一种负载吲哚菁绿的锂皂石纳米颗粒ICG/LAP的制备方法与流程

文档序号:11243929阅读:1887来源:国知局
一种负载吲哚菁绿的锂皂石纳米颗粒ICG/LAP的制备方法与流程

本发明属于药物负载的制备领域,特别涉及一种负载吲哚菁绿的锂皂石纳米颗粒icg/lap的制备方法。



背景技术:

传统的肿瘤治疗方法主要有手术、放疗、化疗等,但都有较大副作用。相较于传统治疗,光热治疗因对正常细胞伤害较小具有一定优势。吲哚菁绿(icg)是目前唯一被美国食品药物管理局(fda)批准用于临床的近红外成像试剂,是一种具有近红外特征吸收峰的三碳花菁染料,最大发射波长在795~845nm之间。人体组织在近红外700至1100nm区域具有最低的吸收系数,光穿透生物组织最深,因此icg作为光热试剂用于癌症的光热治疗,对人体正常细胞无害,不会造成肿瘤细胞的耐药性,不仅能够与化学药物治疗结合提高治疗效率,还可以利用光声效应用于肿瘤的光声成像。与无机光热试剂相比,吲哚菁绿在近红外的吸光能力特别强,在780nm近红外激光的照射下,相同质量的吲哚菁绿吸收光的能力是单壁碳纳米管的7倍多,是纳米金棒的8500倍以上(m,y.eta1.cancerres,1986,46(12),6387-6392)。但是icg在水溶液中的不稳定性、在体内的快速清除等缺陷限制了它的应用。因此,找到合适的载体用来负载icg,提高icg在体内的稳定性和光热转换效率,成为实现icg肿瘤诊疗应用的关键。

锂皂石(lap)是一类人工合成的粘土类纳米颗粒,具有良好的生物相容性,并且被证实可以高效负载药物,并实现药物的控制释放,在药物输送领域展现了独特的优势(wu.y.l.eta1.j.mater.chem.b.2014,2,7410-7418)。

查阅国内外相关文献或专利,负载吲哚菁绿的锂皂石纳米颗粒icg/lap的制备方法未见报道。



技术实现要素:

本发明所要解决的技术问题是提供一种负载吲哚菁绿的锂皂石纳米颗粒icg/lap的制备方法,lap与icg的质量比为9:2;icg的上载效率约为94.1%;icg/lap紫外吸收峰发生红移,光、热稳定性提高。

本发明的一种负载吲哚菁绿的锂皂石纳米颗粒icg/lap的制备方法,包括:

(1)将icg粉末溶于超纯水中,并在常温下避光磁力搅拌使其均匀分散成icg水溶液;

(2)将ph=5.0的醋酸盐缓冲液加入lap水溶液中,接着将icg水溶液逐滴到lap水溶液,室温避光磁力搅拌反应,离心纯化得到icg/lap纳米颗粒。

所述步骤(1)中避光搅拌为磁力搅拌速率为800-900r/min,时间为3-6min,优选5min。

所述步骤(1)中icg水溶液的浓度为2mg/ml。

所述步骤(2)中lap溶液的浓度为6mg/ml。

所述步骤(2)中lap与icg的质量比为9:1-3,优选质量比为9:2。

所述步骤(2)中缓冲溶液为ph=5.0的醋酸盐缓冲液。

所述醋酸盐缓冲液由浓度为0.2mol/l的naac和浓度为0.3mol/l的hac制成,醋酸盐缓冲液体积为lap水溶液体积的2倍。

所述步骤(2)中搅拌反应为磁力搅拌反应2-5h,优选反应时间为4h,搅拌速率为800-900r/min。

所述步骤(2)中离心纯化转速为8000r/min,时间为10min。

lap与icg的质量比为9:2,所得到的icg/lap纳米颗粒中,icg的负载效率为94.1%。

本发明以具有独特层状空间结构的lap为载体实现对光热试剂icg的高效负载,提高了icg在水溶液中的稳定性和光热转换效率,而且纳米尺寸的icg/lap颗粒能够在体内具有较长的循环时间,并通过epr效应富集在肿瘤部位。通过近红外激光对肿瘤局部的照射,提高体系对肿瘤的光热治疗效果。

以lap为载体负载icg不仅能够提高icg光、热稳定性、溶液稳定性及在体内的稳定性,还有望增强光热效果并借助icg/lap纳米粒子的尺寸优势实现肿瘤的被动靶向,在肿瘤组织富集、实现良好的光热治疗效果。

本发明经筛选最优负载条件后,再使用xrd(x射线衍射)、动态光散射dls(zeta表面电势测量)、uv-vis(紫外可见光谱)、tga(热失重分析法)、光热循环测试等方法表征本发明制备的具体测试结果如下:

(1)最优负载条件筛选

为了探索lap负载icg的最优负载条件,采用不同溶剂进行实验,结果如图1所示。ph=5.0醋酸盐缓冲液条件下反应后,经离心,上层溶液为澄清无色液体。随后,将纯lap及纯icg与负载了icg的lap纳米颗粒在ph=5.0醋酸盐缓冲液中经相同条件离心。纯lap与纯icg离心后未见沉淀,负载有icg的lap产生沉淀。因此可知在ph=5.0醋酸盐缓冲液条件下,lap能够实现对icg的高效负载。

(2)xrd(x射线衍射)

为了探究lap对icg的负载机理,我们进行了xrd测试。图2和表1给出了lap与icg/lap的xrd分析结果。负载icg后,除(001)晶面外,lap其他各晶面的位置以及晶面间距没有明显改变;而(001)晶面的衍射角明显变小(从5.98°降低到4.34°),晶面距离明显增大(从增加到),这证明icg分子是按照其苯环平行于lap(001)晶面的方式整齐排列于lap内层,形成了lap/icg/lap的夹层结构而使晶面间距增加。此外,icg/lap的衍射图谱中出现了一系列新的dox晶体的衍射峰(20°到30°之间),也证明了icg已经成功负载到了lap的片层结构中。

表1lap、icg/lap的衍射角和晶面间距数据

(3)dls(zeta表面电势测量)

研究载药前后lap的粒径以及表面电势均通过dls进行测定,结果如表2所示。负载icg后,锂皂石的表面电势从-32.5mv增长到-16.1mv,同时粒径略有增加(62.79nm增大到120.1nm),并且pdi为0.316。结果表明,锂皂石已经成功负载了icg,并且药物对纳米颗粒的性质影响较小,载药颗粒仍具有较好的稳定性和分散性。

表2lap、icg/lap的水合直径和表面电势

(4)uv-vis(紫外-可见光谱测试)

研究icg的负载效率及负载前后icg的性质变化,进行了uv-vis测试,结果如图3所示。icg的紫外吸收峰位于784nm,本发明中制备得到的icg/lap紫外吸收峰位于831nm,吸收峰发生了红移。这一结果也证实icg与lap之间具有较强的相互作用,说明icg已被成功负载在锂皂石上。附图3中icg/lap的吸收峰比纯icg吸收峰强度更强,这表明本发明中制备得到的icg/lap颗粒具有更好的近红外光吸收性能。通过紫外吸收标准曲线定量分析,在投料比为lap:icg=9:2的条件下,icg的负载效率为94.1%,负载率为17.3%。

(5)tga(热重分析法)

图4为lap与负载icg的icg/lap纳米颗粒在室温升温到900℃过程中的失重情况。曲线中温度低于150℃的lap与icg/lap均存在少量失重,主要源于中吸附的水分子的损失。继续升温到900℃过程中,lap几乎没有重量损失,而icg/lap的失重由91.2%降至75.4%,主要是由于负载在lap内部icg的分解引起的。icg/lap的失重率为17.3%,说明载药体系中icg的载药量约为17.3%,这与紫外-可见光谱方法测定的结果相符。

(6)光热转换性能测试

为验证负载后icg的光热转换性能,将含相同浓度icg的icg/lap颗粒与纯icg经808nm近红外激光照射3min,照射过程中温度变化经热电偶记录,结果如图5所示。在相同条件下,icg/lap在近红外激光照射后温度升高了26.7℃,而icg温度升高了20.3℃。icg/lap在808nm激光照射下能引起溶液温度的明显增高,效果优于相同浓度的icg水溶液,说明本发明中制备得到的icg/lap颗粒具有优异的光热转换性能。

(7)光热稳定性能测试

为了考察icg/lap纳米材料的光热稳定性,将含相同浓度icg的icg/lap颗粒与纯icg经近红外激光照射升温循环3次测试,结果如图6所示。icg/lap颗粒循环3次在近红外激光照射下,温度分别升高至52.5℃,52.1℃,51.0℃;icg循环3次在近红外激光照射升温,温度分别升高至50.5℃,49.4℃,47.1℃。在激光照射多次后,icg/lap颗粒仍能具有较高的光热转换性能,说明icg/lap具有优于icg的光热稳定性,有望应用于多次光热治疗。

综合以上实验结果可以认为,本发明所报道的icg/lap颗粒提高了icg的光稳定性与溶液稳定性,增强了icg的光热转换效率,具有良好的应用前景。

有益效果

(1)本发明所报道的icg/lap颗粒,提高了icg的光稳定性与溶液稳定性,有望实现icg的多次光热治疗;

(2)本发明制备方法简单,反应条件温和,成本低廉,易于操作,具有产业化实施的前景。

附图说明

图1为lap,icg,icg/lap离心后的图片;

图2为lap(a),icg/lap(b)的xrd分析图谱;

图3为lap,icg,icg/lap的紫外吸收光谱图;

图4为lap,icg/lap的热失重曲线;

图5为lap,icg,icg/lap光热升温曲线;

图6为icg,icg/lap循环光热升温曲线;

图7为icg/lap纳米颗粒合成示意图。

具体实施方式

下面结合具体实施例,进一步阐述本发明。应理解,这些实施例仅用于说明本发明而不用于限制本发明的范围。此外应理解,在阅读了本发明讲授的内容之后,本领域技术人员可以对本发明作各种改动或修改,这些等价形式同样落于本申请所附权利要求书所限定的范围。

实施例1

(1)将2mgicg水溶液溶于1ml超纯水中,并在常温下避光磁力搅拌5min使其均匀分散成icg水溶液;

(2)将ph=5.0的醋酸盐缓冲液3ml加入1.5ml6mg/mllap水溶液中,接着将icg水溶液逐滴到lap水溶液,使lap与icg质量比为9:2。室温避光磁力搅拌反应4h后,8000r/min,10min离心纯化得到icg/lap纳米颗粒。

实施例2

取实施例1中制备的icg/lap,溶剂为超纯水,经冻干干燥后与lap分别进行xrd测试,其衍射峰及峰面积均发生改变,参见图2。

实施例3

取150μg/ml实施例1中制备的icg/lap,溶剂为超纯水,测其紫外-可见吸收光谱,从谱图中可见其峰型一致且良好,参见图3。并通过紫外标准曲线定量,得到icg上载效率。同时测定实施例1中icg溶液的紫外-可见吸收光谱。

实施例4

取实施例1中制备的icg/lap,溶剂为超纯水,经冻干干燥后与lap分别进行tga测试。样品经热分析仪,升温速度为10℃/min,采用流量为60ml/min的n2保护,记录30℃-900℃升温区间内样品失重曲线,计算失重率,计算负载率。

实施例5

取实施例1中制得的icg/lap与icg溶液各100μl(cicg=0.1mg/ml),溶剂为超纯水,经808nm,1.2w近红外激光照射3min,热电偶记录温度变化。

实施例6

取实施例1制得的icg/lap与icg溶液各100μl(cicg=0.1mg/ml),溶剂为超纯水,经808nm,1.2w近红外激光照射3min,自然降温至室温,再次照射使升温,热电偶记录温度变化。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1