使纳米填料分散在水中的嵌段共聚物的制作方法

文档序号:3687364阅读:188来源:国知局
使纳米填料分散在水中的嵌段共聚物的制作方法
【专利摘要】本发明涉及使得实现纳米填料在水中的良好分散体的新型嵌段共聚物以及由于这些嵌段共聚物而获得的纳米填料的分散体。该分散体可用作有机太阳能电池或者其它光电发射体或感光体器件中的透明电极。
【专利说明】使纳米填料分散在水中的嵌段共聚物
[0001] 本发明涉及使得实现纳米填料在水中的良好分散体的新型嵌段共聚物。本发明还 涉及通过本发明的嵌段共聚物获得的纳米填料分散体并且还涉及所述分散体作为有机太 阳能电池或其它光电发射体(photoemitter)或感光体器件中的透明电极的用途。
[0002] 在光伏和光电发射体或感光体系统中,必须使用透明导电层。通常使用的材料为 导电氧化物,例如锡掺杂的氧化铟。该材料具有如下优点:为透明的,良好的电导体和容易 形成,且是化学稳定的。另一方面,其难以制造并且因此是昂贵的。此外,其制造方法产生 污染性产物。
[0003] 因此寻求具有锡掺杂的氧化铟的优点而没有其缺点的新材料。用于绕过制造锡掺 杂的氧化铟的问题的替代方案在于将其与其它氧化物例如氧化锌或氧化锡组合。其它解决 方案使用无铟材料,例如掺杂有铝或镓的氧化锌、或者氟掺杂的氧化锌,但是这些不是良好 的解决方案,因为它们具有其它缺点,例如它们在潮湿环境中的电稳定性。在Tadatsugu, Μ·的文章ThinSolidFilms,(516)1314,(2008)中描述了这些缺点。
[0004] 此外,已经测试了导电聚合物作为透明电极的材料。作为有希望的,可提及 PED0T:PSS(聚(3, 4-亚乙基二氧噻吩):聚苯乙烯磺酸钠)配方,因为它们将良好的电导 率(29.6S/Cm)和良好的成膜性能组合。另一方面,它们的电稳定性对高温、对水分和对紫 外福射是敏感的,如Xue,F等,ElectronDevices,IEEETransactions,(9) 1982(2005)所 描述的。
[0005] 由于对提供透明电极的大的需求,因此正在研宄其它材料以替代特别是锡掺杂的 氧化铟,尤其是在太阳能电池应用中。作为潜在的有希望的候选物,可提及基于银纳米线的 导电膜、薄金属膜、纳米管膜或石墨烯膜。更特别地关于碳纳米管,它们在太阳能电池中具 有两种类型的应用:首先,作为活性层,在所述活性层中,它们可充当半导体;其次,作为电 极。
[0006] 碳纳米管是在最有希望的材料之中的材料。它们被认为是石墨片折叠成碳圆筒或 者管的结果。取决于壁的数量,它们以多种形式存在:单壁、双壁、或多壁。取决于管的折叠 角度和直径,获得半导体性或金属性的电子状态。因其非凡的电、机械和光学性质,碳纳米 管现在是众所周知的。碳纳米管的高的电导率取决于若干种参数,包括它们的分散程度。
[0007] 已知若干种用于获得碳纳米管的良好分散体的方法,例如使用表面活性剂,或者 使用与分散聚合物或者其它分散剂例如DNA、蛋白质或者淀粉组合的官能化的碳纳米管。 一旦已经形成膜,则必须随后通过特定处理将这些分散剂除去,因为它们是电绝缘的。将 碳纳米管用聚合物包覆是用于保证其良好分散的常规方法。聚合物经由π-π相互作用 结合至碳纳米管的表面,从而保持碳纳米管的固有性质。它们典型地为共轭聚合物或者包 含花实体的聚合物(Zhu,J.等,JournaloftheAmericanChemicalSociety(133)7450, (2011))。可使用均聚物和嵌段共聚物两者。
[0008] 迄今,不存在用于将碳纳米管合适地分散在含水介质中且应用该分散体以制造不 需要后续处理的其良好品质的膜的解决方案。
[0009] 本 申请人:现已发现,其嵌段的至少一个为共轭的导电聚合物且其嵌段的至少一个 为聚电解质的嵌段共聚物使得实现纳米填料在水中的良好分散体,该分散体具有良好的成 膜品质。所获得的膜呈现出良好的应用性质,不需要后处理。它们既是导电的(电子导电 的),也是离子导电的。


【发明内容】

[0010] 本发明涉及包括至少一种嵌段共聚物的组合物,所述嵌段共聚物能溶于水或者呈 现在水中的稳定分散体并且具有至少一个由共轭聚合物构成的嵌段和至少一个由聚电解 质聚合物构成的嵌段。

【具体实施方式】
[0011] 术语"稳定分散体"用于表示不呈现沉降并且保持均匀至少1星期的分散体。 [0012] 术语"嵌段共聚物"用于表示二嵌段、三嵌段或多嵌段共聚物或其共混物,包括嵌 段各自的均聚物。优选地,其为二嵌段或三嵌段共聚物,且更优选地其为二嵌段共聚物。 [0013]关于由共轭聚合物构成的嵌段,这可包括(涉及)呈现出π型共轭的任何类型的 聚合物。可提及由芴、亚苯基、喹啉、咔挫、苯胺、噻吩、或其衍生物得到的聚合物。优选地, 这包括噻吩衍生物,更特别地3-烷基噻吩,和甚至更特别地3-己基噻吩。所述由共轭聚合 物构成的嵌段具有1000-50 000g/mol和优选2000-10 000g/mol的重均分子量,以及大于 1的分散指数(PI或£))。
[0014]关于由电解质聚合物构成的嵌段,这可包括任何聚电解质,其中可提及聚苯乙烯 磺酸盐、聚(苯乙烯-共-苯乙烯磺酸盐)、聚丙烯酸、带有双磺酰亚胺型基团的聚合物和共 聚物、带有磺酸盐型基团的聚合物和共聚物、带有膦酸盐型基团的聚合物和共聚物、聚乙烯 亚胺、聚(4-乙烯基吡啶)和聚(2-乙烯基吡啶)、聚((甲基)丙烯酸氨基烷基酯),优选 聚阴离子型的电解质聚合物,且优先聚磺酸盐。
[0015] 优选地,其为聚(苯乙烯-共-苯乙烯磺酸盐)。
[0016] 本发明的嵌段共聚物可通过任何合适的技术制备。这特别地包括使用使得可控制 嵌段的数量、它们的比率、它们的长度、以及它们的分散性的技术。
[0017]关于由共轭聚合物构成的嵌段,它们可为由如下的单体获得的嵌段:芴、亚苯基、 喹啉、咔唑、苯胺、噻吩、或其衍生物。例如可提及3-己基噻吩。更特别地,关于聚(3-己 基噻吩),其有利地通过格利雅(Grignard)易位聚合反应而合成,如Loewe,R.S.等, Macromolecules(13) 4324,(2001)描述的。此外,这些嵌段可为单官能或双官能改性的,如 Jeffries-El等,AdvancedMaterials(12) 1017 (2004)所描述的,并且因此提供使得实现聚 电解质嵌段或者其前体的聚合开始的功能(官能团)。
[0018] 在聚(3-己基噻吩)的特定情况下,羟基型的官能化使得可经由RAFT(可逆加成 断裂链转移)技术引发单体的聚合。例如,其中可以受控方式使具有双键的单体聚合,无论 是离子的还是非离子的,并且因此获得期望的导电聚合物-离子聚合物嵌段共聚物。也可 使用使得可获得该类型结构的任何其它偶联或者聚合技术。
[0019] 因此可使用任何类型的具有双键的单体。可特别地提及单体丁二烯、环己二烯或 异戊二烯,其与其它单体组合,特别是选自苯乙烯、α-甲基苯乙烯、对-甲基苯乙烯、乙烯 基萘、2-乙稀基卩比啶、4-乙稀基卩比啶的乙稀基芳族化合物,或者丙稀酸醋或甲基丙稀酸醋 例如甲基丙烯酸的或者丙烯酸的甲酯、乙酯、正丙酯、异丙酯、正丁酯、异丁酯、仲丁酯、叔丁 酯、正戊酯、异戊酯、正己酯、环己酯、2-乙基己酯、辛酯、异辛酯、癸酯、十五烷基酯、十二烷 基酯、异冰片酯、苯酯、苄酯、缩水甘油酯、降冰片酯、月桂酯、硬脂基酯、苯氧基乙基酯、2-羟 基乙基酯、2-甲氧基乙基酯或者2, 2, 2-三氟乙基酯;甲基丙烯腈、丙烯腈和二烷基甲基丙 烯酰胺、二烷基丙烯酰胺、2-丙烯酰氨基-2-甲基丙烷磺酸、或者这些单体的组合,其为官 能化或者非官能化的或者可随后官能化或者部分地官能化。优选地,所述单体为苯乙烯、苯 乙烯磺酸盐或者苯乙烯-苯乙烯磺酸盐组合。关于由聚电解质聚合物构成的嵌段的特性, 它们具有1000-500OOOg/mol、和优选2000-50OOOg/mol的重均分子量,以及大于1的分散 指数(PI或D)。
[0020] 本发明还涉及本发明的共聚物作为在含水介质中纳米填料的分散剂的用途。术语 "纳米填料"用于非限制地表示石墨烯、富勒烯、碳纳米管或者其组合。优选地,它们为碳纳 米管。所使用的碳纳米管为单壁或多壁型的。它们优选为多壁碳纳米管。
[0021] 所述分散体通过将纳米管在水中的水溶液与所述嵌段共聚物的水溶液混合而获 得。为了获得良好的分散体,将各溶液使用合适装置例如通过超声处理进行预处理。
[0022] 本发明还涉及使用所述嵌段共聚物和所述纳米填料的分散体获得的膜作为有机 太阳能电池或其它光电发射体或感光体器件中的透明电极的用途。
[0023] 已经可证实这些体系良好的电导率以及它们良好的光学和热稳定性、UV稳定性和 水分稳定性性质。
[0024] 实施例1(本发明):
[0025] 聚(3-己基噻吩)_聚(苯乙烯-共-苯乙烯磺酸盐)嵌段共聚物的合成
[0026] a)聚(3-己基噻吩)嵌段的合成
[0027] 将50ml新鲜蒸馏的四氢呋喃(THF)、7g2, 5-二溴-3-己基噻吩和10. 7ml叔丁基 氯化镁引入到在真空下干燥且装备有搅拌器并用氩气吹扫的500ml圆底烧瓶中。在环境温 度下在3小时内完成反应。然后加入150ml新鲜蒸馏的THF和0. 3628g[l,3-二(二苯基 膦基)丙烷]二氯合镍(II)Ni(dppp)Cl2,同时保持搅拌40分钟。然后加入8. 64ml烯丙基 溴化镁。在真空下将溶剂蒸发之后,用过量甲醇沉淀出聚合物。然后将聚合物使用索氏设 备用甲醇纯化三天和用氯仿纯化两天。通过用聚苯乙烯样品校准的SEC测量数均分子量, 其为4522g/mol。分散性为1. 1。
[0028] b)聚(3-己基噻吩)嵌段的官能化
[0029] 将120ml新鲜蒸馏的四氢呋喃(THF)引入到在真空下干燥且装备有搅拌器并用氩 气吹扫的500ml圆底烧瓶中。将I. 4g在a)中制备的聚合物和I. 75ml9-硼双环[3. 3. 1] 壬烷(9-BBN)引入到该圆底烧瓶中。然后将溶液在45°C下搅拌24h,然后冷却至环境温度, 之后加入1.21ml在水中30%的过氧化氢。在搅拌下将混合物再次在45°C下加热24h。然 后由甲醇沉淀出聚合物。
[0030]c)大分子引发剂(macroinitiator)RAFT试剂的合成
[0031] 将10ml(l当量)3-巯基丙酸添加至氢氧化钾(13g,2当量)的溶液。然后加入 15ml二硫化碳,然后反应在环境温度下搅拌5h。然后向该溶液加入27. 4ml苄基溴并且将 所得混合物在80°C搅拌12h。然后将反应混合物冷却至环境温度并且向其中加入150ml氯 仿,然后将反应混合物用盐酸酸化,直至反应混合物变成黄色。将混合物的水相用氯仿萃 取。将有机相取出并且用硫酸镁干燥。最终产物通过使用3:1庚烷/乙酸乙酯混合物的急 骤层析法纯化,最终获得黄色粉末。
[0032] d)RAFT大分子引发剂的合成
[0033] 将20ml新鲜蒸馏的二氯甲烷引入到在真空下干燥且装备有搅拌器并用氩气吹扫 的IOOml圆底烧瓶中。加入Ig在步骤b)中制备的聚合物。通过将混合物在45°C下加热 而进行溶液化。然后加入〇. 125g在步骤c)中制备的RAFT试剂,之后加入0. 03g4-甲苯 磺酸4-(二甲基氨基)吡啶错:和0.09mlΝ,Ν'-二异丙基碳二亚胺。将所获得的混合物在 30°C下在搅拌的情况下放置3天。然后由甲醇沉淀出聚合物。
[0034]e)用RAFT大分子引发剂使苯乙烯聚合
[0035] 在搅拌下将Ig在步骤d)中获得的RAFT大分子引发剂和5ml苯乙烯引入到IOOml 圆底烧瓶中。使混合物达到45°C以促进介质的良好均化。在用氩气进行惰性化之后,使温 度达到120°C并且在搅拌下将混合物在该温度下保持4h。通过将该圆底烧瓶浸在液氮中而 将所获得的混合物冷却。所获得的嵌段共聚物通过SEC表征并且具有49755g/mol的Mn和 1. 2的分散性(通过质子NMR测得14000g/mol的Mn(PS))。
[0036]f)在e)中获得的嵌段共聚物的磺化
[0037] 将3ml二氯乙烷和2ml乙酸酐引入到50ml圆底烧瓶中。将保持在氩气下的该溶 液(1)在冰浴中冷却至〇°C并且向其中加入0.88ml96%硫酸。
[0038] 并行地,在用氩气进行惰性化的情况下将20ml二氯乙烷引入到IOOml圆底烧瓶 中。向其中加入1.5g在e)中制备的共聚物。将该溶液在45°C下加热以促进该共聚物的 溶解。然后仍然在氩气下将溶液(1)逐渐引入其中。根据期望的磺化度,使该反应混合物 在回流下放置2天,然后在环境温度下放置3天。于是形成不溶的蓝黑色固体。加入2ml 2-丙醇,并且对整个混合物进行过滤以分离聚合物。通过NMR测得苯乙烯实体的60%的磺 化度。
[0039] 实施例2(本发明):
[0040] 共聚物的物理化学表征
[0041] 对于高于0. 2g/l的浓度,通过在100°C下搅拌24h,获得共聚物的水溶液。对于低 于0.2g/l的浓度,进行稀释。
[0042] 通过测量在多种浓度下的电导率,可证实嵌段共聚物的胶束行为。在0. 02g/ 1(1.IXl(T6m〇l/l)的浓度处可测定与临界胶束浓度对应的斜率变化,参见图1。
[0043] 此外,通过测量在低于和高于临界胶束浓度的浓度下的ζ(Zeta)电位而评价溶 液的胶束性质。在两种情况下,均测得带负电的聚集体,从而使得可得出如下结论:该共聚 物是以Ρ3ΗΤ在中心处和PS-共-PSS作为冠而自组装的(图2)。
[0044] 此外,通过对经深冷的0. 3g/l的共聚物溶液的样品拍摄的透射显微镜图像(照片 1),证明了胶束聚集体的形成。
[0045] 实施例3(本发明):
[0046] 多壁碳纳米管的分散体
[0047] 在水浴中在环境温度下使用超声发生器、用950瓦的功率以02/02脉冲进行10分 钟和用285的最终功率进行在本发明的嵌段共聚物的存在下碳纳米管在水中的分散。
[0048] 预先通过在上述条件下超声处理5分钟而制备2ml0.5重量%的本发明共聚物的 水溶液。然后加入渐进量的多壁碳纳米管(来自Arkema),从0. 005g直至0. 05g。对于在 5ml水中0. 5 %的本发明共聚物和最高达0. 05 %多壁碳纳米管的浓度观察到稳定分散体。 将分散体通过光学显微镜法表征(表1)。
[0049] 实施例4(本发明):
[0050] 膜形成和表征
[0051] 使用实施例3的分散体通过"刮刀"技术在玻璃表面上制备膜。然后所述膜通过在 400-800nm波长范围内的透射率(用ShimadzuUV-VIS-NIR光谱仪仪器(UV-3600))和通过 它们的电阻率(用Jandel仪器,型号RM3-AR)进行表征。还表征所形成的膜的厚度(以纳 米计)(用Alpha-StepIQProfilometer仪器)。
[0052] 结果在表2中给出。
[0053] 实施例5(本发明):
[0054] 将官能化的单壁碳纳米管(CarbonsolutionInc.)使用硝酸纯化并且用与实施 例3中相同的技术分散。
[0055] 对经低温研磨的(cryomilled)样品拍摄透射显微镜照片。在照片2上观察到碳 纳米管的良好分散体。此外,用于分散碳纳米管的处理未影响它们的长度。所观察到的小 的黑色颗粒为碳纳米管合成的催化残留物。
[0056] 实施例6 (本发明):
[0057] 将包含10重量%催化剂和20重量%石墨的非官能化的单壁碳纳米管(Hanwha Nanotech,Korea)根据实施例3中描述的方法分散并且在低温研磨之后通过高分辨率透射 显微镜法进行观察。在照片3中观察到这些碳纳米管的良好分散体以及在碳纳米管的表面 处的薄层,所述薄层对应于本发明的共聚物。
[0058] 实施例7(对比):
[0059] 聚(3-己基噻吩)_聚(丙烯酸)嵌段共聚物的合成:
[0060] 首先,使用可得自Arkema的Blocbuilderi5通过氮氧化物控制的自由基聚合 (NMP)合成聚(3-己基噻吩)-聚(丙烯酸叔丁酯)嵌段共聚物。如Mougnier等的出版 物JournalofPol.SciencePartA:Polymerchemistry,2012,50,2463 中所描述地合 成Blocbuilder^i端的聚(3-己基噻吩)大分子引发剂。在没有氧的存在下在甲苯中在 120°C下进行丙烯酸叔丁酯的聚合。然后,用甲醇使聚(3-己基噻吩)-聚(丙烯酸叔丁酯) 共聚物沉淀,然后将所述共聚物通过在1:4二氧六环/三氟乙酸(TFA)混合物中水解而转 化成聚(3-己基噻吩)-聚(丙烯酸)。
[0061] 典型地,在合适的圆底烧瓶中,将Blocbui丨derK^端的聚(3-己基噻吩)大分子引 发剂(lg,〇. 2mmol)溶解在50ml甲苯中并且在40°C下搅拌1小时。接着,加入36mmol丙稀 酸叔丁酯并且将混合物搅拌5分钟。然后将该圆底烧瓶在搅拌的情况下浸在115°C的油浴 中5小时。然后,将该圆底烧瓶浸在液氮浴中以停止聚合。通过由冷甲醇沉淀而分离嵌段 共聚物,然后过滤和在真空下干燥24小时,并且通过1HNMR以及使用聚苯乙烯标准物的在 THF中的SEC表征。
[0062] 然后将所述嵌段共聚物以如下方式水解:将0. 05mmol在三颈圆底烧瓶中在环境 温度下在氮气下在氯仿中搅拌30分钟。在完全溶解之后,加入0.5mlTFA。向该反应混合 物加入3ml1,4-二氧六环。使反应回流18小时。加入第二部分的1,4-二氧六环(5ml) 并且回流18小时。将所得共聚物冷却至环境温度,用甲醇沉淀,干燥和过滤。将其通过1H NMR、FTIR以及使用聚苯乙烯标准物的在THF中的SEC表征。其能溶于THF和氯仿中。
[0063] 实施例8 (在本发明共聚物存在下和在聚(3-己基噻吩)-聚(丙烯酸)共聚物存 在下的碳纳米管分散体和膜的比较)。
[0064] 根据使用本发明共聚物还是聚(3-己基噻吩)-聚(丙烯酸),按照实施例3和4 在相同条件下制备分散体和膜。
[0065] 进行作为膜电阻(以Ω/ □度量)的函数的在550nm处的透射率的测量。还对由 碳纳米管在十二烷基硫酸钠(SDS)中的分散体构成的参照物进行测量。
[0066] 如可在图3上看到的,当使用本发明的共聚物时,与聚(3-己基噻吩)_聚(丙烯 酸)共聚物相比,对于相等的膜电阻,本发明的共聚物容许膜的好得多的透射率。
【权利要求】
1. 包括至少一种嵌段共聚物的组合物,所述嵌段共聚物能溶于水或者呈现稳定的在水 中的分散体且具有至少一个由共轭聚合物构成的嵌段和至少一个由苯乙烯-苯乙烯磺酸 盐类型的聚电解质聚合物构成的嵌段。
2. 权利要求1的组合物,其中所述嵌段共聚物为二嵌段、三嵌段或多嵌段类型的、或者 其混合物,包括嵌段各自的均聚物。
3. 权利要求1的组合物,其包括至少一种二嵌段共聚物。
4. 权利要求1的组合物,其中所述共轭聚合物为噻吩衍生物。
5. 权利要求4的组合物,其中所述噻吩衍生物为3-烷基噻吩。
6. 权利要求5的组合物,其中所述噻吩衍生物为3-己基噻吩。
7. 权利要求1的组合物,其中所述聚电解质嵌段具有1000-500 OOOg/mol的重均分子 量。
8. 权利要求1的组合物,其中所述共轭聚合物嵌段具有1000-50 000g/mol的重均分子 量。
9. 包括权利要求1-8之一的嵌段共聚物以及纳米填料的含水分散体在光伏太阳能领 域、或者光电发射体或感光体器件中的用途。
10. 权利要求9的用途,其中所述纳米填料选自石墨烯、富勒烯、碳纳米管、或其组合。
11. 权利要求11的用途,其中所述纳米填料由碳纳米管构成。
12. 权利要求11的用途,其中所述纳米填料由多壁碳纳米管构成。
【文档编号】C08L65/00GK104428367SQ201380023884
【公开日】2015年3月18日 申请日期:2013年4月3日 优先权日:2012年4月6日
【发明者】C.纳瓦罗, K.贝萨尼, C.布罗乔恩, H.克拉迈尔, G.弗勒里, G.哈齐奥诺, E.克劳特 申请人:阿克马法国公司, 国家科学研究中心, 波尔多第一大学, 波尔多理工学院
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1