制造的、面积小于基板W的面积的至少两片(本实施方式中为两片)平面视图为圆形的靶材4a,4b构成的。此时,考虑溅射时溅射粒子的飞散分布和基板W成膜面的面积等适当设置两靶材4a,4b未使用时的下表面(溅射面)的面积,使两靶材4a,4b的中心线Ct1,Ct2从台架2所保持的基板W的中心线Cs沿径向方向分别向外偏移配置。此时,一边的靶材4a根据靶材4a,4b未使用时的下表面的面积适当设定其偏移量d1以使其一部分从基板W的外周边向外突出,并以此为基准,考虑在基板W上形成氧化镁膜时的薄膜厚度分布而设定另一边的靶材4b的偏移量d2。再有,两靶材4a,4b未使用时的下表面和基板W之间所谓的T-S间距离d3设定在40mm~150mm的范围内。一旦T-S间距离d3大于150mm,则无法得到结晶性良好的氧化镁膜。可考虑确保放电空间或下文所述的屏蔽装置7a,7b的屏蔽板73的移动空间和基板W的运送空间等而设定T-S间距离d3的下限,例如设定为上述40mm。

两靶材4a,4b通过未图示的铟或锡等粘接材料与在成膜时冷却靶材4a,4b的铜制的背板41接合,在此状态下经绝缘板I安装在真空室1的上部处,以使两靶材4a,4b未使用时的下表面位于与基板W平行的同一平面内。再有,在靶2的下方空间中产生隧道状漏磁场(未图示)的磁铁单元5,5分别设置在两靶材4a,4b的上方。此时,磁铁单元5,5可使用公知形态的产品,故省略详细说明,但优选设定为靶材4a,4b的下表面(溅射面)的磁场的水平方向成分的磁场强度在1000G~4000G的范围内。将来自溅射电源即公知结构的高频电源E1,E1的输出连接在两靶材4a,4b上,可在溅射时施加规定频率(例如13.56MHz)的电力。这种情况下,优选施加的高频电力设定在0.1kW~0.6kW的范围内,使靶电位增加。一旦高频电力低于0.1kW,则会使溅射粒子带有的能量下降,是不优选的。再有,在真空室1内设置上下的防护板8u,8d,9,防止溅射粒子附着在真空室1的内壁面上。

再有,再参照图2,在真空室1的上部处安装钛制的另一靶6,以与两靶材4a,4b的下面位于同一平面内且朝向处理室10。虽未图示说明,但另一靶6与上述靶材4a,4b一样经粘接材料与背板接合,在此状态下经绝缘板I安装在真空室1的上部,并与来自另一溅射电源即公知结构的DC电源(另一溅射电源)E2的输出相连接。在溅射靶材4a,4b前,先溅射靶6并在防护板8u,8d,9等上形成钛膜,由此,通过该钛膜的吸气效应可使处理室10内的压力尽快下降到5×10-7Pa左右。

再有,在真空室1的上部处设置有两个屏蔽装置7a,7b。各屏蔽装置7a,7b具有同样的结构,由电机等驱动源71、贯通真空室1的上壁并在处理室10内突出设置的驱动轴72以及与驱动轴72的下端相连接并具有可完全覆盖两靶材4a,4b和另一靶6的面积的屏蔽板73构成。

在溅射两靶材4a,4b时,屏蔽装置7a,7b的两屏蔽板73如图2中虚线所示从两靶材4a,4b的下方移动到远离的回缩位置,此时,以一个屏蔽装置7b的屏蔽板73完全覆盖另一靶6。并且,在溅射另一靶6时,屏蔽装置7a,7b的两屏蔽板73移动到图2中如实线所示的两靶材4a,4b下方的屏蔽位置,此时,以两屏蔽板73完全覆盖两靶材4a,4b。由此,可有效防止两靶材4a,4b和另一靶6的所谓交叉污染。驱动源71的运转、真空泵12的运转、导入气体和施加电力等溅射装置SM的运转通过未图示的控制单元来统一控制。

采用上述实施方式,在以上述各条件溅射两靶材4a,4b时,分别从两靶材4a,4b飞散出的溅射粒子中主要是MgO的中性粒子以该溅射粒子所带有的(溅射)能量保持不变的状态到达基板W,其结果是通过溅射粒子的迁移可得到氧化镁所固有的岩盐型结构的结晶性进一步提高了的氧化镁膜。且具有钛或钽制成的另一靶6,例如通过采用可在对基板W形成氧化镁膜前先溅射另一靶6的结构,可在处理室10内的压力尽快地下降到5×10-7Pa左右后,对基板W形成氧化镁膜,因此,可批量生产得到岩盐型结构的結晶性进一步提高了的氧化镁膜。进而,通过以一定量的金属材料在防护板上成膜,可确保RF溅射的阳极面,并维持稳定的RF溅射。并且,使用如上述那样成膜后的产品作为MTJ元件的隧道势垒层的话,可增加MR比。此外,通过分别溅射两靶材4a,4b并统合在基板W表面成膜时的薄膜厚度分布,可将氧化镁膜的成膜所要求的、基板(例如Φ300mm的硅晶片)面内的薄膜厚度分布调整为不足1σ1%。

接下来,为确认本发明的效果,使用图1所示的溅射装置进行下述实验。在实验1中,分别使用Φ300mm的硅晶片作为基板W,使用的硅晶片作为靶材4a,4b。再有,作为溅射条件,将溅射时处理室10内的压力设定为0.1Pa并设定氩气的导入量和真空泵的排气速度,来自高频电源E1的施加电力设定为0.50kW。并且,将靶材4a的中心线Ct1和基板W的中心线Cs之间的间隔d1固定为80mm,改变靶材4b的中心线Ct2和基板W的中心线Cs之间的间隔d2的同时形成氧化镁膜。

图3是表示使间隔d2在150mm~200mm的范围内每次改变10mm并形成氧化镁膜时的薄膜厚度的倾向的图。由此,确认在将间隔d1固定在80mm的情况下,如果将间隔d2设置在165~200mm的范围内的话,则可将在基板面内形成的薄膜厚度分布调整为不足1σ1%。并且,确认如果将间隔d2设置在170~180mm的范围内的话,则可将基板面内的薄膜厚度分布调整为不足1σ0.5%。

接下来,在实验2中,在基板W上以1.0nm的薄膜厚度形成了CoFeB的薄膜后,使用图1所示的溅射装置以0.8nm的薄膜厚度形成氧化镁膜,进而以1.2nm的薄膜厚度形成CoFeB的薄膜,测量磁阻变化率。这种情况下,使用的硅晶片作为基板,使用的硅晶片分别作为靶材4a,4b,将靶材4a的中心线Ct1和基板W的中心线Cs之间的间隔d1固定为80mm,靶材4b的中心线Ct2和基板W的中心线Cs之间的间隔d2设定为180mm,其它溅射条件与实验1相同。并且,将所谓的T-S间距离d3设定为300mm的长距离和短于该长距离的1/2即150mm的短距离。

图4是表示改变T-S间距离并形成氧化镁膜时的标准化了的MR比(磁阻变化率)的图表。由此确认了通过将T-S间距离设定为短距离,相比于T-S间距离为300mm的长距离(相当于已往例)时可增加MR比。由此,可知通过将T-S间距离设定为短距离可得到结晶性进一步提高了的氧化镁膜。

图5是示出在调整从靶材4a,4b溅射出的成膜量并形成氧化镁膜时的薄膜厚度分布的倾向的图表。由此,当来自靶材4a的成膜量比来自靶材4b的成膜量多时,产生如点划线所示的向下凸出的分布倾向,薄膜厚度分布为1σ1.86%,另一方面,当来自靶材4b的成膜量比来自靶材4a的成膜量多时,产生如实线所示的向上凸出的分布倾向,薄膜厚度分布为1σ2.81%。证实了通过以最佳的平衡来确定来自这些靶材4a,4b的成膜量,可将薄膜厚度分布调整为不足1σ1%(0.47%)。

以上对本发明的实施方式进行了说明,但本发明并不仅限于上述内容,可进行不超出本发明范围的各种改变。例如,作为另一靶6,不仅可使用钛制的靶,也可使用钽制的靶。再有,绝缘材料靶4并不仅限于上述氧化镁制成的靶,可使用具有岩盐型结构的氧化钙、氧化钡、氧化锶以及氧化锆这样的氧化物靶或氟化镁、氟化钙、氟化钡、氟化锶以及氟化锆这样的氟化物靶。

附图标记说明

SM…溅射装置、W…基板、1…真空室、2…台架、3…驱动装置、4…绝缘材料靶(氧化镁制成的靶)、4a,4b…靶材、E1…溅射电源、6…另一靶、E2…另一溅射电源、7a…屏蔽装置。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1