烃类原料自热式蒸汽重整的方法

文档序号:3462287阅读:625来源:国知局

专利名称::烃类原料自热式蒸汽重整的方法
技术领域
:本发明涉及烃类进料无积炭的自热式重整(ATR)。在自热式重整过程中,烃类进料在燃烧器的燃烧段与低于化学计量的氧通过焰色反应进行燃烧,然后部分燃烧过的原料在固定床中进行蒸汽重整,该固定床中装有蒸汽重整催化剂。烃类不充分燃烧的缺点是会形成积炭。通过使用专门设计的燃烧器,并控制自热式重整过程的操作条件,可以避免积炭的形成。积炭是在一定的操作条件范围内,在自热式反应器的火焰中形成的。相对于其它组分来说,当送入自热式重整反应器中的蒸汽的量是在临界值以下时,在反应物料中就会形成积炭。燃烧器喷嘴的设计会影响汽碳比的临界值。在美国专利US5496170中公开了一种用于自热式重整过程的燃烧器。对蒸汽量的限定可以表示为临界汽碳比,即蒸汽进料的摩尔流率与烃类进料中碳的摩尔流率的比值。烃类原料可以是天然气或另外一种烃,如液化石油气(LPG)、丁烷、石脑油等。碳的摩尔流率是将烃的摩尔流率乘以烃中碳含量来算得的。不会导致积炭形成的操作条件的实例,已经由Christensen和Primdahl在文章(HydrocarbonProcessing,1994年3月,39-46页)中总结。这些操作条件均列在表1中。相应的实验已经在中试装置中完成。由于相对较小的中试装置具有热损失,使得绝热的自热式重整装置的出口温度将高于测得的自热式重整装置的出口温度。这意味着如果装置足够大,其热损失小至可以忽略不计,严格相同的操作条件下,自热式重整装置的出口温度将接近于绝热的自热式重整装置的出口温度。积炭的前体是在自热式重整装置的燃烧段形成的。大部分的热损失是在燃烧段以后发生的。后续过程的热损失对燃烧段的反应没有任何影响。氧碳比(O2/C)也列于表1中。这一比值的定义与汽碳比类似,但用氧代替蒸汽。当自热式重整反应器的热损失已知时,其出口温度可以由氧碳比O2/C计算得到。表1不会导致积碳形成的操作条件(取自Christensen和Primdahl的著作,1994)有利的是在低汽碳比下进行所述过程,因为低的汽碳比会降低自热式重整装置的资金投入,并可以减少运行自热式重整装置所需的能量消耗。另外低的汽碳比使优化生产用于制备富含CO的气体的合成气成分成为可能,例如用于合成甲醇或二甲醚及费-托法中。人们已经发现,操作压力对临界汽碳比有很大的影响。人们进一步发现,当在给定的原料的温度和汽碳比,调节自热式重整反应器的操作压力在临界值以上时,原料的自热式重整过程不会形成有害的积炭。所以,本发明是一种烃类原料无积碳自热式重整的方法,该方法是在自热式反应器中,当原料的温度和汽碳比确定时,调节反应器的操作压力在临界值以上,此时蒸汽重整后的原料中不会形成积碳。当操作压力升高时,临界汽碳比降低。依照本发明,自热式重整反应器中的操作压力是抑制积炭形成的关键参数。升高操作压力,在低的汽碳比条件下反应可以良好地运行。实际的临界压力要取决于用于自热式重整反应器中的燃烧器的设计。优选的方法是,调节操作压力,使汽碳比、反应器出口处的温度和压力符合下列关系式P≥15.0-0.00914*T出口-1.92*S/C,或者在绝热条件下P≥13.4-0.00753*T绝热-1.74*S/C,式中P为压力,单位是MPa,T为反应器出口的气体温度或绝热条件下的气体温度,单位是K,S/C是进料气体中蒸汽和碳的摩尔比。本发明已经实验过的压力范围是0.86-2.95MPa。尽管如此,从下列实施例中可明显看出,本发明还可用于更高的操作压力。实施例1整个实验装置包括给自热式重整反应器提供进料的系统、自热式重整反应器本身以及产物气体的后处理设备。进料物流含有天然气、水蒸汽、氧和氢。所有的气体均被压缩到操作压力并预热到操作温度。天然气在进入自热式重整反应器之前要进行脱硫。所有的进料汇成两股物流后,被送入到自热式重整反应器的燃烧器中。此处实施例中所使用的燃烧器是参考美国专利US5496170中所公开的,该文献通过引用在本文中引入。一股进料含有天然气、氢和蒸汽,该股物料被加热到500℃。另一股进料含有氧和蒸汽,该股物料被加热到220℃。在自热式重整反应器中,首先进行的是低于化学计量进氧的不充分燃烧,接下来是催化蒸汽重整和转移反应。入口和出口处的气体成分用气相色谱法检测。产物气体处于重整和转移反应的平衡状态。在自热式重整反应器下游处,气体物流被冷却,产物气体中的大部分蒸汽被冷凝。如有积炭形成,就会捕集在冷凝液中。冷凝液采用重量分析和分光光度分析两种方法进行检测。下面的实验是为了证明操作压力对临界汽碳比的影响。实验中使用的烃是天然气。天然气的成分在表2中给出。表2</tables>每次实验都是从富含蒸汽的一侧通过使趋近于临界汽碳比而进行的。实验开始时采用足够高的蒸汽流量,以确保为无积炭条件。然后逐步降低蒸汽流量,每步操作将汽碳比降低0.03左右。使系统稳定,随后检测冷凝液中积炭的含量。如果冷凝液中仍不含积炭,则继续进行下一步的降低汽碳比的操作。此处“无积炭条件”指的是在该条件下形成的积炭量可以忽略不计。在临界汽碳比条件下形成的积炭的量大约为3-5ppm。在两个不同的操作温度条件下,测得的临界汽碳比与压力的对应关系在表3中给出。所有实验中的物料流率均为100Nm3/h的天然气和3Nm3/h的氢。100Nm3/h的天然气对应的碳流率为102.5Nm3/h。调节蒸汽流量以达到给定的汽碳比。调节氧的流率以达到所需的操作温度,氧流率的变化范围为55-62Nm3/h。由于相对较小的中试装置存在热损失,使得绝热的自热式重整反应器的出口温度将高于表2中给出的温度。大的工业装置将极为接近绝热条件,而且如果该工业装置严格按照表3中所列的条件进行操作的话,其出口温度将极为接近表3中给出的绝热温度。表3临界汽碳比与压力和操作温度的对应关系。表3中所列实验的出自自热式重整反应器的产物气体的成分用气相色谱法检测。所选择的气体成分列于表4中。表4中给出的气体成分是干摩尔百分数,即不包括蒸汽时气体组分的摩尔成分。表4可以看出,对于两个操作温度条件,临界汽碳比都具有很强的依赖性。在操作温度为1035℃时,当压力以低于2倍的因子上升时,临界汽碳比以4.5倍的因子下降。将表3中公布的数据用关系式P=15.0-0.00914*T出口-1.92*S/C进行关联,式中T为反应器的出口温度,单位为K,压力单位为MPa。从上述方程可以计算得到,当压力高于3.5MPa、反应器的出口温度高于985℃时,临界汽碳比为0。将表3中的数据用关系式P=13.4-0.00753*T绝热-1.74*S/C进行关联,式中T为绝热反应器的出口温度,单位为K。从这一方程可以计算得到,当压力高于3.5MPa、绝热温度高于1042℃时,临界汽碳比为0。权利要求1.一种用于烃类原料无积炭蒸汽重整的方法,该方法是在自热式反应器中,在给定的原料温度和汽碳比,且反应器在高于临界压力下操作时,对原料进行自热式重整,其中蒸汽重整后的原料中没有积炭存在。2.按照权利要求1所述的方法,其中操作压力是调节为满足P≥13.4-0.00753*T绝热-1.74*S/C的值,式中P为压力,单位为MPa,T为重整原料气的绝热温度,单位为K,S/C为原料中蒸汽和碳的摩尔比。3.按照权利要求1所述的方法,其中操作压力是调节为满足P≥15.0-0.00914*T出口-1.92*S/C的值,式中P为压力,单位为MPa,T为重整原料气在反应器出口处的温度,单位为K,S/C为原料中蒸汽和碳的摩尔比。4.按照权利要求1所述的方法,其中操作压力高于2.9MPa。5.按照权利要求1所述的方法,其中操作压力高于3.5MPa。6.按照权利要求1所述的方法,其中操作压力高于3.5MPa,自热式重整原料的绝热温度高于1042℃,并且原料的汽碳比大于或等于0。全文摘要一种用于烃类原料无积炭自热式蒸汽重整的方法,该方法是在自热式反应器中,在给定的原料温度和汽碳比,且反应器在高于临界压力下操作时,对原料进行自热式重整,其中蒸汽重整后的原料中没有积炭存在。文档编号C01B3/48GK1229122SQ9910294公开日1999年9月22日申请日期1999年2月15日优先权日1998年2月17日发明者P·S·克里斯藤森,T·S·克里斯藤森,I·I·普里姆达尔申请人:赫多特普索化工设备公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1