一种高耐磨化合物涂层及其制备方法与流程

文档序号:23542992发布日期:2021-01-05 20:53阅读:113来源:国知局
一种高耐磨化合物涂层及其制备方法与流程

本发明属于化合物制备领域,具体涉及一种高耐磨化合物涂层及其制备方法。



背景技术:

涂层技术能在工件基体表面产生一种特殊性能的膜层,进而改善工件使用性能、延长使用寿命的一种多学科交叉技术,广泛应用在机械、航空、电子等领域。在机械加工领域,可通过在基体表面制备一层性能优异的耐磨涂层,可大幅改善工件的耐磨性和使用寿命,降低基体材料的使用量,节省材料成本,同时也能较好的解决材料耐磨性和韧性之间的矛盾,拓展使用范围。涂层材料通常需要具备高熔点、高硬度、好的耐磨性;高温下结构稳定,能防止氧化发生,具有优良的抗腐蚀性能等,如常用的氮化物、碳化物、氧化物和硼化物等符合上述要求。对于氮化物涂层,最早使用的是tin涂层,由于高强度、高硬度等性能,使其得到了广泛应用。但由于tin涂层在高温下,易于在表层生成tio2,二是高温下由于n原子向外扩散易在氧化层和涂层表面形成孔洞,进而造成涂层剥落,使工件失效。随后在tin涂层涂层基础上发展起来的多元(如:al、cr、w、v、zr等)以及多层复合涂层。对于多元涂层应用较多的是三元tialn涂层,可使涂层的力学、抗氧化、耐摩擦与切削性能得到改善,这主要得益于三元tialn涂层可在其表面形成致密的al2o3氧化物层,能有效的防止涂层的深层次氧化,保证了较高的硬度和抗磨损性能。三元涂层除了tialn外,ticrn、tizrn涂层都是目前的研究热点,并且在此基础上,四元的(tialzr)n、(tialv)n等涂层展出了更加优异的性能。除了涂层需要具备高硬度、高耐磨性以外,涂层能与基体之间具有良好的结合力也是衡量涂层使用性能的一个重要指标。多元化合物涂层是由多种元素构成,其点阵结构与化合物组成元素晶体结构均不相同,而形成了一种全新的晶体结构。因其元素种类多,易于降低在不同种类基体与涂层界面处的错配度,使其具有较高的结合力;同时多元化合物内部元素分布可根据在基体-涂层界面处的原子分布情况依据非均匀衬底的有效性可进行原位生成和长大自调节的梯度涂层,进而降低涂层内部的缺陷。同时,根据生产的实际需求,可针对长期大批量处理的工件进行多元化合物涂层成分设计,设计一种具有全新化学成分和晶体结构的多元化合物涂层靶材,进而有针对性的大幅改善涂层工件的使用性能和延长使用寿命。结合化合物靶材的制备工艺,可使化合物因细晶强化、固溶强化和弥散强化使其硬度和耐磨性显著提高,进而使多元化合物涂层性能得到更大的发挥。此外,多元化合物涂层由于元素种类多,根据吉布斯自由能定律可知在高温下通常结构更加稳定。因此,通过设计和制备一种高性能的多元化合物靶材进而在工件表面制备高耐磨化合物涂层具有广阔的市场前景。



技术实现要素:

本发明的目的在于克服现有技术的不足,提供一种高耐磨

alxceycocuniopprqtiyz/(alxceycocuniopprqtiyz)n化合物涂层及其制备方法。

本发明提出的高耐磨alxceycocuniopprqtiyz/(alxceycocuniopprqtiyz)n化合物涂层及其制备方法,通过机械混料、真空吸铸和半固态挤压成型相结合的工艺制备出alxceycocuniopprqtiyz化合物靶材,该化合物的晶体结构为单一的简单立方晶体结构,空间群为pm-3m(221);再在经过前处理、超声处理和喷砂处理后的工件表面进行进行轰击并生成alxceycocuniopprqtiyz自调节镀层;然后再进行沉积镀膜并原位生成梯度的(alxceycocuniopprqtiyz)n镀层,所制备的alxceycocuniopprqtiyz/(alxceycocuniopprqtiyz)n复合涂层均匀,可大幅提升工件的硬度、耐磨性能和使用寿命。

实现本发明的技术方案是:高耐磨化合物涂层的制备方法,其特征在于具有步骤如下:

(1)按化合物靶材化学式alxceycocuniopprqtiyz,其中0.1≤x≤1.3;0.1≤y≤1;0.1≤p≤0.5;0.1≤q≤1;0.1≤z≤1;0.02≤x/(x+y+z+p+q+3)<0.25;0.02≤y/(x+y+z+p+q+3)<0.20;0.01≤p/(x+y+z+p+q+3)<0.10;0.02≤q/(x+y+z+p+q+3)<0.20;0.02≤z/(x+y+z+p+q+3)<0.20,分别称取所需的纯金属粉体和按氧元素比例加入适量的二氧化铈,并将原料粉体置于球磨罐中,加入不锈钢球,然后在保护气体环境下将球磨罐密封起来;

(2)将步骤(1)密封好的球磨罐置于行星式球磨机上进行混料;将混料后的粉体在保护气体环境下装入石墨模具中,在放电等离子烧结炉中600℃、35mpa下温压成块体;

(3)将步骤(2)中的块体置于真空熔炼炉中,在保护气体环境下,反复熔炼3次,真空吸铸进水冷铜模中;将上述铜模中取出的样品在保护气体环境下置于感应加热腔内,感应加热至预设温度后,迅速将样品置于双向顶压模具内,进行半固态挤压成型,得到具有单一简单立方结构的alxceycocuniopprqtiyz化合物块体靶材;

(4)将需要制备涂层的工件进行酸洗、碱洗进行前处理,然后再进行粗洗、预清洗、清洗、精洗、冲洗等超声清洗处理后烘干;喷砂处理后显微观察使表面毛刺、氧化皮、锈蚀等缺陷完全去除;

(5)将上述喷砂处理后的工件装夹在镀膜设备腔体内部,抽真空至0.1pa以下,加热炉体至炉内温度达到500℃,向炉内通入氩气使炉内压力升至1.5pa,打开alxceycocuniopprqtiyz化合物靶材,对工件表面进行轰击并生成alxceycocuniopprqtiyz镀层;

(6)向真空炉内通入氮气使压力升至2.5pa,开启alxceycocuniopprqtiyz化合物靶材,在上述镀层表面沉积并原位生成梯度的(alxceycocuniopprqtiyz)n镀层,进而形成工件基体/alxceycocuniopprqtiyz/(alxceycocuniopprqtiyz)n复合化合物涂层。

所述步骤(1)中金属粉体的纯度高于99.5%,二氧化铈的纯度高于99.9%。

所述步骤(1)、步骤(2)和步骤(3)中保护气体为氩气或氮气。

所述步骤(2)混料时间为0.5h~6h,转速为50~100rpm。

所述步骤(3)中熔炼工艺参数:电流为250~400a,作用时间30~120s。

所述步骤(3)中预设温度为900~1100℃。

所述步骤(4)和步骤(6)中工件材质为42crmo。

所述步骤(5)中轰击工艺为:负偏压为300v~500v,时间为10min~40min。

所述步骤(6)中沉积工艺为:负偏压为70v~150v,时间为90min~120min。

本发明的有益效果是:(1)本发明采用机械混料、真空吸铸和半固态挤压成型相结合的工艺,通过机械混料可使原料表层存在的少量氧化皮等缺陷充分破碎并细化,并进入到原料内部起到氧化物弥散强化的作用,同时可使原料产生更多的高能裸露表面和更加细小的颗粒分布,提高原料间的可塑性、增加反应活性;通过真空吸铸可使化合物在形核和长大过程中具有较大的过冷度、较快的冷却速度、较短的扩散距离等,进而使化合物晶粒更加细小、元素分布更加均匀、致密度更高、硬度和耐磨性进一步提高等;通过靶材制备工艺全流程的各环节控制,利用金属遗传性和半固态挤压成型,进一步提高化合物靶材的致密度、降低晶粒分布尺寸和范围、减少靶材内部缺陷,进而提高化合物靶材的综合性能;(2)本发明所制备的具有单一简单立方晶体结构的alxceycocuniopprqtiyz化合物靶材,基于本发明所针对的工件基体特征选用并制备出的该化合物因其所含元素的结构相似性、元素兼容性、原子亲和力等可调范围大,提高其与工件基体元素和(alxceycocuniopprqtiyz)n化合物镀层元素间的容纳能力,不仅能阻止硬而脆的复杂金属间化合物的生成,还可在多种基体表面形成错配度较低的低能界面,进而原位生成从基体到涂层表面的元素分布自调节的梯度涂层,可使工件基体与(alxceycocuniopprqtiyz)n化合物镀层间的结合力大幅提升,进而原位生成达到原子级别结合的自调节的梯度涂层,大幅提高结合力和使用性能。(3)alxceycocuniopprqtiyz化合物靶材在制备过程中采用机械混料、真空吸铸和半固态挤压成型相结合工艺,可使化合物因细晶强化、固溶强化和弥散强化使其硬度和耐磨性显著提高的同时,进一步晶粒细化至纳米级,进一步提升涂层的均匀性、完整性、可加工性。(4)喷砂处理工艺是采用净化的压缩空气,将砂(如石英砂、钢砂、氧化铝等)流强烈地喷到金属工件表面,磨削掉工件表面的毛刺、氧化皮、锈蚀、积碳、焊渣、型砂、残盐、旧漆膜、污垢等表面缺陷的方法。喷砂清理表面处理不仅能消除基体表层的氧化皮、锈蚀、旧漆膜、油污、杂质等,还可使基体表面裸露出均匀的且具有一定表面粗糙度的金属基体,可形成较高的残余压应力,其表面层内的高密度位错会在交变应力或温度的作用下趋于规则,形成多边形化,进而产生更加微小的亚结构,进而提高镀膜或防腐层与基体之间的结合力或耐腐蚀能力;同时还可以使工件表面发生强烈的塑性变形,该表面强化层可显著提高工件在高温和高湿工况下的疲劳强度。喷砂处理不仅改变了工件表面与涂层间的作用效果,同时也对工件基体进行了性能强化。(5)本发明制备的单一简单立方晶体结构的alxceycocuniopprqtiyz化合物自调节膜层硬度可在550-980hv范围内变化,在alxceycocuniopprqtiyz化合物涂层上制备的(alxceycocuniopprqtiyz)n化合物膜层硬度达到3600hv;从而保证工件基体/alxceycocuniopprqtiyz/(alxceycocuniopprqtiyz)n复合化合物涂层间在具有良好结合力和高强高耐磨使用性能的同时,使该复合涂层在剧烈的使用工况条件下仍具有较高的协同作用,使工件性能和使用寿命提高或延长数倍以上。

附图说明

图1是实施例1制备的高耐磨化合物涂层所用的化合物靶材的x射线衍射图谱。

图2是实施例1需制备涂层工件经喷砂处理后未制备涂层前的基体截面的金相照片。

图3是实施例1制备的高耐磨化合物涂层截面的金相照片。

具体实施方式

本发明技术方案不局限于以下所列举的具体实施方式,还包括各具体实施方式之间的任意组合。

实施例1

按化合物靶材化学式alce0.1cocunio0.1pr0.1tiy0.1分别称取0.40mol的铝粉、钴粉、铜粉、镍粉和钛粉、0.02mol的铈粉和二氧化铈、0.04mol的镨粉和钇粉,各种金属粉末的纯度高于99.5%,二氧化铈纯度高于99.9%;将原料粉体置于球磨罐中,加入不锈钢球,然后在氩气环境下将球磨罐密封起来;将密封好的球磨罐置于行星式球磨机上进行混料,混料时间为0.5h,转速为100rpm;将混料后的粉体在氩气环境下装入石墨模具中,在放电等离子烧结炉中600℃、35mpa下温压成块体;将上述块体置于真空熔炼炉中,在氩气环境下,反复熔炼3次,电流为400a,作用时间30s,真空吸铸进水冷铜模中;将上述铜模中取出的样品在氩气环境下置于感应加热腔内,感应加热至900℃后,迅速将样品置于双向顶压模具内,进行半固态挤压成型,得到具有单一简单立方结构的alce0.1cocunio0.1pr0.1tiy0.1化合物靶材;将需要制备涂层的45crmo工件进行酸洗、碱洗进行前处理,然后再进行粗洗、预清洗、清洗、精洗、冲洗等超声清洗处理后烘干;喷砂处理后显微观察使表面毛刺、氧化皮、锈蚀等缺陷完全去除;将上述喷砂处理后的工件装夹在镀膜设备腔体内部,抽真空至0.1pa以下,加热炉体至炉内温度达到500℃,向炉内通入氩气使炉内压力升至1.5pa,打开alce0.1cocunio0.1pr0.1tiy0.1化合物靶材,对工件表面进行轰击并生成alce0.1cocunio0.1pr0.1tiy0.1镀层,负偏压为500v,时间为10min;向炉内通入氮气使压力升至2.5pa,开启alce0.1cocunio0.1pr0.1tiy0.1化合物靶材,负偏压为150v,时间为90min,在上述镀层表面沉积并原位生成梯度的(alce0.1cocunio0.1pr0.1tiy0.1)n镀层,进而形成工件基体/alce0.1cocunio0.1pr0.1tiy0.1/(alce0.1cocunio0.1pr0.1tiy0.1)n复合化合物涂层。

实施例2

按化合物靶材化学式al1.3ce0.1cocunio0.1pr0.1tiy0.1分别称取0.52mol的铝粉、0.02mol的铈粉和二氧化铈、0.40mol的钴粉、铜粉、镍粉和钛粉、0.04mol的镨粉和钇粉,各种金属粉末的纯度高于99.5%,二氧化铈纯度高于99.9%;将原料粉体置于球磨罐中,加入不锈钢球,然后在氩气环境下将球磨罐密封起来;将密封好的球磨罐置于行星式球磨机上进行混料,混料时间为1h,转速为80rpm;将混料后的粉体在氩气环境下装入石墨模具中,在放电等离子烧结炉中600℃、35mpa下温压成块体;将上述块体置于真空熔炼炉中,在氩气环境下,反复熔炼3次,电流为350a,作用时间60s,真空吸铸进水冷铜模中;将上述铜模中取出的样品在氩气环境下置于感应加热腔内,感应加热至1000℃后,迅速将样品置于双向顶压模具内,进行半固态挤压成型,得到具有单一简单立方结构的al1.3ce0.1cocunio0.1pr0.1tiy0.1化合物靶材;将需要制备涂层的45crmo工件进行酸洗、碱洗进行前处理,然后再进行粗洗、预清洗、清洗、精洗、冲洗等超声清洗处理后烘干;喷砂处理后显微观察使表面毛刺、氧化皮、锈蚀等缺陷完全去除;将上述喷砂处理后的工件装夹在镀膜设备腔体内部,抽真空至0.1pa以下,加热炉体至炉内温度达到500℃,向炉内通入氩气使炉内压力升至1.5pa,打开al1.3ce0.1cocunio0.1pr0.1tiy0.1化合物靶材,对工件表面进行轰击并生成al1.3ce0.1cocunio0.1pr0.1tiy0.1镀层,负偏压为400v,时间为20min;向炉内通入氮气使压力升至2.5pa,开启al1.3ce0.1cocunio0.1pr0.1tiy0.1化合物靶材,偏压为140v,时间为100min,在上述镀层表面沉积并原位生成梯度的(al1.3ce0.1cocunio0.1pr0.1tiy0.1)n镀层,进而形成工件基体/al1.3ce0.1cocunio0.1pr0.1tiy0.1/(al1.3ce0.1cocunio0.1pr0.1tiy0.1)n复合化合物涂层。

实施例3

按化合物靶材化学式alce0.1cocunio0.2pr0.1tiy0.1分别称取0.40mol的铝粉、钴粉、铜粉、镍粉和钛粉、0.04mol的二氧化铈、镨粉和钇粉,各种金属粉末的纯度高于99.5%,二氧化铈纯度高于99.9%;将原料粉体置于球磨罐中,加入不锈钢球,然后在氩气环境下将球磨罐密封起来;将密封好的球磨罐置于行星式球磨机上进行混料,混料时间为3h,转速为70rpm;将混料后的粉体在氩气环境下装入石墨模具中,在放电等离子烧结炉中600℃、35mpa下温压成块体;将上述块体置于真空熔炼炉中,在氩气环境下,反复熔炼3次,电流为300a,作用时间90s,真空吸铸进水冷铜模中;将上述铜模中取出的样品在氩气环境下置于感应加热腔内,感应加热至1100℃后,迅速将样品置于双向顶压模具内,进行半固态挤压成型,得到具有单一简单立方结构的alce0.1cocunio0.2pr0.1tiy0.1化合物靶材;将需要制备涂层的45crmo工件进行酸洗、碱洗进行前处理,然后再进行粗洗、预清洗、清洗、精洗、冲洗等超声清洗处理后烘干;喷砂处理后显微观察使表面毛刺、氧化皮、锈蚀等缺陷完全去除;将上述喷砂处理后的工件装夹在镀膜设备腔体内部,抽真空至0.1pa以下,加热炉体至炉内温度达到500℃,向炉内通入氩气使炉内压力升至1.5pa,打开alce0.1cocunio0.2pr0.1tiy0.1化合物靶材,对工件表面进行轰击并生成alce0.1cocunio0.2pr0.1tiy0.1镀层,负偏压为300v,时间为40min;向炉内通入氮气使压力升至2.5pa,开启alce0.1cocunio0.2pr0.1tiy0.1化合物靶材,负偏压为110v,时间为110min,在上述镀层表面沉积并原位生成梯度的(alce0.1cocunio0.2pr0.1tiy0.1)n镀层,进而形成工件基体/alce0.1cocunio0.2pr0.1tiy0.1/(alce0.1cocunio0.2pr0.1tiy0.1)n复合化合物涂层。

实施例4

按化合物靶材化学式al0.1cecocunio0.5pr0.1tiy0.1分别称取0.04mol的铝粉、镨粉和钇粉、0.40mol的钴粉、铜粉、镍粉和钛粉、0.30mol的铈粉、0.10mol的二氧化铈,各种金属粉末的纯度高于99.5%,二氧化铈纯度高于99.9%;将原料粉体置于球磨罐中,加入不锈钢球,然后在氩气环境下将球磨罐密封起来;将密封好的球磨罐置于行星式球磨机上进行混料,混料时间为6h,转速为50rpm;将混料后的粉体在氩气环境下装入石墨模具中,在放电等离子烧结炉中600℃、35mpa下温压成块体;将上述块体置于真空熔炼炉中,在氩气环境下,反复熔炼3次,电流为250a,作用时间120s,真空吸铸进水冷铜模中;将上述铜模中取出的样品在氩气环境下置于感应加热腔内,感应加热至1100℃后,迅速将样品置于双向顶压模具内,进行半固态挤压成型,得到具有单一简单立方结构的al0.1cecocunio0.5pr0.1tiy0.1化合物靶材;将需要制备涂层的45crmo工件进行酸洗、碱洗进行前处理,然后再进行粗洗、预清洗、清洗、精洗、冲洗等超声清洗处理后烘干;喷砂处理后显微观察使表面毛刺、氧化皮、锈蚀等缺陷完全去除;将上述喷砂处理后的工件装夹在镀膜设备腔体内部,抽真空至0.1pa以下,加热炉体至炉内温度达到500℃,向炉内通入氩气使炉内压力升至1.5pa,打开al0.1cecocunio0.5pr0.1tiy0.1化合物靶材,对工件表面进行轰击并生成al0.1cecocunio0.5pr0.1tiy0.1镀层,负偏压为500v,时间为10min;向炉内通入氮气使压力升至2.5pa,开启al0.1cecocunio0.5pr0.1tiy0.1化合物靶材,负偏压为70v,时间为120min,在上述镀层表面沉积并原位生成梯度的(al0.1cecocunio0.5pr0.1tiy0.1)n镀层,进而形成工件基体/al0.1cecocunio0.5pr0.1tiy0.1/(al0.1cecocunio0.5pr0.1tiy0.1)n复合化合物涂层。

实施例5

按化合物靶材化学式alce0.1cocunio0.1prtiy0.1分别称取0.40mol的铝粉、钴粉、铜粉、镍粉、钛粉和镨粉、0.02mol的铈粉和二氧化铈、0.04mol的钇粉,各种金属粉末的纯度高于99.5%,二氧化铈纯度高于99.9%;将原料粉体置于球磨罐中,加入不锈钢球,然后在氩气环境下将球磨罐密封起来;将密封好的球磨罐置于行星式球磨机上进行混料,混料时间为0.5h,转速为100rpm;将混料后的粉体在氩气环境下装入石墨模具中,在放电等离子烧结炉中600℃、35mpa下温压成块体;将上述块体置于真空熔炼炉中,在氩气环境下,反复熔炼3次,电流为400a,作用时间30s,真空吸铸进水冷铜模中;将上述铜模中取出的样品在氩气环境下置于感应加热腔内,感应加热至900℃后,迅速将样品置于双向顶压模具内,进行半固态挤压成型,得到具有单一简单立方结构的alce0.1cocunio0.1prtiy0.1化合物靶材;将需要制备涂层的45crmo工件进行酸洗、碱洗进行前处理,然后再进行粗洗、预清洗、清洗、精洗、冲洗等超声清洗处理后烘干;喷砂处理后显微观察使表面毛刺、氧化皮、锈蚀等缺陷完全去除;将上述喷砂处理后的工件装夹在镀膜设备腔体内部,抽真空至0.1pa以下,加热炉体至炉内温度达到500℃,向炉内通入氩气使炉内压力升至1.5pa,打开alce0.1cocunio0.1prtiy0.1化合物靶材,对工件表面进行轰击并生成alce0.1cocunio0.1prtiy0.1镀层,负偏压为400v,时间为20min;向炉内通入氮气使压力升至2.5pa,开启alce0.1cocunio0.1prtiy0.1化合物靶材,负偏压为150v,时间为90min,在上述镀层表面沉积并原位生成梯度的(alce0.1cocunio0.1prtiy0.1)n镀层,进而形成工件基体/alce0.1cocunio0.1prtiy0.1/(alce0.1cocunio0.1prtiy0.1)n复合化合物涂层。

实施例6

按化合物靶材化学式alce0.1cocunio0.1pr0.1tiy分别称取0.40mol的铝粉、钴粉、铜粉、镍粉、钛粉和钇粉、0.02mol的铈粉和二氧化铈、0.04mol的镨粉,各种金属粉末的纯度高于99.5%,二氧化铈纯度高于99.9%;将原料粉体置于球磨罐中,加入不锈钢球,然后在氩气环境下将球磨罐密封起来;将密封好的球磨罐置于行星式球磨机上进行混料,混料时间为1h,转速为80rpm;将混料后的粉体在氩气环境下装入石墨模具中,在放电等离子烧结炉中600℃、35mpa下温压成块体;将上述块体置于真空熔炼炉中,在氩气环境下,反复熔炼3次,电流为350a,作用时间60s,真空吸铸进水冷铜模中;将上述铜模中取出的样品在氩气环境下置于感应加热腔内,感应加热至1000℃后,迅速将样品置于双向顶压模具内,进行半固态挤压成型,得到具有单一简单立方结构的alce0.1cocunio0.1pr0.1tiy化合物靶材;将需要制备涂层的45crmo工件进行酸洗、碱洗进行前处理,然后再进行粗洗、预清洗、清洗、精洗、冲洗等超声清洗处理后烘干;喷砂处理后显微观察使表面毛刺、氧化皮、锈蚀等缺陷完全去除;将上述喷砂处理后的工件装夹在镀膜设备腔体内部,抽真空至0.1pa以下,加热炉体至炉内温度达到500℃,向炉内通入氩气使炉内压力升至1.5pa,打开alce0.1cocunio0.1pr0.1tiy化合物靶材,对工件表面进行轰击并生成alce0.1cocunio0.1pr0.1tiy镀层,负偏压为300v,时间为40min;向炉内通入氮气使压力升至2.5pa,开启alce0.1cocunio0.1pr0.1tiy化合物靶材,负偏压为140v,时间为100min,在上述镀层表面沉积并原位生成梯度的(alce0.1cocunio0.1pr0.1tiy)n镀层,进而形成工件基体/alce0.1cocunio0.1pr0.1tiy/(alce0.1cocunio0.1pr0.1tiy)n复合化合物涂层。

实施例7

按化合物靶材化学式al0.5ce0.5cocunio0.1pr0.5tiy0.5分别称取0.20mol的铝粉、镨粉和钇粉、0.18mol的铈粉、0.02mol的二氧化铈、0.40mol的钴粉、铜粉、镍粉和钛粉,各种金属粉末的纯度高于99.5%,二氧化铈纯度高于99.9%;将原料粉体置于球磨罐中,加入不锈钢球,然后在氮气环境下将球磨罐密封起来;将密封好的球磨罐置于行星式球磨机上进行混料,混料时间为6h,转速为50rpm;将混料后的粉体在氮气环境下装入石墨模具中,在放电等离子烧结炉中600℃、35mpa下温压成块体;将上述块体置于真空熔炼炉中,在氮气环境下,反复熔炼3次,电流为250a,作用时间120s,真空吸铸进水冷铜模中;将上述铜模中取出的样品在氮气环境下置于感应加热腔内,感应加热至1000℃后,迅速将样品置于双向顶压模具内,进行半固态挤压成型,得到具有单一简单立方结构的al0.5ce0.5cocunio0.1pr0.5tiy0.5化合物靶材;将需要制备涂层的45crmo工件进行酸洗、碱洗进行前处理,然后再进行粗洗、预清洗、清洗、精洗、冲洗等超声清洗处理后烘干;喷砂处理后显微观察使表面毛刺、氧化皮、锈蚀等缺陷完全去除;将上述喷砂处理后的工件装夹在镀膜设备腔体内部,抽真空至0.1pa以下,加热炉体至炉内温度达到500℃,向炉内通入氩气使炉内压力升至1.5pa,打开al0.5ce0.5cocunio0.1pr0.5tiy0.5化合物靶材,对工件表面进行轰击并生成al0.5ce0.5cocunio0.1pr0.5tiy0.5镀层,负偏压为500v,时间为10min;向炉内通入氮气使压力升至2.5pa,开启al0.5ce0.5cocunio0.1pr0.5tiy0.5化合物靶材,负偏压为70v,时间为120min,在上述镀层表面沉积并原位生成梯度的(al0.5ce0.5cocunio0.1pr0.5tiy0.5)n镀层,进而形成工件基体/al0.5ce0.5cocunio0.1pr0.5tiy0.5/(al0.5ce0.5cocunio0.1pr0.5tiy0.5)n复合化合物涂层。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1