一种无机纳米复合阴离子交换膜及其制备方法

文档序号:3607788阅读:240来源:国知局
一种无机纳米复合阴离子交换膜及其制备方法
【专利摘要】本发明提供一种无机纳米复合阴离子交换膜及其制备方法,该法以氧化石墨烯作为无机组份,以碱性功能化的溴化聚苯醚作为有机组份,制备纳米复合阴离子交换膜。由于氧化石墨烯二维层状的性质,有利于贯通而规则的离子通道的构建,提高阴离子交换膜的传导率。同时,氧化石墨烯具有极高的强度,它的加入可以大幅度提高阴离子交换膜的机械性能。其次,由于氧化石墨烯具有极高的比表面积,极少的添加量就可产生效果。所以该发明制备纳米复合阴离子交换膜成本较低,并且制备方法简单,容易操作,便于大规模化生产。
【专利说明】一种无机纳米复合阴离子交换膜及其制备方法

【技术领域】
[0001] 本发明涉及膜【技术领域】,更具体地说,涉及一种无机纳米复合阴离子交换膜及其 制备方法。

【背景技术】
[0002] 目前,阴离子交换膜广泛用于海水脱盐、扩散渗析、电渗析、碱性燃料电池和化学 传感器等领域,从而阴离子交换膜的制备方法及性能一直受到理论界和工业界的关注。现 有的阴离子交换膜广泛基于高分子材料,由于有机材料本身的性质,这些膜通常机械性能 和热稳定性较差,从而限制了在某些领域的应用。更为重要的是,高分子基体的阴离子交换 膜各种性能难以独立调节,从而制备出综合性能优异的阴离子交换膜难以实现。
[0003] 阴离子交换膜制备方法已经得到广泛的报道,例如,中国专利CN201010141349. 9 公布了一种含杂萘酮结构聚芳醚酮酮阴离子交换膜的制备方法。含二氮杂萘酮结构聚芳醚 酮酮先经过与氯甲基化试剂氯甲基烷基醚的反应引入氯甲基基团。将上述氯甲基化含杂萘 酮结构聚芳醚酮酮溶解于溶剂制备涂膜液,刮制成膜。再置于多元胺中进行胺化处理,得到 阴离子交换膜。上述获得阴离子交换膜的过程中要使用高毒、致癌性的氯甲基化试剂,对环 境和人类健康造成潜在威胁。且在胺化处理的过程中,会对聚合物的组成进行破坏,得到的 阴离子交换膜的机械性能难以满足使用要求。
[0004] 例如,中国专利CN200810047595. 0公布了一种阴离子交换膜的制备方法,在聚苯 醚主链上引入氯甲基基团后,将上述氯甲基化产物溶解得到涂膜液;将三甲胺水溶液加热 汽化,三甲胺气体经过碱性干燥剂干燥后通入上述聚合物的氯甲基化产物溶液中,得到聚 合物的氯甲基化产物的季铵化溶液,再将上述膜液涂铸成膜。尽管该膜的制备方法对聚合 物的破坏较小,但上述阴离子交换膜的功能化程度较高,膜的离子电导较高但膜溶胀严重, 综合性能不够优异。此外,上述阴离子膜完全由高分子材料组成,膜的热稳定性和强度较 差。
[0005] 例如,美国出版的《化学材料》(Chemistry of Materials, 2001,13, 1124-1130)报 道了一种有机-无机复合阴离子交换膜的制备方法,采用小分子烷氧机硅进行溶胶-凝胶 反应,在无机基体表面涂覆获取阴离子交换膜。上述制备的有机-无机复合的阴离子交换 膜有机成分含量太少,柔韧性较差,因此限制了在相关领域的应用。
[0006] 例如,荷兰出版的《膜科学杂志》(Journal of Membrane Science, 2003, 216(1-2),269-278)报道了包含伯胺和仲胺的烷基硅氧烷通过氢转移反应连接到用 异氰酸封端的聚乙二醇分子上,将所得聚合物涂铸成膜。再置于三甲胺溶液中浸泡制备阴 离子交换膜。尽管上述复合阴离子交换膜的机械性能和热稳定性能较为优异,但由于尺寸 和形貌均不可控的无机成份的添加,会阻碍有机膜原有的离子通道,膜的传导性能较低。
[0007] 因此,为了克服现有技术中均相阴离子交换膜的上述缺陷,本发明人进行了深入 的研究,结果发现通过制备一种基于氧化石墨烯的纳米复合阴离子交换膜,可以克服上述 的技术问题。


【发明内容】

[0008] 本发明的目的是提供一种纳米复合阴离子交换膜和其制备方法,该方法制备的阴 离子交换膜离子电导高、机械性能好,并且膜的各项性能可以独立调节,满足不同领域的使 用要求。
[0009] 在本发明的一个方面,提供一种无机纳米复合阴离子交换膜的制备方法,所述方 法包括以下步骤:
[0010] a.将溴化聚苯醚溶解于第一溶剂中,加入碱性功能化试剂,反应得到荷正电的溴 化聚苯醚;
[0011] b.将氧化石墨烯加入第二溶剂中,超声,得到剥离后的氧化石墨烯溶液;
[0012] c.将荷正电的溴化聚苯醚溶解于氧化石墨烯溶液中,搅拌,得到铸膜液,将所述铸 膜液铸成膜后得到阴离子交换膜;
[0013] 优选的,所述第一溶剂选自氯仿、N-甲基吡咯烷酮、二甲基甲酰胺、二甲基乙酰胺 或其组合,所述第二溶剂选自二甲亚砜、N-甲基吡咯烷酮、二甲基甲酰胺、二甲基乙酰胺、甲 醇、异丙醇或其组合。
[0014] 优选的,所述碱性功能化试剂选自三甲胺、三甲基磷、胍基化合物、N-甲基咪唑、苯 并咪唑和噻唑。
[0015] 优选的,所述溴化聚苯醚的溴化度,即溴甲基的重复单元数占总的重复单元数的 摩尔百分比为10?60%。
[0016] 优选的,所述氧化石墨烯的氧化程度,即氧元素占氧化石墨烯总质量的百分数为 20 ?40%。
[0017] 优选的,所述得到荷正电的溴化聚苯醚的反应温度为20?60°C,所述得到荷正电 溴化聚苯醚的反应时间为4?20h。
[0018] 优选的,所述溴化聚苯醚的溴甲基和碱性功能化试剂的摩尔比为1 : (0. 3?5)。
[0019] 优选的,所述得到氧化石墨烯溶液的超声时间为0. 5?3h,所述得到氧化石墨烯 溶液的超声温度是20?40°C。
[0020] 优选的,所述氧化石墨烯溶液的浓度为0. 1?2mg/mL。
[0021] 优选的,所述氧化石墨烯和荷正电的溴化聚苯醚的质量比为(0. 0005?0. 02) :1。
[0022] 优选的,所述步骤a之后还包括:
[0023] 任选地,将碱性功能化试剂与溴化聚苯醚反应后的溶液置于水、乙醇或甲醇中;
[0024] 任选的,清洗步骤用于去除未完全反应的碱性功能化单体等物质;
[0025] 任选的,烘干步骤。
[0026] 相应的,在本发明的另一个方面,提供通过本发明第一个方面所述的制备方法制 备的纳米复合阴离子交换膜。
[0027] 综上,本发明提供一种制备纳米复合阴离子交换膜的制备方法,包括以下步骤:将 溴化聚苯醚溶解于第一溶剂中,加入碱性功能化试剂,反应得到荷正电的溴化聚苯醚,所述 碱性功能化试剂为三甲胺、三甲基磷、胍基化合物、N-甲基咪唑、苯并咪唑和噻唑;将氧化 石墨烯加入第二溶剂中,超声,得到剥离后的氧化石墨烯溶液;将荷正电的溴化聚苯醚溶解 于氧化石墨烯溶液中,搅拌,得到铸膜液,将所述铸膜液铸成膜后得到阴离子交换膜。与现 有技术相比,本发明中添加了二维的氧化石墨烯,有助于离子通道的构建,减少离子通道的 弯曲程度,提高膜的离子传导能力。同时,氧化石墨烯具有极高的强度,它的添加可以大幅 度提高离子膜的机械性能。这样就可以实现离子电导和机械性能的同时提高,打破了以往 聚合物基离子交换膜相关性能受离子交换容量的限制。
[0028] 其次,由于氧化石墨烯具有极高的比表面积,极少量的剥离后的层状氧化石墨烯 就可以发挥作用,降低了制备有机-无机复合阴离子交换膜的成本。再次,本发明中的离子 交换膜的性能可通过多种参数调控,包括离子交换基团种类、离子交换基团的数量、氧化石 墨烯的掺杂量和氧化石墨烯的氧化程度。同时,制备方法简单,仅通过有机-无机成分的混 合,就可获得复合离子膜。

【专利附图】

【附图说明】
[0029] 图1为本发明实施例中制备的氧化石墨烯纳米复合阴离子交换膜的扫描电镜图, 从图中可以看出被剥离开的层状的氧化石墨烯嵌入到荷正电的聚合物中,从而可以证明纳 米复合阴离子交换膜的成功制备。

【具体实施方式】
[0030] 下面对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例 仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通 技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范 围。
[0031] 本发明公开了一种纳米复合阴离子交换膜的制备方法,包括以下步骤:
[0032] 将溴化聚苯醚溶解于第一溶剂中,加入碱性功能化试剂,反应得到荷正电的溴化 聚苯醚,所述碱性功能化试剂为三甲胺、三甲基磷、胍基化合物、N-甲基咪唑、苯并咪唑和噻 唑;
[0033] 将氧化石墨烯加入第二溶剂中,超声,得到剥离后的氧化石墨烯溶液;
[0034] 将荷正电的溴化聚苯醚溶解于氧化石墨烯溶液中,搅拌,得到铸膜液,将所述铸膜 液铸成膜后得到阴离子交换膜。
[0035] 在上述制备过程中,本发明首先制备荷正电的溴化聚苯醚,并通过超声剥离办法 制备氧化石墨烯溶液,然后将荷正电的溴化聚苯醚溶解于氧化石墨烯溶液中,制备铸膜液, 获取阴离子交换膜。
[0036] 本发明主要包括荷正电溴化聚苯醚的制备,氧化石墨烯溶液的配制,荷正电溴化 聚苯醚和氧化石墨烯的混合以及成膜步骤。首先,在荷正电溴化聚苯醚的制备步骤中,本发 明以溴化聚苯醚和碱性功能化试剂为反应原料,反应得到荷正电的溴化聚苯醚。所述碱性 功能化试剂选自三甲胺、三甲基磷、胍基化合物、N-甲基咪唑、苯并咪唑和噻唑,该碱性功能 化试剂与溴化聚苯醚的苄溴基团反应,从而得到带有阴离子交换基团的荷正电的溴化聚苯 醚。并且溴化聚苯醚具有好的机械性能和热稳定性,对于制备高性能的阴离子交换膜具有 重要作用。
[0037] 按照本发明,溴化聚苯醚应该预先溶解在第一溶剂中,所述第一溶剂选自氯仿、 N-甲基吡咯烷酮、二甲基甲酰胺或二甲基乙酰胺,该第一溶剂的选择主要是保证溴化聚苯 醚的充分溶解,便于与碱性功能化试剂的完全反应,因此,只要能充分溶解溴化聚苯醚的溶 剂都包括在本发明的范围内。
[0038] 在荷正电的溴化聚苯醚的制备过程中,反应温度是影响反应的重要参数,温度过 低不能反应,温度过高会导致溴化聚苯醚中溴甲基与苯环之间的交联。因此,得到荷正电的 溴化聚苯醚的反应温度优选为20?60°C,更优选为25?55°C ;反应时间优选为4?20h, 更优选为6-12h。
[0039] 所述荷正电溴化聚苯醚的功能化程度受溴化聚苯醚的溴化程度影响,本发明优选 的溴化度10?60%。同时荷正电溴化聚苯醚的功能化程度也受溴化聚苯醚溴化度和碱性 功能化试剂的摩尔比所影响。本发明优选的溴化聚苯醚的溴甲基和碱性功能化试剂的摩尔 比为1 :(0.3?5),更优选为1 :(0.3?2)。通过调节以上参数,制备出功能化程度不同的 荷正电溴化聚苯醚,从而获取不同性能的阴离子交换膜,满足不同使用要求。
[0040] 溴化聚苯醚和碱性功能化试剂充分反应后,本发明优选采用在非溶剂沉淀的方法 提纯荷正电的溴化聚苯醚。所述非溶剂为水、乙醇或甲醇。另外,本发明还优选包括对该荷 正电溴化聚苯醚的清洗步骤用于去除未完全反应的碱性功能化单体等物质,保证了制备的 荷正电聚合物的纯净度。同时,本发明还优选烘干步骤,具体为:将荷正电的溴化聚苯醚在 真空烘箱中烘干。
[0041] 与现有技术相比,避免了引入氯甲基的复杂、高毒的过程。利用溴化聚苯醚的现有 溴甲基和碱性功能化功能试剂反应,反应条件温和、转化率高及反应可以定量进行。
[0042] 在本发明中,氧化石墨烯作为无机添加成分,其氧化程度是影响纳米复合阴离子 交换膜的制备以及性能的重要参数。氧化程度太低,与荷正电聚合物复合能力较差,氧化程 度太高,会使离子膜的水含量太高。因此,氧化石墨烯的氧化程度优选为20?40%,更优选 为25?35%。
[0043] 按照本发明,氧化石墨烯应在第二溶剂中剥离为单层的氧化石墨烯,所述第二溶 剂选自二甲亚砜、N-甲基吡咯烷酮、二甲基甲酰胺、二甲基乙酰胺、甲醇或异丙醇,该第二溶 剂的选择主要保证氧化石墨烯的充分剥离和稳定存在于有机溶剂中,因此,只要能保证氧 化石墨烯的充分剥离和稳定存在于有机溶剂中的溶剂都在本发明的范围内。
[0044] 在配置氧化石墨烯溶液的过程中,超声是一个重要的步骤。超声的时间是剥离氧 化石墨烯的重要影响参数,时间太短,氧化石墨烯不能得到充分的剥离,时间太长,会对氧 化石墨烯上的功能基团有所破坏。因此,配置氧化石墨烯溶液的超声时间优选为〇. 5?3h, 更优选为1?2h ;超声温度优选为20?40°C,更优选为25?35°C。
[0045] 为了保证剥离后的氧化石墨烯稳定存在于溶剂中,对于氧化石墨烯溶液的浓度有 着一定的限制。浓度太高,剥离后的氧化石墨烯容易重新聚集,浓度太低,对于后续的制备 过程不利。因此,氧化石墨烯溶液的浓度优选为0. 1?2mg/mL,更优选为0. 3-lmg/mL。
[0046] 在得到荷正电的溴化聚苯醚和剥离的氧化石墨烯溶液后,将两者一定质量比混 合,充分搅拌,获取铸膜液。所述荷正电的溴化聚苯醚和氧化石墨烯的质量比优选为1 : (0· 05 %?2 % ),更优选为1 : (0· 05 %?0· 5 % )。通过调整荷正电溴化聚苯醚和氧化石墨 烯的质量比,可以获得不同形态和性能的纳米复合阴离子交换膜。
[0047] 利用上述方法制备的荷正电的溴化聚苯醚结构式如下所示:
[0048]

【权利要求】
1. 一种纳米复合阴离子交换膜的制备方法,包括如下步骤: a. 将溴化聚苯醚溶解于第一溶剂中,加入碱性功能化试剂,反应得到荷正电的溴化聚 苯醚; b. 将氧化石墨烯加入第二溶剂中,超声,得到剥离后的氧化石墨烯溶液; c. 将荷正电的溴化聚苯醚溶解于氧化石墨烯溶液中,搅拌,得到铸膜液,将所述铸膜液 铸成膜后得到阴离子交换膜。
2. 根据权利要求1所述的制备方法,特征在于所述溴化聚苯醚的溴化度,即溴甲基的 重复单元数占总的重复单元数的摩尔百分比为10?60%。
3. 根据权利要求1所述的制备方法,特征在于所述氧化石墨烯的氧化程度,即氧元素 占氧化石墨烯总质量的百分数为20?40%。
4. 根据权利要求1所述的制备方法,特征在于步骤a所述反应的温度为20?60°C,时 间为4?20h。
5. 根据权利要求1所述的制备方法,特征在于所述溴化聚苯醚的溴甲基和碱性功能化 试剂的摩尔比为1 :(0.3?5)。
6. 根据权利要求1所述的制备方法,特征在于步骤b中所述超声的时间为0. 5?3h, 温度是20?40°C。
7. 根据权利要求1所述的制备方法,特征在于所述氧化石墨烯溶液的浓度为0. 1? 2mg/mL,所述荷正电的溴化聚苯醚和氧化石墨烯的质量比为1 : (0. 05%?2% )。
8. 根据权利要求1所述的制备方法,特征在于所述第一溶剂选自氯仿、N-甲基吡咯 烷酮、二甲基甲酰胺、二甲基乙酰胺或其组合;所述第二溶剂选自二甲亚砜、N-甲基吡咯烷 酮、二甲基甲酰胺、二甲基乙酰胺、甲醇、异丙醇或其组合;所述碱性功能化试剂选自三甲 胺、三甲基磷、胍基化合物、N-甲基咪唑、苯并咪唑、或噻唑。
9. 根据权利要求1所述的制备方法,其特征在于,步骤a之后还包括: 任选的,将碱性功能化试剂与溴化聚苯醚反应后的溶液置于水、乙醇或甲醇中; 任选的,清洗步骤; 任选的,烘干步骤。
10. 权利要求1?9任意一项所述的制备方法制备的纳米复合阴离子交换膜。
【文档编号】C08J5/22GK104231294SQ201410508112
【公开日】2014年12月24日 申请日期:2014年9月28日 优先权日:2014年9月28日
【发明者】徐铜文, 冉瑾 申请人:中国科学技术大学
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1