柔性掺杂型ZnO基透明导电薄膜的化学制作方法与流程

文档序号:11570858阅读:647来源:国知局
柔性掺杂型ZnO基透明导电薄膜的化学制作方法与流程

本发明涉及一种柔性掺杂型zno基透明导电薄膜的化学制作方法,属于光电器件制作技术领域。



背景技术:

在化学制作方法中,有一种溶胶凝胶法被用来在刚性衬底上制作zno基透明导电薄膜,主要制作步骤是先将乙酸锌的乙醇溶液水解成溶胶,再通过旋涂、退火等工艺在衬底上形成zno基透明导电薄膜。在该方法的实施过程中,所使用的都是一些常规的化学化工器具和装置,如常规的容器、搅拌装置、旋涂装置(如匀胶机)、加热设备(如加热板)、退火设备(如退火炉),制作过程均在常压条件下进行,制膜成本较低。但是,为了使得化学反应能够完成,所述退火工艺的退火温度需要达到500℃以上,而常用的柔性透明衬底材料如耐热型pet膜其形变温度也不高于300℃,因此,该方法无法直接用于在柔性衬底上制作zno基透明导电薄膜。

现有能够用来在柔性衬底制作zno基透明导电薄膜的方法有磁控溅射法、化学气相沉积法、脉冲激光沉积法或者原子层沉积法等物理制作方法,这些方法是在真空条件下进行,溅射靶材沉积成膜,可见,该工艺需要使用昂贵的专门设备,制备能耗也高,因此,透明导电薄膜的制作成本较高,并且,相比于现有化学制作方法,不能制作出更大面积的透明导电薄膜。



技术实现要素:

为了能够在柔性衬底上低成本地制作出大面积的zno基透明导电薄膜,我们发明了一种柔性掺杂型zno基透明导电薄膜的化学制作方法,与现有溶胶凝胶法相似,但是,能够在柔性衬底上制作出大面积的zno基透明导电薄膜,同时,相比于现有能够在柔性衬底上制作zno基透明导电薄膜的方法,本发明之方法昂贵的专门设备,如大型真空设备,从而降低制作成本。

本发明之柔性掺杂型zno基透明导电薄膜的化学制作方法其特征在于:

步骤1,配制可旋涂溶胶,在室温及搅拌工艺条件下,在有机溶剂中加入乙酸锌、硝酸锌、单乙醇胺、乙酰丙酮及掺杂物质,其中乙酸锌与硝酸锌的摩尔比为(4.7~5):(2.8~3),掺杂物质的加入量按杂质离子相对于锌离子其摩尔浓度为1~3%而定,至此获得可旋涂溶胶;

步骤2,制作溶胶膜,将所述可旋涂溶胶均匀滴加在柔性衬底上,在3000~3500rad/min的速度下旋涂20~30s,在70~90℃温度下加热10~15m,获得溶胶膜;

步骤3,形成产物薄膜,将所述溶胶膜在240~260℃温度下退火25~35m,获得柔性掺杂型zno基透明导电薄膜。

本发明其技术效果在于,在制膜过程中,乙酸锌与单乙醇胺发挥与现有技术相同的作用,也就是在步骤1搅拌过程中会形成复杂的锌离子络合物,即一种锌的有机盐,该锌离子络合物相之间互作用较强,防止zno在柔性衬底表面呈现不连续、团簇状态,从而能够保证步骤2旋涂后所得到的溶胶膜连续、平整;不同的是,在步骤3中乙酸锌与单乙醇胺反应所释放的热量有助于硝酸锌与乙酰丙酮的反应;另外,在步骤3中硝酸锌与乙酰丙酮的反应也在释放大量的热,并且产生薄膜导电所需要的zno,综合来看,为了适应柔性衬底,即使步骤3退火温度仅有240~260℃,也能够获得最终产物柔性掺杂型zno基透明导电薄膜,且表面形貌平整。

当掺杂离子为铝离子时,从所获得的azo透明导电薄膜的x射线衍射谱看,如图1所示,与物理方法相比,采用化学方法在较低温度下同样能够获得较好的透明导电的结晶结构;从azo透明导电薄膜的透过率曲线看,如图2所示,可见光透过率达到80%以上,另外,电阻率也在35ω·cm以下。

本发明中的旋涂及退火工艺不存在现有物理方法因设备及工艺原因而导致的产物尺寸严格受限的问题,能够制作大面积的导电膜产品。

本发明作为一种化学方法,从现有技术可知,其设备成本、材料成本以及工艺成本都要比现有物理方法低得多。

附图说明

图1是采用本发明之方法制作的azo透明导电薄膜的x射线衍射谱图,该图同时作为摘要附图。图2是采用本发明之方法制作的azo透明导电薄膜的可见光透过率曲线图。

具体实施方式

实施例1:

步骤1,在室温条件下配制可旋涂溶胶。选用乙二醇甲醚作为有机溶剂,在15ml乙二醇甲醚中加入1.37g乙酸锌和1.34g硝酸锌,充分搅拌,此时乙酸锌的浓度为0.5mol/l,硝酸锌的浓度为0.3mol/l,乙酸锌与硝酸锌的摩尔比为5:3;再向所述乙二醇甲醚中加入0.5ml单乙醇胺和0.8ml乙酰丙酮,搅拌1~5m;最后向所述乙二醇甲醚中加入0.03g的硝酸铝作为掺杂物质,铝离子作为杂质离子,相对于锌离子其摩尔浓度为1%,搅拌12h,至此获得可旋涂溶胶。

步骤2,制作溶胶膜。以耐高温pet膜作为柔性衬底,将所述可旋涂溶胶均匀滴加在耐高温pet膜上,使用匀胶机在3200rad/min的速度下旋涂20s,使用加热板在80℃温度下加热10m,初步蒸发乙二醇甲醚,获得溶胶膜;以所获得的溶胶膜作为第1层溶胶涂层,再在第1层溶胶涂层上均匀滴加可旋涂溶胶,在相同条件下旋涂、加热,获得第2层溶胶涂层,重复所述滴加、旋涂和加热工艺环节,获得由3~4层溶胶涂层叠加而成的多层溶胶膜。

步骤3,形成产物薄膜。将所述多层溶胶膜放在退火炉中,以5℃/m的升温速率升至250℃,退火30m,获得的azo透明导电薄膜即为本发明之方法产物薄膜——柔性掺杂型zno基透明导电薄膜。

步骤4,制作加厚柔性掺杂型zno基透明导电薄膜。步骤2、步骤3再重复2~3次,获得包含9~16层溶胶层的加厚azo透明导电薄膜即为本发明之方法最终产物薄膜——加厚柔性掺杂型zno基透明导电薄膜。

测试后得到所述加厚azo透明导电薄膜的可见光透过率为86%,如图2所示,电阻率为20ω·cm。

实施例2:

步骤1,在室温条件下配制可旋涂溶胶。选用乙醇作为有机溶剂,在15ml乙二醇甲醚中加入1.37g乙酸锌和1.34g硝酸锌,充分搅拌,此时乙酸锌的浓度为0.5mol/l,硝酸锌的浓度为0.3mol/l,乙酸锌与硝酸锌的摩尔比为5:3;再向所述乙二醇甲醚中加入0.5ml单乙醇胺和1ml乙酰丙酮,搅拌1~5m;最后向所述乙二醇甲醚中加入0.04g的硝酸铝作为掺杂物质,铝离子作为杂质离子,相对于锌离子其摩尔浓度为1.5%,搅拌12h,至此获得可旋涂溶胶。

步骤2,制作溶胶膜。以耐高温pet膜作为柔性衬底,将所述可旋涂溶胶均匀滴加在耐高温pet膜上,使用匀胶机在3500rad/min的速度下旋涂30s,使用加热板在70℃温度下加热10m,初步蒸发乙二醇甲醚,获得溶胶膜;以所获得的溶胶膜作为第1层溶胶涂层,再在第1层溶胶涂层上均匀滴加可旋涂溶胶,在相同条件下旋涂、加热,获得第2层溶胶涂层,重复所述滴加、旋涂和加热工艺环节,获得由3~4层溶胶涂层叠加而成的多层溶胶膜。

步骤3,形成产物薄膜。将所述多层溶胶膜放在退火炉中,以5℃/m的升温速率升至240℃,退火35m,获得的azo透明导电薄膜即为本发明之方法产物薄膜——柔性掺杂型zno基透明导电薄膜。

步骤4,制作加厚柔性掺杂型zno基透明导电薄膜。步骤2、步骤3再重复2~3次,获得包含9~16层溶胶层的加厚azo透明导电薄膜即为本发明之方法最终产物薄膜——加厚柔性掺杂型zno基透明导电薄膜。

测试后得到所述加厚azo透明导电薄膜的可见光透过率为83%,电阻率为32ω·cm。

实施例3:

步骤1,在室温条件下配制可旋涂溶胶。选用乙二醇甲醚作为有机溶剂,在15ml乙二醇甲醚中加入1.37g乙酸锌和1.34g硝酸锌,充分搅拌,此时乙酸锌的浓度为0.5mol/l,硝酸锌的浓度为0.3mol/l,乙酸锌与硝酸锌的摩尔比为5:3;再向所述乙二醇甲醚中加入0.5ml单乙醇胺和1ml乙酰丙酮,搅拌1~5m;最后向所述乙二醇甲醚中加入0.0166g的氟化铵作为掺杂物质,氟离子作为杂质离子,相对于锌离子其摩尔浓度为3%,搅拌12h,至此获得可旋涂溶胶。

步骤2,制作溶胶膜。以耐高温pet膜作为柔性衬底,将所述可旋涂溶胶均匀滴加在耐高温pet膜上,使用匀胶机在3000rad/min的速度下旋涂20s,使用加热板在90℃温度下加热15m,初步蒸发乙二醇甲醚,获得溶胶膜;以所获得的溶胶膜作为第1层溶胶涂层,再在第1层溶胶涂层上均匀滴加可旋涂溶胶,在相同条件下旋涂、加热,获得第2层溶胶涂层,重复所述滴加、旋涂和加热工艺环节,获得由3~4层溶胶涂层叠加而成的多层溶胶膜。

步骤3,形成产物薄膜。将所述多层溶胶膜放在退火炉中,以5℃/m的升温速率升至260℃,退火25m,获得的fzo透明导电薄膜即为本发明之方法产物薄膜——柔性掺杂型zno基透明导电薄膜。

步骤4,制作加厚柔性掺杂型zno基透明导电薄膜。步骤2、步骤3再重复2~3次,获得包含9~16层溶胶层的加厚fzo透明导电薄膜即为本发明之方法最终产物薄膜——加厚柔性掺杂型zno基透明导电薄膜。

测试后得到所述加厚fzo透明导电薄膜的可见光透过率为89%,电阻率为15ω·cm。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1