核酸试剂用于对靶分子进行超灵敏数字检测和定量的用途的制作方法

文档序号:11888320阅读:449来源:国知局

本申请描述了使用多个捕获物(例如抗体)和多个检测物(例如适体)来检测和定量样品中的分析物分子的方法和系统。

发明背景

本申请引用的所有出版物均通过引用以其整体并入,其程度就如同每个单独的出版物或专利申请被具体地和单独地指明通过引用并入一样。以下描述包括可以用于理解本发明的信息。这不是承认本申请所提供的任何信息是现有技术或与目前要求保护的发明相关,或任何明确地或隐含地引用的出版物是现有技术。

几乎所有用于检测靶分子的方法在本质上是模拟的,其从总样品量测量平均信号。例如,通过利用吸光度或荧光,从吸光度或荧光信号推测被测量的靶标浓度,所述吸光度或荧光信号为存在的吸收或发荧光种类的量的函数。用于测定特定蛋白量的目前的金标准是酶联免疫吸附测定(ELISA),其需要大体积而所述大体积最终稀释反应产物,这需要数百万酶标记物来产生利用常规酶标仪可检测的信号。因此,为了在100μL体积中产生100万个酶标记物,靶分析物的浓度需要至少为亚皮摩尔(即,pg/ml,假定50kDa分子量)。因此ELISA的灵敏度被限制在皮摩尔范围及以上。据估计,人血清中只有10%的蛋白质可用目前可用的方法来检测。此外,最具生物学意义的蛋白质和代谢物以低丰度存在。因此,发现有用的蛋白质和代谢物生物标志物及生物标志物模式受到了限制。

单分子计数在本质上是数字化的,其中每一个靶分子产生可被计数的信号。测量信号的存在或不存在比量化信号的绝对量容易得多。因此,数字化ELISA信号具有显著提高蛋白质分析的检测极限的潜力。扩增是所有单分子检测技术的关键部分。用于蛋白质检测的一种扩增方法是使用酶标记物,其可通过催化底物分子转化为可检测的产物分子而产生许多的可检测产物分子。扩增单分子的另一种方式是通过复制目标分子。该方法是许多核酸检测法的基础,在所述方法中,使用例如聚合酶链式反应(PCR)来扩增单个分子,从而产生数千至数百万拷贝的特定DNA序列。因为核酸的扩增要高效和鲁棒得多,通过检测核酸的方法所能达到的灵敏度与检测蛋白质的方法相比要高出几个数量级。

本申请描述了利用数字核酸检测和定量法进行蛋白质分析的方法和系统。具体地,核酸适体以及数字DNA扩增和检测技术被用来将获自常规ELISA的模拟信号转化成数字信号以用于单分子计数。本申请所述的方法和系统利用适体作为蛋白质与核酸之间的翻译子(translator)。适体是基于核酸的亲和试剂,其可以以高亲和力和特异性结合它们的靶分子。在本申请中,用适体替代抗体作为夹心免疫测定中的检测试剂。适体不仅用作检测亲和试剂,而且还用作从蛋白质至核酸的“翻译子”。因为核酸适体可通过酶反应被容易地扩增,因此可将数字核酸扩增和检测技术用于蛋白质检测,这可显著提高测定灵敏性。本申请所述的方法相比ELISA进行了改进,因为从蛋白质至核酸的翻译和测量的数字化都产生了前所未有的测定性能。

发明概述

结合系统,组合物和方法而描述和说明的下列实施方式及其方面是示例性的和说明性的,而非对范围进行限制。

本申请中提供了用于检测样品中的靶分子或粒子的方法。所述方法包括使样品暴露于多个捕获物,各所述捕获物包括对于靶分子或粒子具有亲和力的结合面,以形成捕获物与靶分子或粒子之间的复合物;去除未与靶分子或粒子复合的捕获物;使捕获物与靶分子或粒子的复合物暴露于多个检测物以形成捕获物、靶分子或粒子及检测物之间的复合物;去除不与捕获物和靶分子或粒子复合的检测物;洗脱与捕获物和靶分子或粒子复合的检测物;将检测物分隔至隔室中;和检测每一个隔室中检测物的存在或不存在,以检测样品中的靶分子或粒子。

本申请还描述了用于检测样品中的靶分子的方法。该方法包括将样品暴露于固体载体,所述载体包含对靶分子具有特异性的捕获抗体,以形成靶-抗体复合物;去除未结合的样品和抗体;使靶-抗体复合物暴露于特异于所述靶的检测适体;去除未结合的适体;洗脱与靶-抗体复合的适体;将适体分隔至隔室中;和检测每一个隔室中适体存在或不存在,以检测样品中的靶分子。

还提供了用于检测样品中的靶分子或粒子的系统。该系统包括一组反应容器,其中至少一个反应容器不包含样品并且至少一个容器包含不含靶分子或粒子的对照样品;多个捕获物,各所述捕获物包括对于靶分子或粒子具有亲和力的结合面以形成捕获物与靶分子或粒子之间的复合物;多个检测物,从而形成捕获物、靶分子或粒子与检测物之间的复合物;和用于洗脱与捕获物和靶分子或粒子复合的检测物的试剂。

在各种实施方式中,样品是流体样品并且可以包括但不限于血液,血浆或尿。

在一些实施方式中,靶标为蛋白质或核酸或其组合。所述蛋白质可以是单体或多聚体。其它靶标可包括但不限于,例如,小分子、氨基酸、碳水化合物、脂质、氨基糖苷类、抗生素、肽、蛋白质、翻译后修饰、核酸或其组合。

在一些实施方式中,多个捕获物为下述中的任何一种或多种:抗体、适体、多肽、受体、配体、小分子或靶分子的任何其它亲和试剂或其组合。在一些实施方式中,适体是核酸(DNA、RNA、XNA(核酸类似物))适体。在一些实施方式中,适体是肽适体。

在一些实施方式中,多个检测物包括但不限于下述中的任何一种或多种:抗体、适体、多肽、受体、配体、小分子或靶分子的任何其它亲和试剂或其组合。在一些实施方式中,适体是核酸(DNA、RNA、XNA(核酸类似物))适体。在一些实施方式中,适体是肽适体。

在一些实施方式中,多个检测物包括与亲和试剂缀合的DNA。在示例性实施方式中,DNA可与下述中的任何一种或多种缀合:抗体、多肽、受体、配体、小分子或适合于靶分子的任何其它亲和试剂。在各种实施方式中,所述DNA作为用于数字检测步骤的信号分子。

在一些实施方式中,检测物是一种或多种适体。可将适体缀合于亲和试剂。在示例性实施方式中,可将适体缀合于下述中的任何一种或多种:抗体、多肽、受体、配体、小分子或适合于靶分子的任何其它亲和试剂。在一些实施方式中,适体是核酸(DNA、RNA、XNA(核酸类似物))适体。在一些实施方式中,适体是肽适体。在各种实施方式中,适体作为用于数字检测步骤的信号分子。

在一些实施方式中,多个捕获物是抗体并且多个检测物是适体。在一些实施方式中,多个捕获物是适体并且多个检测物是适体。在一些实施方式中,可将适体缀合于亲和试剂。在一些实施方式中,不将适体缀合于亲和试剂。在各种实施方式中,适体作为用于数字检测步骤的信号分子。

多个捕获物可结合于多种固体载体。在各个方面,所述多种固体载体包括但不限于:珠子、纳米粒子、纳米管(例如,碳纳米管)、微量滴定板、微流体通道、电极、囊泡、细胞、膜(例如硝化纤维素)、管或其组合。

在一些实施方式中,适体通过数字检测法来检测。数字检测法是下述中的任何一种或多种:数字聚合酶链式反应(PCR)、数字滚环扩增(RCA)、数字环介导的扩增(LAMP)、重组酶聚合酶扩增(RPA)或基于核酸的数字扩增(NASBA)。

在一些方面,所述洗脱检测物被分隔至隔室中,从而每个隔室由0或1个检测物组成。含有一个检测物的隔室代表一个靶分子的存在。在一些方面,样品中的靶分子的绝对浓度是含有一个适体的隔室的总数除以样品的体积。

在一些实施方式中,样品中靶分子或粒子的浓度小于约50x10-15M,或小于约40x10-15M,或小于约30x10-15M,或小于约20x10-15M,或小于约10x10-15M,或小于约5x10-15M,或小于约1x10-15M。流体样品中的靶分子或粒子的浓度可至少部分地通过测量参数与校准标准的比较来测定。

附图简述

在参考附图中说明了示例性的实施方式。本申请公开的实施方式和附图旨在被认为是说明性的而非限制性的。

图1根据本发明的各种实施方式描绘了基于适体的数字检测和定量的示意图。(a)将靶分子从初始样品捕获到珠子上,并使用适体进行标记。检测适体相应于靶分析物的一对一代表,并随后从珠子表面被洗脱。(b)通过将洗脱的检测适体分入数百至甚至数百万个单独的隔室(例如,油包水微滴),以使得每一个隔室将含有0或仅1个检测适体来进行单DNA分子计数。进行终点扩增,并计数荧光反应的数目。扩增呈阳性的“亮”反应各自含有1个靶分子,而扩增呈阴性的“暗”反应不含靶标。

发明详述

本申请引用的所有参考文献通过引用整体并入,就如同显示全文一样。除非另外定义,否则本申请所用的技术和科学术语具有与本发明所属的领域中的普通技术人员通常所理解的相同的含义。Singleton等,Dictionary of Microbiology and Molecular Biology第3版,J.Wiley&Sons(New York,NY 2001);March,Advanced Organic Chemistry Reactions,Mechanisms and Structure第5版,J.Wiley&Sons(New York,NY 2001);以及Sambrook和Russel,Molecular Cloning:A Laboratory Manual第3版,Cold Spring Harbor Laboratory Press(Cold Spring Harbor,NY 2001)为本领域技术人员提供了本申请中使用的许多术语的一般性指引。

本领域的技术人员将认识到可用于实施本发明的、与本申请所述的方法和材料类似或等同的许多方法和材料。的确,本发明绝不限于所描述的方法和材料。为了本发明的目的,在下文中定义以下术语。

如本申请所使用的,“载体”或“固相载体”是指使捕获物暴露于样品之前,捕获物直接或间接所结合的材料。

如本申请所用的,“捕获物”是指结合样品中的靶分子或粒子的物体。所述靶分子或粒子是待检测和/或定量的目标分析物。所述捕获物被用于将目标靶分子或粒子与其余样品分离。当结合时,捕获物与靶分子或粒子形成复合物。

如本申请所使用的,“检测物”是指在靶分子或粒子上结合的位置不同于捕获物在所述靶分子或粒子上的结合位置的物体。当与捕获物复合时或当不与捕获物复合时,检测物可结合于靶分子或粒子。所述检测物被检测和定量,并且检测物的量指示原始样品中的靶分子或粒子的量。

检测和定量非核酸分子(蛋白质和小分子分析物)的能力已经滞后于分析核酸的能力。这是因为核酸的独特性质:可使用例如聚合酶链式反应(PCR),通过酶来呈指数地扩增它们,以产生数千至数百万拷贝。另外,由于核酸的扩增是高效和鲁棒的,因此可使用单分子计数来数字化核酸的测量,其中将每一个DNA分子分离至离散的空间单元中并进行扩增,以产生信号可计数的单元。所述数字化使得能够检测单分子,从而产生前所未有的定量和灵敏度。然而,该能力还未被扩展至非核酸靶标,因为酶促指数扩增对于蛋白质和小分子是不可能的。本申请所描的方法和系统克服该限制并使得能够对任何靶分子进行通用的数字检测和定量方法。所述方法利用了核酸适体以及数字DNA扩增和检测技术来将获自常规ELISA的模拟信号转换成来自单分子计数的数字信号。

先前已有人尝试使用核酸定量法来进行蛋白质分析。然而,这些方法都聚焦于复制蛋白质上的核酸标记物。例如,被称为免疫-PCR的蛋白质靶标扩增技术利用寡核苷酸标记物,该标记物随后可使用定量PCR来检测。在免疫-PCR中,DNA标记物被复制,直至其产生一定水平的信号;然后将达到该点所需的扩增循环数目用于计算有多少DNA标记物原本存在于样品中。虽然免疫-PCR法提高了蛋白检测的灵敏度,但其不能区分少于2倍的拷贝数变异,并且可倾向于产生假阳性信号。此外,抗体与DNA之间的偶联对于每一个新靶标都需要极其仔细的优化过程,并且每个抗体的DNA标记物的数目是不可控的并且在批次间不一致。

与此相反,本申请所述的方法使用核酸适体作为检测亲和试剂,作为从蛋白质检测至核酸单分子计数的翻译子。数字单分子计数技术将获自常规qPCR的指数模拟信号转换成线性数字信号,这可以显著提高测定的灵敏度和定量的分辨率。原始样品中的检测适体的精确拷贝数可以被确定;如本申请所述,检测适体和靶标蛋白质有一对一的精确比例,因此也就确定了原始样品中靶分子(例如,蛋白质)的拷贝数。靶标的绝对浓度很容易地被计算为等于靶分子总数除以总的测量体积。

Rissin等(Nat Biotechnol.2010Jun;28(6):595-9Single-molecule enzyme-linked immunosorbent assay detects serum proteins at subfemtomolar concentrations)最近开发了平台(称为数字ELISA)来数字化ELISA信号用于定量蛋白质浓度。他们的方法使用大量珠子(200,000-500,000个珠子)来确保样品中高比例(大约70%)的分析物分子被捕获,并且大多数珠子只捕获单个分析物分子。所捕获的分析物分子随后被经酶标记的第二抗体结合以形成抗原/抗体夹心。将珠子(约5%-15%的珠子)物理地分离,并测定珠子与经标记的蛋白之间的结合,从而将ELISA信号数字化。如下实现夹心复合物的数字化:在底物存在的情况下将珠子加载至被设计为承载单个珠子的飞升孔的阵列中,随后物理密封所述孔(使用橡胶垫圈或油),并允许单一酶分子与其底物反应以显影(通常持续30秒到2.5分钟)。然后用图像分析来鉴别含有珠子的那些孔以及那些孔在特定波长下的荧光强度。

与数字ELISA相反,本申请所述的方法和系统使用适体作为检测亲和试剂和从蛋白质浓度测量至核酸适体的单分子计数的翻译子。由于核酸可通过酶指数地扩增以产生数千至数百万拷贝,因而在此可使用各种数字化DNA扩增和检测技术,包括但不限于数字聚合酶链式反应(PCR)、数字滚环扩增(RCA)、数字环介导的扩增(LAMP)或数字基于核酸序列的扩增(NASBA)。如下文中所详述的,在于固体载体上形成抗体-分析物(靶标)-适体夹心复合物后,洗脱检测适体并将其分隔为数百或甚至数百万个独立的反应,以使每个隔室仅包含1个或0拷贝的检测适体。“分隔”后,执行上述扩增方法之一至终点。通过计数“阳性”(或“1”)隔室(其中检测适体被扩增和检测)相对于“阴性”(或“0”)隔室(其中检测适体不被扩增和检测)的数目,本发明人可准确地测定有多少拷贝的检测适体存在于原始样品中,并且由于一个适体/蛋白质的关系,我们也知道有多少拷贝的靶蛋白分析物存在于初始样品中。因此,将靶标的绝对浓度容易地计算为等于靶分子的总数除以总的测量体积。

本申请描述了用于靶分子(例如蛋白质和核酸)、粒子(例如,例如,细胞、细胞器和其它生物或非生物粒子)等的检测和/或定量的系统和方法。

具体地,本申请提供了用于检测样品中的靶分子或粒子的方法。该方法包括将样品暴露于多个捕获物,每种捕获物包括对靶分子或粒子具有亲和力的结合表面,以形成捕获物与靶分子或粒子之间的复合物;去除未与靶分子或粒子复合的捕获物;使捕获物与靶分子或粒子的复合物暴露于多个检测物以便形成捕获物、靶分子或粒子与检测物之间的复合物;去除未与捕获物和靶分子或粒子复合的检测物;洗脱与捕获物和靶分子或粒子复合的检测物;将检测物分隔至隔室中;和检测每一个隔室中检测物的存在或不存在,以便检测样品中的靶分子或粒子。

本申请还提供了用于检测样品中的靶分子的方法。该方法包括使样品暴露于包含特异于靶分子的捕获抗体的固体载体,以便形成靶标-抗体复合物;去除未结合的样品和抗体;将靶标-抗体复合物暴露于特异于靶标的检测适体;去除未结合的适体;洗脱结合于靶标-抗体复合物的适体;将所述适体分隔至隔室中;和检测每一个隔室中适体的存在或不存在,从而检测样品中的靶分子。

还提供了用于检测样品中的靶分子或粒子的系统和试剂盒。所述系统和试剂盒包含反应容器的阵列,其中至少一个反应容器不含样品并且至少一个容器包含不含靶分子或粒子的对照样品;多个捕获物,其每一种包含对靶分子或粒子具有亲和力的结合表面,以便形成捕获物与靶分子或粒子之间的复合物;多个检测物,以便形成捕获物、靶分子或粒子与检测物之间的复合物;和洗脱与捕获物和靶分子或粒子复合的检测物的试剂。

在各种实施方式中,所述样品是流体样品。样品可以是下述中的任何一种或多种:缓冲液、血液、血浆、血清、尿、唾液和汗液、泪液、乳汁、胆汁、脑脊髓液、痰、灌洗物、淋巴、细胞裂解物、液化组织、拭子洗脱物、液化植物物质、食品、废水、冲洗水、饮用水。使样品暴露于反应容器中的捕获物和检测物。

反应容器可以是下述中的任何一种或多种:试管、离心管、柱子、微阵列板、微量滴定板、微流体装置、管、涂覆有捕获物的管。在一些实施方式中,所述容器涂覆有捕获物。在一些实施方式中,所述容器未涂覆有捕获物。

样品体积可以是下述中的任一项:约1μl至约20μl,约20μl至40μl,约40μl至约60μl,约60μl至约80μl,约80μl至约100μl,约100μl至约500μl,约500μl至约1μl,约1μl至约5μl,约5μl至约10μl,约10μl至约50μl,约50μl至约100μl或其组合。原始样品可不被稀释或被稀释来用于本申请所述的方法。所述样品可被稀释1倍、2倍、5倍、10倍、50倍、100倍、100倍或其组合。

在各种实施方式中,样品中的靶分子或粒子的浓度小于约50x10-15M,或小于约40x10-15M,或小于约30x10-15M,或小于约20x10-15M,或小于约10x10-15M,或小于5x10-15M,或小于约lx10-15M。在一些实施方式中,样品中的靶分子或粒子的浓度在阿托摩尔(attomole)范围内。

靶分子或粒子

正如本领域中技术人员所理解的,可使用本发明的方法和系统检测和定量大量靶分子和粒子。能够相对于捕获物被固定(例如,经由包含多个捕获组分的结合表面)的任何靶分子均可潜在地使用本申请所述的方法和系统来研究。下面描述了可包含靶分子的某些具体的潜在目的靶标。下面所列的是示例性的和非限制性的。

在一些实施方式中,靶分子或粒子是下述中的任何一种或多种:蛋白质、核酸、肽、碳水化合物、小分子、病毒细菌、细菌或其组合。在各种实施方式中,靶蛋白可以是单体或多聚体。应当理解,虽然下面的大部分讨论针对为蛋白质的靶分子,但这仅仅是举例说明性的,并且可检测和/或定量其它材料(例如靶粒子)。

在一些实施方式中,靶分子或粒子(例如,靶蛋白)可与各种疾病相关联,所述疾病包括但不限于癌症、传染病、炎性疾病、神经性病症、糖尿病、心血管疾病、血液病、自体免疫性疾病、炎性疾病或其组合。

与癌症相关的靶分子或粒子的实例包括但不限于以下的任何一种或多种:4-1BB、5T4、腺癌抗原、α-胎儿球蛋白、BAFF、B-淋巴瘤细胞、C242抗原、CA-125、碳酸酐酶9(CA-IX)、C-MET、CCR4、CD 152、CD 19、CD20、CD200、CD22、CD221、CD23(IgE受体)、CD28、CD30(TNFRSF8)、CD33、CD4、CD40、CD44v6、CD51、CD52、CD56、CD74、CD80、CEA、CNTO888、CTLA-4、DR5、EGFR、EpCAM、CD3、FAP、纤连蛋白额外结构域-B、叶酸受体1、GD2、GD3神经节苷脂、糖蛋白75、GPNMB、HER2/neu、HGF、人扩散因子受体激酶、IGF-1受体、IGF-I、IgG1、L1-CAM、IL-13、IL-6、胰岛素-样生长因子I受体、整联蛋白α5β1、整联蛋白ανβ3、MORAb-009、MS4A1、MUC1、粘蛋白CanAg、N-羟乙酰神经氨酸、NPC-1C、PDGF-Rα、PDL192、磷脂酰丝氨酸、前列腺癌细胞、RANKL、RON、ROR1、SCH 900105、SDC1、SLAMF7、TAG-72、腱生蛋白C、TGFβ2、TGF-β、TRAIL-R1、TRAIL-R2、肿瘤抗原CTAA16.88、VEGF-A、VEGFR-1、VEGFR2、波形蛋白或其组合。特异于癌症的其它靶分子或粒子对于本领域技术人员来说将是显然的,并且可将其与本发明的备选实施方式结合使用。

炎性疾病相关的靶分子或粒子的实例包括但不限于以下的一种或多种:AOC3(VAP-1)、CAM-3001、CCL11(嗜酸性粒细胞趋化因子-1)、CD 125、CD 147(basigin)、CD 154(CD40L)、CD2、CD20、CD23(IgE受体)、CD25(IL-2受体的α链)、CD3、CD4、CD5、IFN-α、IFN-γ、IgE、IgE Fc区、IL-1、IL-12、IL-23、IL-13、IL-17、IL-17A、IL-22、IL-4、IL-5、IL-5、IL-6、IL-6受体、整联蛋白α4、整联蛋白α4β7、Lama glama、LFA-1(CD11a)、MEDI-528、肌生成抑制素、OX-40、rhuMAbβ7、scleroscin、SOST、TGFβ1、TNF-α或VEGF-A。特异于炎性疾病的其它靶分子或粒子对于本领域技术人员来说将是显然的,并且可将其与本发明的备选实施方式结合使用。

与神经性病症相关的靶分子或粒子的实例包括但不限于β淀粉样蛋白或MABT5102A中的任何一种或多种。特异于神经性病症的其它靶分子或粒子对于本领域技术人员来说将是显然的,并且可将其与本发明的备选实施方式结合使用。

与糖尿病相关的靶分子或粒子的实例包括但不限于L-Ιβ或CD3中的任何一种或多种。特异于糖尿病或其它代谢病症的其它靶分子或粒子对于本领域技术人员来说将是显而易见的,并且可将其与本发明的备选实施方式结合使用。

与癌症相关的靶分子或粒子的实例包括但不限于C5、心肌肌球蛋白、CD41(整联蛋白α-IIb)、纤维蛋白II、β链、ITGB2(CD18)和鞘氨醇-1-磷酸中的任何一种或多种。特异于心血管疾病的其它抗原对于本领域技术人员将是显然的,并且可将其与本发明的备选实施方式结合使用。

与传染病相关的靶分子或粒子的实例包括但不限于炭疽毒素、CCR5、CD4、聚集因子A、巨细胞病毒、巨细胞病毒糖蛋白B、内毒素、大肠杆菌(Escherichia coli)、乙肝表面抗原、乙肝病毒、HIV-1、Hsp90、甲型流感血凝素、脂磷壁酸、绿脓杆菌(Pseudomonas aeruginosa)、狂犬病毒糖蛋白、呼吸道合胞病毒和TNF-α中的任一种或多种。特异于传染病的其它靶分子或粒子对于本领域技术人员将是显然的,并且可将其与本发明的备选实施方式结合使用。

在各种实施方式中,至少约10%,或至少约20%,或至少约30%,或至少约40%,或至少约50%,或至少约60%,或至少约70%,或至少约80%,或至少约90%,或至少约95%,或至少约99%或至少约100%的靶分子或粒子结合捕获物,以形成捕获物与靶分子或粒子之间的复合物。

载体

多个捕获物直接或间接结合于载体(例如,经由连接子)。在一些实施方式中,所述连接子可包含任何部分,或包含有利于捕获物附着至表面的对载体结合表面的修饰。捕获物与载体表面之间的键联可包括一种或多种化学或物理(例如,通过范德华力、氢键、静电相互作用、疏水/亲水相互作用的非特异性附着等)键和/或提供此类键的化学连接子。

在某些实施方式中,载体的表面还可包含保护或钝化层,其可在测定过程中减少或最小化非捕获组分(例如,靶分子或粒子,结合配体)对结合表面的非特异性附着,所述非特异性附着可在检测过程中导致假阳性信号或信号的丧失。在某些实施方式中,可被利用来形成钝化层的材料的实例包括,但不限于:聚合物,例如聚(乙二醇),其排斥蛋白质的非特异性结合;具有此特性的天然存在的蛋白质,例如血清白蛋白和酪蛋白;表面活性剂,例如,两性离子表面活性剂,例如磺基甜菜碱;天然存在的长链脂质;和核酸,例如鲑鱼精子DNA。

固相载体的实例包括但不限于多种珠子、纳米管(例如,碳纳米管)、微量滴定板、微流体通道、电极、囊泡、细胞、膜(例如,硝化纤维素)、管或其组合。在某些实施方式中,珠子具有约0.1微米至100微米、约1.0微米至10微米、0.01微米至1微米之间的平均直径。珠子与捕获物见的比率可取决于珠子的尺寸。例如,1μΜ珠子可具有104至106个捕获物。所述多种珠子可具有多种性质和参数。例如,珠子可以是磁性的、聚苯乙烯、荧光的、琼脂糖、琼脂糖凝胶、硅、氧化硅或其组合。在示例性实施例中,珠子涂覆有特异于靶蛋白的捕获抗体。

在各种实施方式中,固体载体可以具有任何形状(例如,球体状、盘状、环状、立方体状等),粒子的分散体或悬浮液(例如,悬浮在流体中的多个粒子)、纳米管等。在一些实施方式中,载体在用于测定的溶剂或溶液中是不可溶的或基本上不可溶的。在一些情况下,载体是固体或基本为固体(例如,基本上是无孔的),然而,在某些情况下,载体可以是多孔的或实质上多孔的、中空的、部分中空的,等等。多种载体物质(例如固体载体)可以是非吸收性的,基本上非吸收性的,基本上吸收性的,或吸收性的。在某些情况下,固体载体可包含磁性材料,其如本申请所述,可有利于测定的某些方面(例如,洗涤步骤)。在某些情况下,载体表面也可包含保护层或钝化层,其可以减少或最小化非特异性结合事件(例如,分析物分子、结合配体等)。

在各种实施方式中,捕获物对载体表面(例如,固体载体)的附着方法取决于所使用的键联的类型,并且可潜在地通过本领域普通技术人员已知的众多适合的偶联化学反应/技术来实现。所选择的具体附着方式将取决于载体表面的材料特征和捕获物的性质。在某些实施方式中,可通过在每一个捕获物上使用反应性官能团而将捕获物连接至载体表面。根据一个实施方式,可衍生结合表面以使得化学官能团存在于载体上的结合表面上,所述化学官能团可与捕获物上的化学官能团反应,从而引起附着。可用的用于附着的官能团的实例包括,但不限于,氨基、羧基、环氧基、马来酰亚胺基、氧代基和硫醇基团。官能团可直接附着或通过使用连接子(其组合在本申请中有时被称为“交联剂”)连接。交联剂在本领域中是已知的,例如,同或异双功能交联剂是公知的(例如,参见1994Pierce Chemical Company catalog,关于交联剂的技术部分,第155-200页,或"Bioconjugate Techniques"by Greg T.Hermanson,Academic Press,1996)。交联剂的非限制性实例包括烷基(包括取代的烷基和含有杂原子部分的烷基)、酯、酰胺、胺、环氧基以及乙二醇和衍生物。交联剂也可包括砜基,其形成磺酰胺。

在一些实施方式中,官能团是光活化官能团。例如,官能团可被光活化以将捕获物附着于载体(例如,固体支持物)的表面。一个实例是PhotoLinkTM技术,其可从Eden Prairie,Min的SurModics,Inc.获得。

在一些实施方式中,载体可包含链霉抗生物素蛋白涂覆的表面,并且捕获物可被生物素化。使捕获物暴露于链霉抗生物素蛋白涂覆的载体表面可通过生物素组分与链霉抗生物素蛋白之间的相互作用引起捕获物与载体表面的缔合。

在一些实施方式中,可实现将捕获物附着至载体表面而无需共价修饰捕获物的结合表面。例如,可通过使用连接子将附着官能团添加至结合表面,所述连接子具有与捕获组分反应的官能团和具有对于结合表面的结合亲和力的基团。在某些实施方式中,连接子包含能够结合于或粘着于结合表面的蛋白质;例如,在一个此种实施方式中,所述连接子是在其表面上具有游离氨基的血清白蛋白。随后添加第二连接子(交联剂)以将白蛋白的胺基附着至捕获物(例如,至羧基)。

捕获物

在各种实施方式中,用多个捕获物涂覆载体(例如,固体载体)。所述捕获物包含附着至载体(例如,固体载体)的表面和附着至靶分子或粒子的表面。在各种实施方式中,多个捕获物结合靶分子或粒子。在各种实施方式中,如对于本技术领域技术人员是显然的,所使用的捕获物的类型将取决于靶分子或粒子的性质。

用于多种靶分子的捕获物是已知的或可使用已知的技术来容易地发现或开发。例如,当靶分子为蛋白质时,捕获物可包含蛋白质,特别是抗体或其片段(例如,抗原结合片段(Fab)、Fab'片段、胃蛋白酶片段、F(ab')2片段、全长多克隆或单克隆抗体、抗体样片段等)、其他蛋白质,例如受体蛋白质、蛋白A、蛋白C等、核酸(例如,适体)或小分子。在某些实施方式中,蛋白质的捕获物包含肽。例如,当靶分子为酶时,合适的捕获物可包括酶底物和/或酶抑制剂。在某些情况下,当靶分子被磷酸化或甲基化时,捕获物可分别包括磷酸盐结合剂或甲基结合剂。例如,磷酸盐结合剂可包括金属离子亲和介质例如美国专利No.7,070,921和7,632,651中描述的那些。此外,当靶分子是单链核酸时,所述捕获物可以是互补核酸。类似地,靶分子可以是核酸结合蛋白并且捕获物可以是单链或双链核酸;或者,当靶分子是单链或双链核酸时,捕获物可以是核酸结合蛋白质。或者,如美国专利No.5,270,163、5,475,096、5,567,588、5,595,877、5,637,459、5,683,867、5,705,337和相关专利中一般描述的,核酸“适体”可被开发来用于捕获几乎任何靶分子。同样地,例如,当靶分子是碳水化合物时,潜在合适的捕获物包括例如抗体、凝集素和选择素。正如本领域普通技术人员将理解的,可与目标靶分子特异性缔合的任何分子可潜在地用作捕获物。

在一些实施方式中,合适的靶分子/捕获物对可包括,但不限于,抗体/抗原、受体/配体、蛋白质/核酸、核酸/核酸、酶/底物和/或抑制剂、碳水化合物(包括糖蛋白和糖脂)/凝集素和/或选择素、蛋白质/蛋白质、蛋白质/小分子;小分子/小分子等。根据一个实施方式,捕获物是已知多聚化的细胞表面受体的部分(特别是细胞外部分),例如生长激素受体、葡萄糖转运蛋白(特别是GLUT4受体)和T-细胞受体,并且靶分析物分子是一种或多种靶配体。

在一些实施方式中,捕获物可以是下述中的任何一种或多种:特异于靶分子或粒子的抗体、特异于靶分子或粒子的适体、特异于靶分子或粒子的多肽、受体、配体、小分子或其组合。在一个实施方式中,捕获物是特异性结合靶分子并且不结合非靶分子的抗体。

在一些实施方式中,靶粒子是生物细胞(例如,哺乳动物、鸟类、爬行类、其它脊椎动物、昆虫、酵母、细菌、细胞等),并且捕获物可以是具有对于细胞表面抗原(例如,细胞表面受体)的特异性亲合力的配体。在一个实施方式中,捕获物是粘附分子受体或其部分,其具有对于在靶细胞类型的表面上表达的粘附分子的亲和力。

在一些实施方式中,靶分子对其捕获物的结合亲和力可以为至少约104至约106M-1,至少约105至约109M-1,至少约107至约109M-1,大于约109M-1等。或类似物。

本领域普通技术人员将了解用于将多个捕获物暴露于含有或怀疑含有靶分子或粒子的流体样品以进行初始靶标捕获的方法和技术。例如,可向流体样品中直接添加多个捕获物(例如,作为固体,作为溶液)。作为另一个实例,可将流体样品添加至多个捕获物(例如,在溶液中,作为固体)。在一些情况下,可搅拌(例如,搅动、摇动等)溶液。将捕获物与靶分子或粒子之间形成的复合物与样品的其余部分分离。

在一些实施方式中,可在反应容器中暴露后和/或与捕获物一起孵育后,洗涤样品。在该情况下,洗涤步骤可用于洗掉未结合于捕获物的任何分子。洗涤步骤可通过本领域技术人员已知的任何方法进行,例如,通过将反应容器置于洗涤溶液中或通过将洗涤溶液添加至反应容器中来进行。可清洗靶分子-捕获物复合物的次数对于本领域技术人员来说将是显然的。在一些实施方式中,洗涤溶液可以是不引起反应容器的表面或所述测定的至少两种组分(例如,捕获物与靶分子或粒子)之间的相互作用变化的溶液。

检测物

该检测物结合于靶分子或粒子与捕获物之间形成的复合物,从而形成包含靶分子或粒子、捕获物和检测物的复合物。如对于本领域中技术人员将是显然的,检测物的性质将取决于靶分子的性质和捕获物的性质。

在一些实施方式中,所述多个检测物包括但不限于下述中的任何一种或多种:抗体、适体、多肽、受体、配体、小分子或靶分子的任何其它亲和试剂或其组合。在一些实施方式中,适体是核酸(DNA、RNA、XNA(核酸类似物))适体。在一些实施方式中,适体是肽适体。不是基于核酸的检测物与核酸标记物缀合。在各种实施方式中,适体和/或核酸作为用于数字检测步骤的信号分子。

在一些实施方式中,多个检测物包括缀合于亲和试剂的DNA。在示例性实施方式中,可将DNA缀合于下述中的任何一种或多种:抗体、多肽、受体、配体、小分子或适合于靶分子的任何其它亲和试剂。

在一些实施方式中,检测物是一种或多种适体。可将适体缀合于亲和试剂。在示例性实施方式中,可将适体缀合于下述中的任何一种或多种:抗体、多肽、受体、配体、小分子或适合于靶分子的任何其它亲和试剂。在一些实施方式中,适体是核酸(DNA、RNA、XNA(核酸类似物))适体。在示例性实施方式中,TNFα特异性适体由序列5'-ATCCAGAGTGACGCAGCATGCTTAAGGGGGGGGCGGGTTAAGGGAGTGGGGAGGGAGCTGGTGTGGACACGGTGGCTTAGT-3'组成。在示例性实施方式中,TNFα特异性适体包含序列5'-ATCCAGAGTGACGCAGCATGCTTAAGGGGGGGGCGGGTTAAGGGAGTGGGGAGGGAGCTGGTGTGGACACGGTGGCTTAGT-3'。

在一个实施方式中,捕获物是特异性结合靶蛋白质的抗体并且检测物是特异性结合靶蛋白的适体。靶蛋白可以是单体或多聚体。在示例性实施方式中,如果目标蛋白是单体,则抗体和适体结合于靶蛋白上的两个不同的表位。在示例性实施例中,如果目标蛋白是多聚体,则抗体和适体与靶蛋白上的相同表位结合。

在另一个实施方式中,捕获物是特异性结合该靶蛋白的适体并且检测物是特异性结合靶蛋白的适体。靶蛋白可以是单体或多聚体。在示例性实施方式中,如果靶蛋白是单体,则捕获适体和检测适体结合于靶蛋白上的两个不同表位。在示例性实施例中,如果靶蛋白是多聚体,则捕获适体和检测适体结合于靶蛋白上的相同表位。

在各种实施方式中,至少约10%,或至少约20%,或至少约30%,或至少约40%,或至少约50%,或至少约60%,或至少约70%,或至少约80%,或至少约90%,或至少约95%,或至少约99%或至少约100%的捕获物与靶分子或粒子之间的复合物结合于检测物,以形成捕获物、靶分子或粒子与检测物之间的复合物。

区室化和定量

在各种实施方式中,从由靶分子或粒子、捕获物和检测物形成的复合物洗脱出检测物。检测和定量洗脱的检测物,且检测物的量指示原始样品中的靶分子或粒子。在各种实施方式中,将洗脱的检测物分隔至多个反应位点。反应位点可以是油包水乳剂、双重乳剂、微量滴定板、细胞(例如细菌)、微流体装置中的微滴、微流体装置中的微腔室或纳米腔室中的任一种。

在一些实施方式中,当检测物是适体时,洗脱检测适体并将其区室化从而使每个隔室有0个或1个适体。

洗脱后,稀释含有适体的洗脱物,然后将其分隔至更小的体积中。例如,可将100μL洗脱体积稀释至1mL,然后离散成109个各自体积为1pL的隔室(半径为约6μm的微滴)。

本申请所述的系统使得能够通过计数含有适体的隔室的数目来进行数字定量。为了使该方法精确,不止一个适体存在于单个隔室中的概率必须很低。为了减少这种可能性,必须使隔室的数目大于洗脱物中的适体的数目。因此,总的隔室数目设定了精确定量的上限和动态范围。

在上面的实例中,如果存在一个适体,则其将被容易地计数。如果存在100个适体,则极不可能的是,在100亿个隔室当中,一个隔室会包含不止1个适体,因此,这些同样将被容易地精确计数。然而,当适体的数目接近液滴的数目时,精确性降低。例如,当存在100亿个适体时,大多数隔室将含有不止一个适体,从而计数将低估实际的数量。隔室的数量的限制依赖于可被处理的总体积,和可被计数的隔室的数目。隔室尺寸的下限由精确地感测小隔室中阳性信号的能力限定(较小隔室=>较低的绝对信号)。

上限可通过进行初始样品体积的连续稀释来容易地扩展。隔室的数目也可以通过分隔至具有递增尺寸的空间来减少,其中来自每一个空间的信号对应于特定浓度上的概率。

区室化的检测物可通过使用任何检测方法来检测和定量,所述检测方法是例如数字PCR、家族染料、测定浊度的变化、分子信标探针、液滴数字PCR、定量PCR、滚环扩增(RCA)、重组酶聚合酶扩增(RPA)、环介导的扩增(LAMP)或基于核酸序列的扩增(NASBA)、吸光度(例如金纳米粒子的聚集)。

本发明的优势

本申请所述的方法提供了优于现有技术(例如,如Csordas等(Detection of Proteins in Serum by Micromagnetic Aptamer PCR(MAP)Technology.Agnew.Chem.Int.Ed.2010第49卷,第355-358页)中描述的微磁适体PCR(MAP)技术)的几个优势。

在本申请所述的方法中,适体从靶蛋白上被洗脱并继而被扩增用于检测。相反地,MAP洗脱PCR反应中带有珠子的整个复合物,这是有问题的,因为:(i)MAP获取多个适体/珠子,这将使得单分子计数不可能;和(ii)额外的蛋白质和珠子表面伤害随后的PCR反应的效率,并由此限制检测的速度和灵敏度。

此外,MAP需要连续的微流体洗涤,而本申请所述的方法可通过使用简单的分批洗涤法来避免微流体洗涤,并且对于抗体-适体夹心仍获得高检测灵敏度。

另外,来自MAP的最终信号高度依赖于洗脱体积(大约300μL),并且从而是测试间变异的主要来源。本申请所述的方法不依赖于原始样品的体积。这是重要的,因为难以从具有固定体积的装置洗脱磁珠,因为其可取决于流速、气泡形成、珠子聚集、至通道表面的磁性粘附、基于蛋白质的至表面的粘附以及流体损失而变化。MAP在测定开始时就一次混合了所有组分,包括捕获抗体、靶标和适体。本申请所述的方法描述了利用多重洗涤来减少背景结合的多步骤免疫测定。本方法不需要使用磁珠,然而MAP法需要它们来用于磁性捕获阶段。

对于MAP,珠子的量必须受到精确地控制。MAP中使用的珠子量的变化导致可变的捕获、可变的洗脱和可变PCR效率,这全都导致定量不佳。

MAP不能使用太多磁珠,因为其会阻塞芯片,影响洗涤效率。连续洗涤而无靶蛋白的损失需要具有极低离解速率的结合剂。本申请所述的方法使用分批洗涤,这对结合剂的动力学性质没有要求,从而允许定量对于其不存在缓慢-离解速率结合剂的靶标。

数字测量的所有性能指标体系(包括灵敏度、精确度和动态范围)随着数字反应的总数增加而改善。在数字ELISA中,免疫复合物的数字化随后通过将珠子加载至由玻璃制成的含有50,000飞升孔(约25,000-30,000个珠子将被加载至孔中)的阵列来实现。本申请所述的方法通过将检测物(例如,检测适体)分隔至高达1亿个单独的液滴反应器中来增加灵敏度,该方法相较于数字ELISA获得4,000倍的改善。

加载至数字ELISA中微孔内的珠子的数目限制了测定动态范围。相反地,本申请所述的方法显著提高了该测定的动态范围,因为本申请所述的方法相较于数字ELISA法提供了4,000倍的分隔数目。

在本申请的方法中,检测适体的分隔不依赖于珠子。本申请所述的方法可将检测适体分隔至具有不同体积的反应中;具有不同体积的隔室使所有隔室的总体积与最小隔室的尺寸和数目之间的关联被取消。最小的隔室使得能够定量高浓度,而具有大体积的隔室使得能够通过有效地增加总体积来获得高灵敏度。通过使用该多体积方法,进行“数字化”(单一分子)测量所需的隔室总数可被最小化,同时维持高动态范围和高分辨率。该方法也非常适用于即时护理目的,因为其通过最小化用于数字测量的隔室数目来允许更简单的仪器设计,并且有利于开发新的高性能诊断工具用于资源有限的应用。

在数字ELISA中,大量珠子(通常200,000-500,000个)被用于捕获样品中的蛋白质,以确保大多数珠子只捕捉单个分析物分子。该方法使用过量的捕获试剂,并因此增加背景信号,并由于三个主要来源而限制测定灵敏度:(i)在靶蛋白不存在的情况下标记试剂与珠子的非特异性相互作用;(ii)为内源的并且结合珠子、经酶标记并产生假阳性信号的基质(例如,血清或血浆)中分子的相互作用;和(iii)免疫衍生的、与捕获或检测抗体特异性相互作用并产生假阳性信号的基质(例如,血清或血浆)中的分子(通常称为异嗜性抗体)的相互作用。

通过使用本申请的方法,除了采用适体代替抗体作为检测试剂外,测定的前端(图1a)可从其它常规ELISA平台直接改造而来。背景信号通过使用本申请所述的方法而被显著减小,因为不需要过量的珠子,从而引起检测极限的提高。

数字ELISA有3个步骤:捕获珠子与样品的孵育,捕获的蛋白质与检测抗体的孵育,以及检测标记蛋白质与酶缀合物的孵育。每个步骤的效率可因不同的靶分析物而显著变化。每次开发新的测定,都需要进行针对固定的孵育时间优化检测抗体和酶的浓度的过程,以确保每个珠子(每一个隔室)上仅有一个检测抗体,并将背景降低至泊松噪声底线。通过使用本申请所述的方法,洗脱的适体在溶液中是单体,以使得它们可被容易地稀释并被分隔至数百万个单独的液滴反应器中,以及使用任何数字核酸测量法来定量而无需任何特定的优化。此外,测量的前端(图1a)与后端(图1b)完全解连,并且除使用检测适体代替检测抗体外,我们可采用来自常规ELISA实验的优化的条件。

在数字ELISA中,有利的是,大多数珠子保持为单体,以使得珠子可适合尺寸针对单个珠子的微孔。不幸的是,取决于涂布条件和涂布抗体的溶解度性质,珠子可在抗体偶联过程中表现出不同量的聚集。必须基于最大化抗体偶联效率同时使珠子维持单体状态来优化偶联反应条件。对于本申请所述的方法,这不是一个问题,因为检测适体可容易地从固体载体洗脱,然后被分隔至数百万个皮升液滴反应器中。

用于数字ELISA的检测抗体的生物素化和链霉抗生物素蛋白-酶缀合物的制备需要极其小心。数字ELISA中的信号和背景都取决于掺入的生物素的数目;该数目可随着不同的检测抗体而广泛地变化。商业来源的链霉抗生物素蛋白-酶缀合物常常聚集,这对单分子测定具有显著的影响。取代高数量的含有单个酶的孔,聚集的链霉抗生物素蛋白-酶缀合物将产生包含较少,更明亮的孔的阵列图像,并且可严重地影响测定的检测效率。在本申请所述的方法中,当抗体-分析物-适体夹心复合物在固体载体上形成时,适体对应于靶分析物的一对一呈现。由于该一个适体/蛋白的关系,我们可通过单适体(核酸)计数法(例如数字PCR)确切地知道有多少拷贝的靶分析物存在于初始样品中。

使用适体取代抗体作为检测亲和试剂可消除检测试剂与免疫衍生的基质(例如,血清或血浆)中的分子之间的特异性相互作用,从而为通常已知的异嗜性抗体问题提供了解决方案。

上述各种方法和技术提供了许多方式来实施本申请。当然,应理解,根据本申请所述的任何特定实施方式不必然实现所有所述目标或优势。因此,例如,本领域技术人员将认识到,本申请教导的方法可以用来实现或优先实现一个优势或一组优势而不必实现如本申请教导或建议的其它目标或优势。本申请提及了各种备选方案。应当理解,一些优选实施方式明确地包括一个,另一个,或数个特征,而其它实施方式明确排除一个,另一个,或数个特征,而仍然有其它实施方式通过包含一个、另一个或数个有利特征来调节特定的特征。

此外,本领域技术人员将认识到来自不同实施方式的各种特征的适用性。类似地,上文中论述的各种元素、特征和步骤以及每个这类元素、特征或步骤的其它已知等同物,可由本领域普通技术人员以各种组合用于按照本申请所述的原理来实施所述方法。在各种元素、特征和步骤当中,一些元素、特征和步骤被明确地包含在不同的实施方式中而其它元素、特征和步骤被明确地排除在不同的实施方式中。

实施例

以下实施例不旨在将权利要求的范围限制于本发明,而是旨在为某些实施方式的示例。本领域技术人员想到的示例性方法的变化旨在落在本发明的范围之内。

实施例1

用于肿瘤坏死因子α(TNFα)的基于适体的超灵敏测定

在4℃下用PBS中5μg/ml的TNFα抗体(eBioscience,目录编号14-7349-85)对ELISA孔(Thermo Scientific,目录编号:15031),进行过夜功能化。在即将使用前,在以约500RPM轻轻摇动的情况下用300μL AptaBuffer(PBS+0.05%Tween-20+2.5mM MgCl2+1mM CaCl2+1%BSA+0.5mg/mL硫酸葡聚糖+0.1mg/mL鲑鱼精子DNA)封闭ELISA孔,进行至少30分钟。

随后,将含有目标蛋白(TNFα,Shenandoah Biotechnology,目录编号:100-111)的测试样品(50μL)添加至洗涤过的ELISA孔,伴随轻轻摇动孵育1小时。在靶标-捕获物孵育后,用PBSMCT(PBS+0.05%Tween-20+2.5mM MgCl2+1mM CaCl2)洗涤ELISA孔一次,将5nM检测TNFα适体添加至孔中,并伴随轻轻摇动孵育30分钟。随后在用检测适体孵育后,用300μL PBS-MCT洗涤ELISA板4次。在一个实施方式中,TNFα适体的序列为5'-ATCCAGAGTGACGCAGCATGCTTAAGGGGGGGGCGGGTTAAGGGAGTGGGGAGGGAGCTGGTGTGGACACGGTGGCTTAGT-3'

对于洗脱步骤,将100μL的PCR级水添加至每一个ELISA孔。在95℃下加热板10分钟后,我们将100μL包含检测适体的洗脱物添加至新管中。将洗脱物稀释10倍,随后用LifeTechnologies的3D数字PCR系统进行测量。

虽然已在某些实施方式和实施例的情境中公开了本申请,但本领域技术人员应理解,本申请的实施方式延伸超过具体公开的实施方式至其它替代实施方式和/或其用途以及变型和等同物。

在一些实施方式中,术语“一个/一种(a)”、“一个/一种(an)”、“该(the)”以及描述本申请的具体实施方式的情境中(尤其在某些以下权利要求的情境中)使用的类似指代可被解释为覆盖单数和复数。本申请引用的数值范围仅仅意欲用作单独指代落入该范围内的每个独立数值的速记方法。除非本申请另外标明,否则每个独立数值都包含在该说明书内,就如同其是单独在本文中被引述的一样。除非本申请另有指示或根据上下文明显矛盾,否则本申请描述的所有方法可以以任何适当的顺序实施。针对本申请的某些实施方式提供的任何和所有实例或者示例性语言(如,“例如”)的使用仅旨在更好地阐明本申请而非限制本申请的范围,除非另有规定。说明书中的所有语言都不应解释为指示对实施本申请所必需的、未要求保护的元素。

本申请描述了本申请的优选实施方式,包括本发明人已知的用于进行本申请的最佳模式。在阅读前述说明后,对那些优选实施方式进行的变化对于本领域普通技术人员来说将变得明显。预期本领域技术人员,适当时,可采用此类变化,并且可以以与本申请具体描述的方式不同的其它方式实践本申请。因此,如适用的法律允许,本申请的许多实施方式(包括在此附上的权利要求中述及的主题的所有变型和等同物)。此外,除非本申请另外指出或者明显地与上下文矛盾,否则上述元素在其所有可能的变型中的任何组合都被本发明包括在内。

本申请引用的所有专利、专利申请、专利申请的公开以及其它材料例如文章、书、说明书、出版物、文件、事物等,都出于所有目的(除与其相关的任何审查文件历史,其与本申请文件不一致或矛盾任何方面,或其可对现在或以后与本申请件相关的权利要求的最广范围具有限制影响的任何方面外),均在此通过引用整体并入本申请。例如,在与任何并入的材料相关的术语的描述、定义和/或使用与和本申请相关的术语的描述、定义和/或用途之间存在任何不一致或矛盾时,以本申请文件中的术语的描述、定义和/使用为准。

应该理解,本文公开的本申请的实施例是对本申请实施方式的原理的说明。可采用的其它修改可存在于本申请的范围内。因此,例如,但非限制性地,可按照本申请的教导使用本申请的实施例的备选配置。因此,本申请的实施方式不限于仅为所显示和描述的实施方式。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1