表面沉积有多元梯度复合涂层的合金材料及其制备方法与流程

文档序号:23092807发布日期:2020-11-27 12:48阅读:139来源:国知局
本发明涉及高温合金
技术领域
,特别涉及表面沉积有多元梯度复合涂层的合金材料及其制备方法。
背景技术
:飞行器的设计不断地向材料科学提出新的课题,推动航空航天材料科学向前发展;航空航天材料制造的许多零件往往需要在超高温、超低温、高真空、高应力、强腐蚀等极端条件下工作,有的则受到重量和容纳空间的限制,需要以最小的体积和质量发挥在通常情况下等效的功能,有的需要在大气层中或外层空间长期运行,不可能停机检查或更换零件,因而要有极高的可靠性和质量保证。不同的工作环境要求航空航天材料具有不同的特性,尤其是随着“两机”专项(航空发动机、燃气轮机)、超高声速飞行器等先进航空技术的发展,对于航空材料提出了更高的技术要求,尤其是其高温或者超高温条件下的抗高温蠕变性能,抗高温氧化性能等高温力学与化学性能,因此一些传统的金属材料如镁、铝、镍、钛、铁、铜、锆或锡等合金已经很难满足当前或者未来航空材料的技术要求。但是这些传统金属材料因其具有的良好的导电性、塑性、疲劳抗性、冲击韧性等一系列优异力学与化学性能,因此在航空材料中占据十分重要的地位,所以很难被完全取代,因此采取一种有效的防护手段对材料进行防护才是当前最可行的方式。热障涂层技术是指通过在金属基体沉积一层具有优异隔热性能的陶瓷以降低基体的温度,此外,由于陶瓷涂层的存在还可以金属基体与高温高腐蚀环境隔离,大大减低了金属基体被氧化腐蚀的风险,使得热障涂层制成的器件(如发动机涡轮叶片)能在高温下运行,并且可以提高器件(发动机等)热效率达到60%以上。稀土铌/钽酸盐陶瓷(renb/tao4)凭借着高的熔点,低热导率(1.38~1.94w.m-1.k-1),高热膨胀系数(11×10-6k-1,1200℃)和铁弹韧性等优异的热物理性能和力学性能,被认为是最具潜力的新一代热障涂层材料,对该材料在热障涂层领域的使用目前也正在研究当中,而要如何最大化的体现出陶瓷涂层对基体合金的保护作用依旧是当前研究的重点。技术实现要素:本发明提供了一种界面效应减弱,更耐腐蚀的表面沉积有多元梯度复合涂层的合金材料及其制备方法。为了达到上述目的,本发明的技术方案为:表面沉积有多元梯度复合涂层的合金材料,包括合金基体,在合金基体上依次沉积有金属粘结层、贵金属层以及陶瓷涂层,其中金属粘接层的厚度为100~200μm,贵金属层的厚度为50~100μm,陶瓷涂层的厚度为150~500μm,所述陶瓷涂层为多元梯度涂层,且包括两种以上的陶瓷组份,陶瓷涂层中至少一种以上的陶瓷组份的体积分数沿梯度涂层由内至外或由外至内连续变化。本技术方案的技术原理和效果在于:1、本方案中通过将陶瓷涂层设置为,其中至少一种以上的陶瓷组份的体积分数沿梯度涂层由内至外或由外至内连续变化,这样的方式能够提高陶瓷涂层的耐高温、抗氧化和抗腐蚀能力,相比于单组份的陶瓷涂层,多种陶瓷组份能给陶瓷涂层带来更多的有益效果。2、采用本方案中陶瓷涂层的设计方式进行沉积得到的陶瓷涂层,各梯度涂层之间成分呈渐变的形式,各梯度涂层之间形成的界面少,使得界面效应弱,同时最重要的一点在于,在各梯度涂层沉积过程中,每一层的成分还会不断的扩散,使得界面效应继续减弱。进一步,所述陶瓷涂层的梯度层数为6~21层。有益效果:陶瓷涂层的梯度层数设计既要考虑形成梯度层之间的成分连续性,又要考虑在实际生产过程中的操作难度,因此通过实验发现将梯度涂层设计为6~21层的方案最佳。进一步,所述陶瓷组份为ysz、re2zr2o7、re2si2o7、retao4或renbo4。有益效果:ysz、re2zr2o7、re2si2o7、retao4或renbo4是目前研究中较为常用的陶瓷涂层组份。进一步,所述金属粘接层也为多元梯度涂层,包括两种以上金属组份,金属粘接层中至少一种以上的金属组份的体积分数沿梯度涂层由内至外或由外至内连续变化。有益效果:将金属粘接层也设计为多元梯度涂层,其作用原理与陶瓷涂层相似,能够进一步提高对基体合金的保护作用。进一步,所述金属组份为mcraly、nial、nicr-al或mo,所述mcraly为nicraly、fecraly、cocraly、cocralsiy、nicocraly、fecocraly或nicocraltay。有益效果:上述金属组份为金属粘接层常用的组份。进一步,所述金属粘接层的梯度层数为11~21层。有益效果:金属粘接层由于是与基体合金直接接触的涂层,因此金属粘接层的中各梯度层的界面效应越低,其能够发挥的作用也越大。进一步,所述贵金属层也为多元梯度涂层,包括两种以上的贵金属,贵金属层中至少一种以上的贵金属的体积分数沿梯度涂层由内至外或由外至内连续变化。有益效果:将贵金属层设计为多元梯度涂层,其作用原理与陶瓷涂层相似,能够进一步提高对基体合金的保护作用。进一步,所述贵金属包括au、pt、ru、rh、pd或ir。有益效果:上述几种贵金属常用于粘接陶瓷涂层。进一步,所述贵金属层的梯度层数为6~11层。有益效果:贵金属层由于其厚度较其他涂层都要薄一些,为了便于操作,将其设计为6~11层。本申请还公开了表面沉积有多元梯度复合涂层的合金材料的制备方法,包括以下步骤:步骤1:利用aps、hvof、eb-pvd或者超音速电弧喷涂法在基体材料的表面沉积金属粘结层,金属粘结层的厚度为100-200μm;步骤2:利用aps、hvof、eb-pvd或者超音速电弧喷涂法在步骤1的金属粘接层上沉积贵金属层,贵金属层的厚度为50~100μm;步骤3:利用aps、hvof、eb-pvd或者超音速电弧喷涂法在步骤2的贵金属层上沉积陶瓷涂层,陶瓷涂层的厚度为150~500μm。具体实施方式下面通过具体实施方式进一步详细说明:实施例1:表面沉积有多元梯度复合涂层的合金材料,包括合金基体,合金基体可以采用镁、铝、镍、钛、铁、铜、锆或锡等合金,本实施例1中采用镍基合金,在镍基合金上依次沉积有金属粘接层、贵金属层以及陶瓷涂层,其中金属粘接层的厚度为100μm,贵金属层的厚度为50μm,陶瓷涂层的厚度为150μm,本实施例中金属粘接层的成分为mcraly,贵金属层的成分为au。本实施例中陶瓷涂层为多元梯度涂层,包括ysz、renbo4、re2zr2o7三种陶瓷组份,即为三元梯度复合成分,梯度层数n为6层,第1层指与贵金属层直接接触的涂层,陶瓷涂层中各梯度层的陶瓷组份体积分数见下表1所示:表1为实施例1陶瓷涂层中各梯度层的陶瓷组份体积分数表梯度层数nysz体积分数(%)renbo4体积分数(%)re2zr2o7体积分数(%)1505002504010350302045020305501040650050表面沉积有多元梯度复合涂层的合金材料的制备方法,包括以下步骤:步骤1:将镍基合金的表面进行处理,去除表面的油污和杂质,获得干净的基体表面,随后进行喷丸处理,对基体表面进行强化,获得合适的粗糙度,以便于与涂层进行有效的物理和化学结合,提高涂层与基体的结合强度。利用aps、hvof、eb-pvd或者超音速电弧喷涂法在镍基合金表面沉积厚度为100μm、成分为mcraly的金属粘接层。步骤2:利用aps、hvof、eb-pvd或者超音速电弧喷涂法在金属粘接层的表面沉积一层厚度为50μm、成分为au的贵金属层。步骤3:参照表1所示,将陶瓷涂层中各梯度层的成分进行配比,并将每层的组份进行物理混合,利用aps、hvof、eb-pvd或者超音速电弧喷涂法在贵金属层上按照1~6层的顺序依次沉积,得到多元梯度的陶瓷涂层。实施例2:与实施例1的区别在于:陶瓷涂层的厚度为300μm,陶瓷涂层的梯度层数n=11,各梯度层的陶瓷组份包括:ysz、retao4、re2zr2o7,每层的体积分数具体见下表2所示:表2为实施例2陶瓷涂层中各梯度层的陶瓷组份体积分数表梯度层数nysz体积分数(%)retao4体积分数(%)re2zr2o7体积分数(%)150500250455350401045035155503020650252575020308501535950104010505451150050实施例3:与实施例1的区别在于,陶瓷涂层的厚度为500μm,陶瓷涂层的梯度层数n=21,各梯度层的陶瓷组份包括:ysz、retao4、re2si2o7,每层的体积分数具体见下表3所示:表3为实施例3陶瓷涂层中各梯度层的陶瓷组份体积分数表实施例4:与实施例3的区别在于,金属粘接层也为多元梯度涂层,金属粘接层的厚度为100μm,梯度层数n=11,第1层指与基体材料直接接触的涂层,各梯度层的金属组份包括:mcraly、nial,每层的体积分数具体见下表4所示:表4为实施例4金属粘接层中各梯度层的金属组份体积分数表实施例5:与实施例4的区别在于,金属粘接层的厚度为150μm,梯度层数n=11,各梯度层的金属组份包括:mcraly、nial、mo,每层的体积分数具体见下表5所示:表5为实施例5金属粘接层中各梯度层的金属组份体积分数表梯度层数nmcraly体积分数(%)nial体积分数(%)mo体积分数(%)1604002603643603284602812560241666020207601624860122896083210604361160040实施例6:与实施例5的区别在于,金属粘接层的厚度为200μm,梯度层数n=21,各梯度层的金属组份包括:mcraly、nicr-al,每层的体积分数具体见下表6所示:表6为实施例6金属粘接层中各梯度层的金属组份体积分数表实施例7:与实施例3的区别在于,贵金属层也为多元梯度涂层,贵金属层的厚度为50μm,包括au、pt、ru三种贵金属,梯度层数n=6,第1层指与金属粘接层直接接触的涂层,每层的体积分数具体见下表7所示:表7为实施例7贵金属层中各梯度层的贵金属体积分数表实施例8:与实施例6的区别在于,贵金属层的厚度为100μm,包括au、pt两种贵金属,梯度层数n=11,每层的体积分数具体见下表8所示:表8为实施例8贵金属层中各梯度层的贵金属体积分数表梯度层数nau体积分数(%)pt体积分数(%)110002901038020470305604065050740608307092080101090110100对比例1:与实施例1的区别在于,陶瓷涂层为普通涂层,含有retao4一种组份,即对比例1中陶瓷涂层中retao4的体积分数为100%。对比例2:与对比例1的区别在于,陶瓷涂层包括三层,从内至外第一层陶瓷涂层的组份为ysz、第二层为retao4,第三层为re2zr2o7。选取实施例1~8、对比例1~2得到的合金材料试件进行盐雾腐蚀实验:使用ywx/q-250b盐雾腐蚀箱作为实验设备,并根据标准gb/t2967.3-2008模拟大气腐蚀环境;将试件分别悬挂在实验设备内,并将实验设备调节至温度为50±1℃、ph为3.0-3.1,再利用浓度为5±0.5%nacl溶液连续向试件喷洒,并在表9中记录一定时间(8h、48h、72h、96h)后试件的失重率。表9为实施例1~8和对比例1~2盐雾试验的实验结果失重率(v/mg.cm2)8h48h72h96h实施例100.050.090.16实施例200.0450.080.15实施例300.030.070.14实施例400.0250.0650.13实施例500.0250.0650.13实施例600.020.060.12实施例700.0210.060.12实施例800.010.040.11对比例10.020.110.310.65对比例20.0150.080.270.51通过表9可知:1、实施例1~8通过在合金基体上沉积多元梯度涂层,其在腐蚀环境下其被腐蚀产生的失重量低,且失重率呈现平缓的变换,而对比例1和对比例2,其随着腐蚀时间的延长,腐蚀失重数值呈增大的趋势。其中,腐蚀中期(48~72h),溶液中的cl-已经穿透对比例1~2的各涂层,大量cl-吸附到基体上,使点蚀坑增加,明显加快了腐蚀速率。总体看,对比例1~2制备的合金材料其腐蚀失重量要远高于采用多元梯度复合涂层得到的合金材料,而采用多元梯度复合涂层的合金材料的基体没有发生腐蚀,其质量的变化微乎其微。2、通过在镁、铝、镍、钛、铁、铜、锆或锡等合金基体上依次沉积金属粘结层、贵金属层和陶瓷涂层,其中陶瓷涂层采用多元梯度涂层,即陶瓷涂层中至少一种以上的陶瓷组份的体积分数沿梯度涂层由内至外或由外至内连续变化,这样的方式能够提高陶瓷涂层的耐高温、抗氧化和抗腐蚀能力,原因在于采用这样的方式进行沉积得到的陶瓷涂层,各梯度涂层之间成分呈渐变的方式,各梯度涂层之间形成的界面少,使得界面效应弱,同时最重要的一点在于,在各梯度涂层沉积过程中,每一层的成分还会不断的扩散,使得界面效应继续减弱,而本申请中实施例8的效果为最佳。以上所述的仅是本发明的实施例,方案中公知的具体材料及特性等常识在此未作过多描述。应当指出,对于本领域的技术人员来说,在不脱离本发明的前提下,还可以作出若干变形和改进,这些也应该视为本发明的保护范围,这些都不会影响本发明实施的效果和专利的实用性。本申请要求的保护范围应当以其权利要求的内容为准,说明书中的具体实施方式等记载可以用于解释权利要求的内容。当前第1页12
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1