高置换活性的钌和锇金属卡宾络合物的制作方法

文档序号:85517阅读:390来源:国知局
专利名称:高置换活性的钌和锇金属卡宾络合物的制作方法
技术领域
本发明涉及高活性而稳定的钌和锇金属卡宾络合化合物,它们的合成以及用做烯烃置换反应的催化剂。
背景技术
过渡金属催化的烯烃置换生成C-C键在合成应用方面很有价值。开始的研究工作是包括过渡金属氯化物,氧化物或氯氧化物,共催化剂如EtAlCl2或R4Sn,和包括O2,EtOH或PhOH的助催化剂的催化活性混合物。如WCl6/EtAlCl2/EtOH 1∶4∶1。这类物系催化烯烃的置换反应,但是它们的催化中心是未定的,也难以做到对它们的催化活性进行系控制。
近期的研究工作是针对明确定义的过渡金属络合物的置换活性催化剂。近20年的研究结果深入地认识了早期的过渡金属络合物催化烯烃的置换反应。但是,中间物的性质和第VIII族过渡金属催化剂的反应历程仍是难以理解的。特别是,钌和锇的置换中间物的氧化状态和络合物的形成仍是未知的。
美国专利5,312,940和5,342,909和美国专利申请号08/282,826和08/282,827叙述了第VIII族过渡金属的烯烃置换催化剂,特别是钌和锇卡宾络合物,在此引入作为参考。这些专利和申请中所公开的钌和锇卡宾络合物有如下的通式
其中M是钌和锇,X和X1是阴离子配位体,L及L1是中性电子给体。
美国专利5,312,940和5,342,909公开了特殊的乙烯亚烷基钌和锇的络合物及它们用于弯曲烯烃的催化开环置换聚合(“ROMP”)。这些专利所公开的所有特殊的亚烷基络合物中,R1是氢,R是一个取代的或未取代的乙烯基。例如,在那些专利中公开的一种优选的乙烯基亚烷基络合物是络合物A 其中Ph是苯基。
美国专利申请号08/282,826及08/282,827公开了特殊的乙烯基亚烷基钌和锇的络合物以及它们在催化各种置换反应中的应用。这些申请所公开的催化剂有特殊的中性电子给体配位体L和L1,即膦,其中至少一个取代基是一个仲烷基或环烷基。如在以上美国专利中,及在专利申请中所公开的所有特殊的亚烷基络合物中,R1是氢,R是一个取代的或未取代的乙烯基。例如,在这些专利申请中公开的一个优选的乙烯基亚烷基络合物是络合物B 其中Cy是环己基。
虽然以上专利和专利申请所公开的乙烯基亚烷基络合物具有高置换活性并对官能团有显著的稳定性,但这些络合物做为置换催化剂至少有两个缺点。第一,乙烯基亚烷基络合物的制备是一个多步骤的合成;第二,此乙烯基亚烷基络合物的引发速度较低。乙烯基亚烷基络合物的这两个问题对它们用做置换催化剂都是不希望的。多步骤的合成费时间,昂贵并可能收率低。引发速度低会使ROMP聚合物有宽的分子量分布并在闭环置换(“RCM”)反应中时间过长。
由于以上原因,需要明确定义的置换活性催化剂,它们有以下的特性第一,它们在各种官能团存在下是稳定的;第二,它们能催化各种置换反应,包括无环和无弯曲环烯烃;第三,它们的引发活性高;第四,它们容易制备。此外,还需要能催化有弯曲和无弯曲的环状烯烃ROMP,以生成多分散性很低的聚合物(即PDI≈1.0)的烯烃置换催化剂以及能在短反应时间内催化无环二烯的RCM的烯烃置换催化剂。

发明内容本发明满足了上述的需要,并对在各种官能团存在下稳定并可用于催化无弯曲环状和无环烯烃的烯烃置换反应的钌和锇的卡宾化合物,提供了明确的定义。本发明的化合物在置换反应中活性高并且引发速度高。
在本发明的一个实施方案中,钌和锇的卡宾化合物的通式为 其中M可以是Os或Ru;R1是氢;X和X1是可以不同也可以是相同的任何阴离子配位体;L和L1是可以不同或相同的任何中性电子给体;R可以是氢、取代或未取代的烷基或取代或未取代的芳基。
本发明钌和锇的卡宾络合物在各种官能团存在下是稳定的。因此烷基和芳基R基可以含一种或多种如下的官能团,包括醇,硫醇,酮,醛,酯,醚,胺,亚胺,酰胺,硝基,羧酸,二硫化物,碳酸酯,异氰酸酯,碳化二亚胺,碳烷氧基和卤素。
R优选的是氢,C1-C20烷基或芳基。C1-C20烷基可以任选地由一个或更多的芳基,卤素,羟基,C1-C20烷氧基或C2-C20烷氧基羰基所取代。芳基可以任选地由一个或更多的C1-C20烷基,芳基,羟基,C1-C5烷氧基,氨基,硝基或卤素所取代。
L和L1独立地选自膦,磺化膦,亚磷酸化物,次膦酸化物,膦酸化物,胂,锑,醚,胺,酰胺,亚砜,羧基,亚硝酰基,吡啶和硫醚。
L和L1优选的是式PR3R4R5的膦,其中R3是一个仲烷基或环烷基,R4和R5是芳基,C1-C10伯烷基,仲烷基或环烷基。R4和R5可以是相同或不同的。
L和L1最优选的是相同的-P(环己基)3,-P(环戊基)3或-P(异丙基)3。
X和X1优选独立地选自卤素,氢,C1-C20烷基,芳基,C1-C20烷氧化物,芳基氧化物,C3-C20烷基二酮酸化物,芳基二酮酸化物,C1-C20羧酸化物,芳基或C1-C20烷基磺酸化物,C1-C20烷硫基,C1-C20烷基磺酰基或C1-C20烷基亚磺酰基;每个都可任选地由C1-C5烷基,卤素,C1-C5烷氧基所取代,或被一任选地由卤素,C1-C5烷基或C1-C5烷氧基所取代的苯基所取代。
X和X1更优选独立地选自Cl,Br,I,H;苯甲酸化物,C1-C5羧酸化物,C1-C5烷基,苯氧基,C1-C5烷氧基,C1-C5烷硫基,芳基,或C1-C5烷基磺酰基;每一个任选地由C1-C5烷基所取代或由一个任选地由卤素,C1-C5烷基或C1-C5烷氧基所取代的苯基所取代。
X和X1独立地选自Cl,CF3CO2,CH3CO2,CFH2CO2,(CH3)3CO,(CF3)2(CH3)CO,(CF3)(CH3)2CO,PhO,MeO,EtO,甲苯磺酸化物,甲磺酸化物,和三氟甲基磺酸化物。
X和X1最优选的是相同的并且是氯。
在本发明的另一个实施方案中,钌和锇的卡宾化合物的通式为 其中M可以是Os或Ru;X和X1可以是不同或相同的任何阴离子配位体;L和L1可以是不同或相同的任何中性电子给体;R9和R10可以不同或相同,是氢,取代或未取代的烷基或取代未取代的芳基。R9和R10可以任选包括一个或多个以下官能团醇,硫醇,酮,醛,酯,醚,胺,亚胺,酰胺,硝基,羧酸,二硫化物,碳酸酯,异氰酸酯,碳化二亚胺,碳烷氧基和卤素基团。
本发明钌和锇的卡宾化合物可以用于催化烯烃的置换反应,包括,但不局限于,ROMP,RCM,不饱和聚合物的解聚,远螯聚合物的合成,和烯烃合成。
在ROMP反应中,本发明的一种化合物与一种环状烯烃相接触,生成ROMP聚合物产物。在RCM反应中,本发明的一种化合物与一种二烯相接触,生成一种闭环产物。在解聚反应中,本发明的一种化合物在一种无环的烯烃存在下和一种不饱和聚合物相接触生成解聚产物。在远螯聚合物的合成中,本发明的一种化合物在一种α,ω-二官能团烯烃存在下与一种环状烯烃相接触生成远螯聚合物。在烯烃合成反应中,本发明的一种化合物与一种或两种无环的烯烃相接触生成自-置换或交叉-置换的烯烃产物。
因为本发明的钌和锇卡宾化合物在各种官能团存在下是稳定的,在上述反应中所用的烯烃可以任选地由一种或多种如下官能团所取代,包括醇,硫醇,酮,醛,酯,醚,胺,亚胺,酰胺,硝基,羧酸,二硫化物,碳酸酯,异氰酸酯,碳化二亚胺,碳烷氧基和卤素基团。
上述反应可以在水相,质子性或有机溶剂中或这类溶剂的混合物中进行。反应也可以在无溶剂存在下进行。反应物可以处于气相或液相。
本发明的钌和锇的卡宾化合物可以用重氮基化合物,中性电子给体配位体交换法,用乙炔,用蓄积烯烃,交叉置换来合成,在一釜的反应方法中,用重氮基化合物和中性电子给体合成。
参考附图,可以更好地理解本发明,其中图1A和1B是在0℃下用RuCl2(=CHPh)(PCy3)2(络合物10),进行1-己烯的无环置换的动力学图;图2是RuCl2(=CH-p-C6H4Cl)(PCy3)2(络合物15)的ORTEP图。
具体实施方案简称Me,Ph,iPr或i-Pr,Cy,Cp,n-Bu及THF相应地指的是甲基,苯基,异丙基,环己基,环戊基,正丁基,四氢呋喃。
以前的研究工作已发现中性电子给体和阴离子配位体(如L,L1,X和X1)对钌和锇卡宾络合物的稳定性和应用的影响,但亚烷基部分(R和R1)变化的影响却并未研究过。研究这类取代基的作用之后,发现含本发明的特殊亚烷基部分的钌和锇的络合物和已前叙述的乙烯亚烷基络合物相比,具有异常高的引发速度。以下给出的定量数据显示出本发明的络合物的引发速度比相应的乙烯基亚烷基络合物的引发速度约高1000倍。除了具有这种异常高的引发速度外,本发明的络合物在各种官能团存在下是稳定的并具有高置换活性,使它们能够催化各种置换反应包括含有无环和无弯曲的环烯烃的置换反应。
本发明的化合物是通式如下的钌和锇的亚烷基络合物 其中R1是氢,R是选自以下叙述的特殊基团。一般X和X1可以是任何的阴离子配位体,L和L1可以是任何的中性电子给体。美国专利5,312,940和5,342,909和美国专利申请08/282,826和08/282,827详细叙述了X,X1,L和L1的特殊实施方案。
R可以是氢,取代或未取代的烷基或取代或未取代的芳基。本发明的钌和锇的卡宾络合物在各种官能团的存在下是稳定的。因此,烷基和芳基可以含各种官能团,包括醇,硫醇,酮,醛,酯,醚,胺,亚胺,酰胺,硝基,羧酸,二硫化物,碳酸酯,异氰酸酯,碳化二亚胺,碳烷氧基和卤素基团。
在一优选实施方案中,R是氢、C1-C20烷基或芳基。C1-C20烷基可以任选地被一个或多个芳基,卤素,羟基,C1-C20烷氧基或C2-C20烷氧基羰基所取代。芳基可以任选地被一个或多个C1-C20烷基,芳基,羟基,C1-C5烷氧基,氨基,硝基或卤素基团所取代。
在一个更优选的实施方案中,R是氢,C1-C4烷基,苯基,由一个或多个选自卤素,羟基和C2-C5烷氧基羰基所取代的C1-C4烷基,由一个或多个选自C1-C5烷基,C1-C5的烷氧基,氨基,硝基和卤素所取代的苯基。
在一个更优选的实施方案中,R可以是氢,甲基,乙基,正丁基,异丙基,-CH2Cl,-CH2CH2CH2OH,-CH2OAc,苯基。苯基可以任选地被一个氯,溴,碘,氟,-NO2,-NMe2,甲氧基或甲基所取代。在一更优选实施方案中,苯是对位取代的。
在一最优选实施方案中R是苯基。
本发明的优选络合物包括
其中R是环己基,环戊基,异丙基或苯基。
本发明最优选的络合物是 本发明的钌和锇的亚烷基络合物可以用不同的方法合成出来,包括P.Schwab等人所指出的方法,Angew.Chem.Int.Ed.Engl.34,2039-2041(1955)和J.Am.Chem.Soc.118,100-110(1996),两篇文章都在此引入作为参考。
本发明的钌和锇的络合物可以由重氮基烷烃经亚烷基转移而合成出来。合成方法可以一般地写成 其中M,X,X1,L,L1,R和R1以上已叙述过;m和n独立是0-3,但m+n=3;p是一个正整数。在重氮基合成中,式(XX1MLnL1m)p的化合物和式RC(N2)R1的重氮基化合物相接触生成本发明的一种亚烷基化合物。
本发明的钌和锇的络合物也可以按照美国专利5,312,940和5,342,909和美国专利申请08/282,826和08/282,827中公开的中性电子给体配位体交换来合成。
本发明的钌和锇的络合物也可以用交叉置换的方法合成。这种方法一般可以写成
其中R11和R12可以是相同的或不同的,可以是氢,取代或未取代的烷基或取代或未取代的芳基。
本发明的钌和锇的络合物也可以用炔类反应物合成出来。这种方法一般可以写成 在乙炔合成方法中,式(XX1MLnL1m)p的化合物和一种式R9CCR10的乙炔进行反应,生成本发明的一种亚烷基化合物。R9和R10可以相同也可以不同,可以是氢,取代或未取代的烷基,或取代或未取代的芳基。
本发明的钌和锇的络合物也可以用蓄积烯合成。这种方法一般可以写成 本发明的钌和锇络合物也可以用“一釜”的方法合成出来。这种方法一般可以写成 在这种方法中,式(XX1MLnL1m)p的化合物在一种中性电子给体L2的存在下与一种式RC(N2)R1的重氮基化合物相接触,生成本发明的一种亚烷基化合物。
本发明的催化剂在置换反应中有高活性,因而可用于催化各种置换反应,包括但不局限于,有弯曲或无弯曲环烯烃的ROMP,无环二烯的RCM,涉及至少一种无环或无弯曲环状烯烃的自置换和交叉置换反应,烯烃聚合物的解聚,无环二烯置换聚合(“ADMET”),炔聚合,羰基烯化作用,以及远螯聚合物的制备。
美国专利申请08/282,827详细叙述了ROMP,RCM,交叉置换,解聚和远螯聚合物的反应。本领域的技术人员用本发明的络合物进行这类反应时可以容易地确定合适的条件。任何在专利申请08/282,827中公开的反应和本发明的反应之间的明显区别都会在以下的详细叙述中加以指出。
R.Schlund等人在J.Am.Chem.Soc.1989,111,8004-8006以及L.Y.Park等人在Macromolecules 1991,24,3489-3495中叙述了炔的聚合,在此引入作为参考。K.A.Brown-Wensley等人在PureAppl.Chem.1983,55,1733-1744,A.Aguero等人在J.Chem.Soc.,Chem.Commun.1986,531-533,以及G.C.Bazan等人在Organometallics 1991,10,1062-1067叙述了羰基烯化作用,全部在此引入作为参考。K.B.Wagener在Macromolecules 1991,24,2649-2657中叙述了ADMET,在此引入作为参考。本领域的技术人员用本发明的络合物进行这类反应时可以容易地确定合适的条件。
我们现在叙述以上的合成和烯烃置换反应的特殊实例。为了清楚,详细的反应条件和步骤在最后“实验步骤”的一节中叙述。
亚烷基络合物的合成由重氮基烷经过亚烷基转移合成RuCl2(=CHR)(PPh3)2(络合物1-9)本发明的亚烷基络合物可以用RuCl2(PPh3)3和烷基,芳基以及二芳基重氮基烷的反应来合成。通常,合成反应在-78℃下进行,自发地放出N2,表示RuCl2(PPh3)3迅速与重氮基乙烷,重氮基丙烷或式p-C6H4XCHN2的对位取代的芳基重氮基烷反应,相应地生成RuCl2(=CHR)(PPh3)2(R=Me[络合物1],Et[络合物2])和RuCl2(=CH-p-C6H4X)(PPh3)2(X=H[络合物3],NMe2[络合物4],OMe[络合物5],Me[络合物6],F[络合物7],Cl[络合物8],NO2[络合物9]),(反应式1)。但是,在反应温度下,未发现与二苯基重氮甲烷或9-重氮基芴发生反应,与重氮基甲烷的反应生成了未确定产物的复杂混合物。
反应式1
络合物1-9以80-90%的收率被分离出来,产品呈绿色并且是在空气中稳定的固体。在所有的这类反应中,亚烷基部分由重氮基化合物转移至钌,已由亚烷基部分的Hα和Cα的特征低磁场-共振清楚地表明了。表I列出络合物3-9选出的NMR(核磁共振)数据。
表I
除非另外说明,核磁共振谱在CD2Cl2(ppm)中取得。
在C6D6(ppm)中。
与乙烯基亚烷基RuCl2(=CH-CH=(Ph2)(PPh3)2(络合物A)的结构特征相似,由于31P偶合这些共振是三重线的。这些光谱数据提出膦是彼此呈反式而且亚烷基单元是在P-Ru-P面上。此外,在络合物3-9中,Hα和Cα的化学位移和RuCl2(=CH-CH=CPh2)(PPh3)2(络合物A)(δHα=17.94,Cα=288.9ppm)相比较是低磁场的,这可能与络合物3-9的亚烷基单元相对降低了共轭作用有关。这种现象也可能和络合物1-9在溶液中相对不够稳定有关。这些络合物在几小时内经双分子途径而分解,这可由生成相应的二取代烯RCH=CHR(R=Me,Et,p-C6H4X)而得知。
经膦交换合成RuCl2(=CH-p-C6H4X)(PCy3)2(络合物10-16)为了拓宽三苯膦催化剂的合成应用,用膦交换的方法制成了和络合物3-9相似的烷基膦衍生物。在室温下,用2.2当量的三环己基膦处理络合物3-9,经过后处理,得到了高收率的RuCl2(=CH-p-C6H4X)(PCy3)2(X=H[络合物10],NMe2[络合物11],OMe[络合物12],Me[络合物13],F[络合物14],Cl[络合物15],NO2[络合物16])。产品是紫色(络合物11是绿色)微晶状固体。反应式如下反应式2 已完全检定过的化合物是在空气中稳定的固体,在溶液(CH2Cl2或C6H6)中,甚至加热至60℃或在醇,胺或水的存在下没有任何分解的迹象。选出的络合物10-16的溶液NMR数据列于表II中。由数据可以看出,与PPh3络合物3-9相反,在1H NMR中,络合物10-16的Hα共振中未观察到31P偶合。这些共振的化学位移取决于X取代基的电子性质。
表II
核磁共振谱在CD2Cl2(ppm)中取得。
a宽信号没有31P偶合表明亚烷基部分垂直于P-Ru-P-面,如在RuCl2(=CH-CH=CPh2)(PCy3)2(络合物B)中。同样,共振位移取决于X取代基的电子性质也表明在卡宾碳和亚苄基部分的芳香环之间存在着高度的共轭。
RuCl2(=CHPh)(PR3)2的一釜合成(络合物10,17和18)由于中间产物RuCl2(=CHPh)(PPh3)2(络合物3)在溶液中相对不稳定,RuCl2(=CHPh)(PCy3)2(络合物10)可以由RuCl2(PPh3)3合成得到,收率为75-80%。但是,不分离出络合物3,在RuCl2(PPh3)3用苯基重氮基甲烷处理后不久就在≈-50℃下加入三环己基膦,络合物10就能在所谓的“一釜合成”中和1小时之内几乎以定量的收率合成出来。可以用同样的步骤合成更易溶解的衍生物包括RuCl2(=CHPh)(PR3)2,其中R是Cp(络合物17)或R是iPr(络合物18)。这类化合物具有相似的置换活性。反应如下反应式3
亚甲基络合物RuCl2(=CH2)(PCy3)2(络合物19)的合成当RuCl2(=CH-CH=CPh2)(PCy3)2(络合物B)在100psi(磅/英寸2)压力和50℃下,在CD2Cl2中和乙烯反应,几小时内达到了平衡RuCl2(=CH-CH=CPh2)(PCy3)2(络合物B)和RuCl2(=CH2)(PCy3)2(络合物19),比率为80∶20。在反应温度和14psi乙烯下,几分钟内亚苄基RuCl2(=CHPh)(PCy3)2(络合物10)就定量地转化成亚甲基络合物19(反应式7)。
反应式7 分离出来的络合物19是一种红-紫色,在空气中稳定的固体。分析和光谱数据可以推知一个五配位钌的中心。亚甲基络合物在溶液中比亚苄基络合物10的稳定性低;在溶液(CH2Cl2,C6H6)中12小时后,观察到分解。催化剂溶液加热后,分解速度变大。在所有已分离出的亚甲基络合物包括RuCl(NO)(CH2)(PPh3)2和Ir=CH2(N(SiMe2-CH2PPh2)2)中,络合物19是第一个可分离出的有置换活性的亚甲基络合物。络合物19具有高活性并且显示对官能团和亚苄基络合物10有同样的稳定性,这可以从环辛烯和1,5-环辛二烯的ROMP以及二乙基二烯丙基丙二酸酯的闭环置换中看出。
交叉置换法合成取代的亚烷基络合物RuCl2(=CHPh)(PCy3)2(络合物10)的迅速和乙烯反应生成RuCl2(=CHPh)(PCy3)2(络合物19)促使这类置换研究的发明人推广至端部烯烃和二取代烯烃。虽然烯烃置换是一个平衡过程,在某些条件下,也可以把动态产物分离出来。确实,当络合物10在与十倍过量的丙烯,1-丁烯或1-己烯反应后,将定量地转化成式RuCl2(=CHR)(PCy3)2[R=Me(络合物20),R=Et(络合物21),R=n-Bu(络合物22)]等相应的亚烷基化合物。在每种情况下,生成了等摩尔数量的苯乙烯并用光谱进行了鉴定(反应式4)。
反应式4 分离出的化合物20-22在稳定性和溶解度方面和前体络合物10类似,并在大量过量的(30-50当量)苯乙烯存在下会再转化成前体络合物10。二取代烯烃顺-2-丁烯和顺-3-己烯的置换反应将由亚苄基络合物10生成RuCl2(=CHP)(PCy3)2。但是,由于这类烯烃的位阻效应,和相应的端烯烃相比,反应速度显著降低了。前体络合物10和3,3-二甲基-1-丁烯不发生反应,金属部分和进入烯烃的空间相互作用也被认为是和20当量3-甲基-1-丁烯的反应速度慢的原因。予期的亚烷基RuCl2(=CHiPr(PCy3)2用NMR鉴定,但它的浓度在反应过程中始终是低的并且不变。6小时以后,引发结束,分离出唯一的反应产物是亚甲基络合物19。如果络合物20-22的RuCl2(=CHR)(PCy3)2的亚烷基化合物在生成后没有立即分离出来,那它就会与过量烯烃反应并在10-15小时内生成RuCl2(=CH2)(PCy3)2(络合物19)(反应式8)。
反应式8
在以下提出的反应方案I中,络合物10很可能与端烯烃反应迅速生成金属环丁烷中间产物I,两个取代基(Ph和R)由于空间的原因是在1,3...位上。中间的金属环状物分裂生成动态产物亚烷基络合物20-22。
反应方案I 延长反应时间,亚烷基络合物RuCl2(=CHR)(PCy3)2(络合物20-22)和过量的烯烃进行慢速反应可能经过中间的金属环丁烷II生成亚甲基络合物19。RuCl2(=CH2)(PCy3)2(络合物19)是热力学产物,在稀浓度的条件下它不再置换α-烯烃。
共轭和蓄积烯烃的置换用十倍过量的1,3-丁二烯和1,2-丙二烯处理RuCl2(=CHPh)(PCy3)2(络合物10),相应地得到高收率的乙烯基亚烷基化合物RuCl2(=CH-CH=CH2)(PCy3)2(络合物23)和亚乙烯基化合物RuCl2(=C=CH2)(PCy3)2(络合物24),(反应式5)。前一个络合物不能通过环丙烯开环的方法合成。
反应式5
这些络合物的光谱数据和有关的化合物RuCl2(=CH-CH=CPh2)(PCy3)2(络合物B)和RuCl2(=C-CH-叔丁基)(PPh3)2是相似的。和在合成RuCl2(=CHR)(PCy3)2[R=Me(络合物20),Et(络合物21),n-Bu(络合物22)]中观察到的结果不同,在延长反应时间中并未生成亚甲基化合物RuCl2(=CH2)(PCy3)2(络合物19)。这可以用络合物23和24对它们的烯烃前体活性低来解释。但是,络合物23和24都有ROMP活性,在前者,可以观察到环辛烯(PDI=2.0)慢速的聚合。亚乙烯基络合物24快速地聚合降冰片烯,虽然由于缺乏特征的颜色变化而指明引发速度较慢,两种化合物对无环烯烃的置换都没有活性。
用置换法引入官能团虽然比它们早期的过渡金属对应物的活性要低,但钌的亚烷基化合物由于容忍官能团和质子性介质具有更广的合成应用前景。发明人已指出乙烯基亚烷基化合物RuCl2(=CH-CH-CPh2)(R=Rh,络合物A;或R=Cy,络合物B)容易地和富电子的烯烃反应,如乙烯基醚H2C=CH-OR’,生成无置换活性的RuCl2(=CH-OR’)(PR3)2。发明人已把这个不可逆反应广泛地用于聚合物增长链的封端。缺电子的烯烃不和三苯膦催化剂RuCl2(=CH-CH=CPh2)(PPh3)2(络合物A)发生置换反应,而三环己基膦催化剂RuCl2(=CH-CH=CPh2)(PCy3)2(络合物B)只对作用物显示有限的活性。但是,亚苄基催化剂络合物10提高了的活性推动了对这个反应进行更多的研究。在反应式6中,亚苄基络合物10催化已官能化烯烃的置换反应已不只局限于富电子的烯烃,如烯丙基乙酸酯,还包括缺电子烯烃,如烯丙基氯。亚苄基络合物10能对未保护的烯-醇进行有效的置换反应,如图中的4-戊烯-1-醇,生成相应的羟基亚烷基化合物RuCl2(=CH(CH2)3OH(PCy3)2(络合物27)(反应式6)。
反应式6 化合物25-27已分离出并已得到充分鉴定。在所有情况下,亚烷基Hα共振由于和邻位CH2基的偶合是三重的。亚烷基化合物25-27在低弯曲烯烃的ROMP中是有活性的,因此它们对合成远螯和其它官能团的聚合物是有吸引力的催化剂。
亚烷基络合物作为置换催化剂的应用RuCl2(=CH-p-C6H4X)(PPh3)2(络合物3-9)催化聚合降冰片烯的动力学研究络合物3-9在CH2Cl2中和室温下聚合降冰片烯,速率为≈150当量/时,定量收率地生成聚冰片烯。所有的反应都伴有特征的由绿-棕至橙的颜色变化,表示引发已完成。得到的聚合物由1H NMR确定几乎90%是反式的。但是本催化剂几乎仅生成单分散聚合物(PDIs=1.04-1.10,而RuCl2(=CH-CH=CPh2)(络合物A)为1.25),与测得的引发速度一致。对RuCl2(=CH-CH=CPh2)(PPh3)2(络合物A),观察到络合物3-9满足了活性系统的总要求,因为增长的亚烷基(1H NMRδ17.79ppm(dt))在反应过程中是稳定的,聚合物的分子量对[催化剂]/[单体]的比率显示出线性关系。
亚烷基部分中的对位取代基对置换活性的影响已定性地确定了。以络合物3-9(RuCl2(=CH-p=C6H4X)(PPh3)2,为基质的催化剂,[Ru]=O.022M)在CH2Cl2溶液中用降冰片烯处理([单体]=0.435M)。把络合物3-9Hα共振对增长的亚烷基部分的相应共振进行积分,分别监测单体对内标物二茂铁浓度下降,得到了引发和增长的准一级速度常数。ki和kp的导出值列于表III中。
表III
a[Ru]=0.022M;[降冰片烯]=0.435M,在C6D6中,17℃由表III可以看出,在RuCl2(=CH-p-C6H4X)(PPh3)2中X的电子对引发速度的影响较小在最快情况(X=H[络合物3])下只比最慢(X=Cl[络合物8])约快10倍。未观察到取代基X的电子影响的一般趋势。在同样反应条件下,用RuCl2(=CH-CH=CPh2)(PPh3)2(络合物A),观察到的引发是<50%。当降冰片烯已全部消耗完毕,未引发的卡宾可用光谱检测到。用外推法求得ki/kp比率=6×10-3约比观察到络合物3-9的约小1000倍。这些结果说明共轭会降低ki,很可能是由于和类似的金属环丁烯中间物相比,降低了络合物3-9的开始亚芳基的基态能的缘故。虽然络合物3-9的亚苄基形式和RuCl2(=CH-CH=(Ph2)(PPh3)2(络合物A)相比是更好的引发剂,但前者用做置换催化剂也同样局限于相对较高弯曲的环状烯的ROMP,如降冰片烯和环丁烯衍生物,它们计算的弯曲能超过10-15kcal/mol。
RuCl2(=CH-p-C6H4X)(PCy3)2(络合物10-16)的ROMP活性亚苄基化合物RuCl2(=CH-p-C6H4X)(PCy3)2(络合物10-16)和它们的PPh3相似物络合物3-9相比是活性非常高的ROMP催化剂。除降冰片烯外,高弯曲单体的ROMP包括官能团化的降冰片烯,7-氧杂降冰片烯和各种取代的环丁烯被证明是有活性的可以生成极窄分子量分布(PDIs<1.1)的聚合物。和RuCl2(=CH-CH=CPh2)(PCy3)2(络合物B)相似,络合物10-16也可以聚合低弯曲的环烯烃,如环辛烯,1,5-环辛二烯。虽然相应的聚合物是非单分散的(PDI≈1.50-1.60),聚合反应比用RuCl2(=CH-CH=CPh2)(PCy3)2(络合物B)做催化剂(PDI≈2.50)时进行得更快而且多分散性更低。但是,这类反应由于发生了“反-卡”因而PDIs宽了,因此,这类聚合反应不能被认为是有活性的,甚至用络合物10进行环辛二烯的ROMP时用1H NMR(δ18.88(t))观察到亚烷基的增长时也是这样。
络合物10也和环八丁烷在CD2Cl2中反应,引发完全,但未见增长,但是容易的反-卡导致生成苯。络合物10-16比RuCl2(=CH-CH=CPh2)(PCy3)2(络合物B)的活性高是由于较快的引发速度的缘故。最近研制出的催化剂混合物含[(甲基异丙基苯)RuCl2]2,一个大叔膦和三甲基甲硅烷基重氮基甲烷,发现能催化环丁烯的ROMP。
无环烯烃的置换发明人最近指出乙烯基亚烷基化合物RuCl2(=CH-CH=CPh2)(PCy3)2(络合物B)对无环烯烃,如顺-2-戊烯具有置换活性。虽然和最好的钨和钼基催化剂相比转换数只是适中的,乙烯基亚烷基化合物RuCl2(=CH-CH=CPh2)(PCy3)2(络合物B)是第一个由钌卡宾络合物引发的非环状置换的实例。但是,慢速引发是它用做催化剂的一个现实限制。由于它们在ROMP中异常高的活性,络合物10-16是有效的非环状置换催化剂,一个有代表性的是亚苄基化合物RuCl2(=CHPh)(PCy3)2(络合物10),下面将加以讨论。
RuCl2(=CH-p-C6H4X)(PCy3)2(络合物10-16)的动学研究X的电子对RuCl2(=CH-p-C6H4X)(PCy3)2(络合物10-16)的引发速度的影响,可以通过观察1-己烯的反应而得知。在所有情况下都观察到完全和定量地转化成亚戊基RuCl2(=CH-n-Bu)(PCy3)2络合物22。用苄基络合物10-16的Hα共振的积分与亚戊基络合物22的比值求得了准一级速度常数。有代表性的曲线在图1A和1B中示出,引发速度常数(ki)列于表IV中。
表IV
a[Ru]=0.01M;[1-己烯]=3.2M,在CD2Cl2中,在T=0℃。
降冰片烯的带催化剂RuCl2(=CH-p-C6H4X)(PPh3)2(络合物3-9)的活性-ROMP中所看到的,在取代的亚苄基中ki的范围约在一个数量级内。虽然还看不出总的趋向,但任何对芳族π-体系(X≠H)的干扰都会降低引发速度。RuCl2(=CHPh)(PCy3)2(络合物10)比乙烯基RuCl2(=CH-CH=CPh2)(PCy3)2(络合物B)引发约快1000倍,后者在上述条件下生成亚戊基络合物22的反应不完全。
典型的络合物的结构RuCl2(=CH-p-C6H4Cl)(PCy3)2(络合物15)的X射线衍射研究络合物10-16的代表,氯取代的亚苄基化合物RuCl2(=CH-p-C6H4Cl)(PCy3)2的结构进一步被单晶X射线衍射研究所确认。此络合物的ORTEP图在图2中示出,选定的键长和键角在表V中给出。分析显示畸变正方金字塔形的配位和一几乎直线Cl(1)-Ru-Cl(2)的角(167.61°)。卡宾单元垂直于P1-Ru-P2面,而芳基配位体只是轻微地扭转到偏离Cl 1-Ru-Cl2面。Ru-Cl的键长(1.838(3))短于有关的化合物RuCl2(=CH-CH-CPh2)(PCy3)2[d(Ru-C)=1.851(21)]或RuCl(=C(OMe)-CH=CPh2)(CO)(Pi-Pr3)2[RuCl2(=CH-CH=CPh2)(PCy3)2F4][d-(Ru-C)=1.874(3)中相应的键长。
表V
实验部分通用实验步骤所有的操作都在氩气保护下用标准的Schlenk技术。氩气通过内装BASF R3-11催化剂(Chemalog)和4分子筛(Linde)而提纯。固体有机金属化合物在一充氮的真空干燥箱中或在氩气保护下转移和贮存。NMR谱取自一台QE-300Plus(300.1MHz1H;75.5MHz13C),一台JEOL GX-400(399.7MHz1H;161.9MHz31P)或一台BrukerAM 500(500.1MHz1H;125.8MHz13C;202.5MHz31P;470.5MHz19F)光谱仪。
二氯甲烷和苯通过装有活化氧化铝的柱后在氩气保护下贮存。苯-d6和二氯甲烷-d2经连续冷冻-泵送-熔化三个循环脱气。RuCl2(PPh3)3,三环己基膦,重氮基烷,H2CN2,MeCHN2,EtCHN2,PhCHN2,p-C6H4NMe2CHN2,p-C6H4OMeCHN2,p-C6H4MeCHN2,p-C6H4FCHN2,p-C6H4ClCHN2和p-C6H4NO2CHN2是按照文献步骤制得。降冰片烯在钠上干燥,在真空下转移,贮存在氩气中。环辛烯,1,5-环辛二烯和1,3,5,7-环辛四烯在CaH2上干燥,在氩气保护下蒸馏并贮存。以下化学品系由市场购得并直接使用乙烯,丙烯,1-丁烯,顺-2-丁烯,1-己烯,顺-3-己烯,3-甲基-1-丁烯,3,3-二甲基-1-丁烯,1,3-丁二烯,1,2-丙二烯,乙酸烯丙酯,烯丙基氯,4-戊烯-2-醇,二乙基丙二酸二烯丙酯,三异丙基膦,三环戊基膦,戊烷,乙醚,丙酮和甲醇。
RuCl2(=CHMe)(PPh3)2和RuCl2(=CHEt)(PPh3)2(络合物1和2)的合成一种RuCl2(PPh3)3(417mg,0.43mmol)在CH2Cl2(10ml)的溶液在-78℃下用一种-50℃,在乙醚中的0.50M重氮基乙烷(1.90ml,0.93mmol,2.2当量)处理。加入重氮基乙烷时,观察到颜色由橙-棕变至绿-棕色并且轻微地冒泡。取走冷浴,溶液搅拌3分钟,然后蒸干。油状残余物用少量冰冷的乙醚(3ml部分)洗涤数次。剩余的橄榄绿色的固体RuCl2(=CHMe)(PPh3)2在真空下干燥数小时。收率=246mg(78%)。
1H NMR(CD2Cl2)δ18.47(tq,JPH=10.2Hz,3JHH=5.1Hz,Ru=CH),7.68-7.56and 7.49-7.36(both m,P(C6H5)3),2.59(d,3JHH5.1Hz,CH3).13C NMR(CD2Cl2)δ320.65(t,JPC=9.9Hz,Ru=CH),134.76(m,o-C of P(C6H5)3),132.06(m,ipso-C of P(C6H5)3),130.38(s,p-C ofP(C6H5)3),128.44(m,m-C of P(C6H5)3).31P NMR(CD2Cl2)δ29.99(s,PPh3).
分析C38H34Cl2P2Ru,计算C,62.99;H,4.73,测得C,63.12;H,4.61。
用相同的步骤,制得RuCl2(=CHEt)(PPh3)2,原料为RuCl2(PPh3)3(502mg,0.52mmol)和0.45M在乙醚溶液中的重氮基丙烷(2.56ml,1.15mmol,2.2当量)。得到了橙-棕色微晶固体。收率=311mg(81%)。
1H NMR(C6D6)δ18.21(tt,JPH=10.8,3JHH6.6Hz,Ru=CH),7.91-7.86 and 6.97-6.80(both m,P(C6H5)3),3.11(dq,3JHH=3JHH,=6.6Hz,CH2CH3),0.79(t,3JHH=6.6Hz,CH2CH3).13C NMR(CD2Cl2)δ320.88(t,JPC=10.0Hz,Ru=CH),134.36(m,o-C of P(C6H5)3,132.27(m,ipso-C of P(C6H5)3),129.89(s,p-C ofP(C6H5)3),128.14(m,m-C of P(C6H5)3),53.20(s,CH2CH3),29.74(s,CH2CH3).31P NMR(CD2Cl2)δ30.02(s,PPh3).
分析C39H36Cl2P2Ru,计算C,63.42;H,4.91。测得C,62.85;H,4.81。
RuCl2(=CHPh)(PPh3)2(络合物3)的合成一种RuCl2(PPh3)2(2.37g,2.47mmol)在CH2Cl2(20ml)中的溶液在-78℃下用一种-50℃的苯基重氮基甲烷(584mg,4.94mmol,2.0当量)在CH2Cl2或戊烷(3ml)中的溶液处理。观察到颜色由橙-棕至棕-绿的自然变化,同时剧烈冒泡。除去冷浴,溶液搅拌5分钟并浓缩至3ml。加入戊烷(20ml),沉淀出绿色固体,用套管过滤将其由棕色母液中分出,溶于CH2Cl2(3ml),用戊烷将其沉淀出来。重复这种步骤直至母液几乎无色为止。剩余的灰-绿色微晶固体在真空下干燥数小时。收率=1.67g(89%)。1H NMR(C6D6)δ19.56(t,JPH=10.2Hz,Ru=CH),7.80-7.64 and 6.99-6.66(both m,C6H5and P(C6H5)3).13C NMR(CD2Cl2)δ310.12(t,JPC=11.4Hz,Ru=CH),155.36(s,ipso-C of C6H5),134.91(m,m-Cor o-C of P(C6H5)3),133.97(d,JPC19.6Hz,ipso-C of P(C6H5)3),130.44(s,p-C of P(C6H5)3),130.03,128.71 and 127.09(all s,C6H5),128.37(s(br.),m-C or o-C of P(C6H5)3).31P NMR(CD2Cl2)δ30.63(s,PPh3).
分析C43H36Cl2P2Ru,计算C,65.65;H,4.61;P,7.87。测得C,65.83;H,4.59;P,7.93。
RuCl2(=CH-p-C6H4NMe2)(PPh3)2(络合物4)的合成一种在CH2Cl2(10ml)中的RuCl2(PPh3)3(466mg,0.49mmol)的溶液在-78℃下用-50℃的p-C6H4NMe2CHN2(160mg,0.98mmol,2.0当量)在CH2Cl2(3ml)中的溶液处理。观察到颜色由橙-棕至棕-绿色的自然变化,同时剧烈冒泡。除去冷浴,溶液搅拌10分钟,在真空下除去溶剂。棕色残余物溶解在最少量的CH2Cl2(3ml)中,加入戊烷(20ml)沉淀出绿色固体。用套管过滤,并重复此步骤直至滤液呈无色时为止。剩下的橄榄绿微晶固体在真空下干燥数小时。收率=317mg(78%)。1H NMR(CD2Cl2)δ18.30(t,JPH=6.1Hz,Ru=CH),7.64(d,3JHH=8.7Hz,o-H of C6H4NMe2),7.52-7.49(m,o-H of P(C6H5)3),7.42(t,3JHH=7.5Hz, p-H ofP(C6H5)3,7.33(t,3JHH=7.5Hz, m-H of P(C6H5)3),6.32(d,3JHH=8.7Hz, m-H of C6H4NMe2),2.96(s,N(CH3)2).13C NMR(CD2Cl2)δ309.68(t,JPC11.4Hz,Ru=CH),152.72(s,ipso-C ofC6H4NMe2),135.01(m,m-C or o-C of P(C6H5)3),133.57(s,o-C or m-C of C6H4NMe2),131.86(s,Cof P(C6H5)3),130.20(s,o-C or m-C of C6H4NMe2),128.27(m,m-C or o-C of P(C6H5)3),127.54(s(br.),p-C of C6H4NMe2),110.61(d,JPC=21.5Hz,ipso-C of P(C6H5)3,40.30(s,N(CH3)2.31PNMR(CD2Cl2)δ34.84(s,PPh3).
分析C45H41Cl2NP2Ru,计算C,65.14;H,4.98;N,1.69。测得C,65.28;H,4.97;N,1.80。
RuCl2(=CH-p-C6H4OMe)(PPh3)2(络合物5)的合成一种在CH2Cl2(12ml)中的RuCl2(PPh3)2(561mg,0.59mmol)的溶液在-78℃下用-40℃的p-C6H4OMeCHN2(87mg,0.59mmol,1.0当量)在CH2Cl2(3ml)中的溶液处理。观察到颜色由橙-棕至棕-绿色的自然变化,同时剧烈冒泡。除去冷浴,溶液搅拌5分钟,在真空下除去溶剂。棕-绿色残余物溶解在最少数量的CH2Cl2(2ml)中,加入戊烷(20ml),沉淀出棕色固体。棕-绿色溶液用套管过滤分离,在真空下干燥。剩余的橄榄绿色固体,络合物5,重复用乙醚(10ml份)洗涤,在真空下干燥数小时。收率重400mg(83%)。1H NMR(C6D6)δ19.39(t,JPH=8.7Hz,Ru=CH),7.85-7.72 and 7.03-6.80(both m,C6H4OMe and P(C6H5)3,6.41(d,3JHH=8.7Hz,m-H of C6H4OMe),3.22(s.OCH3).13C NMR(CD2Cl2);δ309.20(t,JPC=107Hz,Ru=CH),147.42(s,ipso-C of C6H4OMe),135.56(pseudo-t,m-C or o-C of P(C6H5)3,133.98(s,o-C orm-C of C6H4OMe),131.46(s,p-C of P(C6H5)3),130.43(s,o-C or m-C of C6H4OMe),128.40(pseudo-t,m-C or o-C of P(C6H5)3,126.82(s,p-C of C6H4OMe),113.95(d,JPC=21.4Hz,ipso-C ofP(C6H5)3,55.77(s,OCH3).31P NMR(CD2Cl2)δ32.50(s,PPh3).
分析C44H38Cl2OP2Ru,计算C,64.71;H,4.69。测得C,65.23;H,4.78。
RuCl2(=CH-p-C6H4Me)(PPh3)2(络合物6)的合成与合成络合物5的技术相同,由RuCl2(PPh3)3(350mg,0.37mmol)和p-C6H4MeCHN2(48mg,0.37mmol,1.0当量)制成了RuCl2(=CH-p-C6H4Me)(PPh3)2。得到了一种棕色的微晶固体。收率=258mg(87%)。
1H NMR(C6D6)δ19.55(t,JPH=9.6Hz,Ru=CH),7.84-7.63 and 7.02-6.80(both m,C6H4Me and P(C6H5)3),6.53(d,3JHH=7.8Hz,m-H of C6H4Me),1.68(s,CH3).13C NMR(CD2Cl2)δ309.17(t,JPC=10.9Hz,Ru=CH),153.34(s,ipso-C of C6H4Me),135.50(s,o-C or m-C of C6H4OMe),134.96(m,m-C or o-C ofP(C6H5)3,132.13(s,p-C of P(C6H5)3),130.39(s,o-C or m-C of C6H4Me),128.34(m,m-C or o-C ofP(C6H5)3),126.76(s,p-C of C6H4Me),115.23(d,JPC=21.4Hz,ipso-C of P(C6H5)3),40.92(s,CH3).31P NMR(CD2Cl2)δ31.29(s,PPh3).
分析C44H38Cl2P2Ru,计算C,66.00;H,4.78。测得C,65.90;H,4.75。
RuCl2(=CH-p-C6H4F)(PPh3)2(络合物7)的合成与合成络合物3的技术相同,由RuCl2(PPh3)3(960mg,1.00mmol)和p-C6H4FCHN2(272mg,2.00mmol,2.0当量)制得了RuCl2(=CH-p-C6H4F)(PPh3)2。络合物7按照和络合物3相似的方法合成出来。得到了一种橄榄绿色的微晶固体。收率=716mg(89%)。
1H NMR(CD2Cl2)δ19.24(t,JPH=9.0Hz,Ru=CH),7.65-7.62(m,o-H of C6H4F),7.50-7.44 and 7.35-7.32(both m,P(C6H5)3,6.62(t,3JHH=3JHF=8.9Hz,m-Hof C6H4F),152.21(s,ipso-C of C6H4F),134.95(m,m-C or o-C of P(C6H5)3),134.04(d,JCF=19.5Hz,m-C of C6H4F),130.56(s,p-C of P(C6H5)3),130.08(d,JCF=8.7Hz,o-C of C6H4F),128.47(m,m-C or o-C of P(C6H5)3,115.67(d,JPC=21.8Hz,ipso-C of P(C6H5)3).31P NMR(CD2Cl2)δ31.03(s,PPh3).19F NMR(CD2Cl2)δ45.63(s,C6H4F).分析C43H35Cl2FP2Ru,计算C,64.18;H,4.38。测得C,64.42;H,4.42。
RuCl2(=CH-p-C6H4Cl)(PPh3)2(络合物8)的合成采用和实例2的相同技术,由RuCl2(PPh3)3(350mg,0.37mmol)和p-C6H4ClCHN2(111mg,0.73mmol,2.0当量)合成了RuCl2(=CH-p-C6H4Cl)(PPh3)2。得到了一种绿色的微晶固体。收率=246mg(82%)。
1H NMR(CD2Cl2);δ19.27(t,JPH=9.2Hz,Ru=CH),7.51-7.44,7.35-7.32 and 6.67-6.63(all m,C6H4Cl and P(C6H5)3),6.86(d,3JHH=8.8Hz,m-H of C6H4Cl).13C NMR(CD2Cl2)δ307.34(t,JPC=10.6Hz,Ru=CH),153.82(s,ipso-C ofC6H4Cl),134.91(m,m-C or o-C of P(C6H5)3),130.58(s,p-C of P(C6H5)3,128.87,128.81 and 127.85(all s,C6H4Cl),128.48(s(br.),m-C or o-C of P(C6H5)3,115.90(d,JPC=21.7Hz,ipso-C ofP(C6H5)3).31P NMR(CD2Cl2)δ30.47(s,PPh3).
分析C43H35Cl3P2Ru,计算C,62.90;H,4.30。测得C,62.87;H,4.40。
RuCl2(=CH-p-C6H4NO2)(PPh3)2(络合物9)的合成采用和合成络合物3的相同技术,由RuCl2(PPh3)3(604mg,0.63mmol)和p-C6H4NO2CHN2(206mg,1.25mmol,2.0当量)。得到了褐色的微晶固体。收率=398mg(76%)。
1H NMR(CD2Cl2)δ19.47(t,JPH=10.8Hz,Ru=CH),7.88-7.67,7.38-7.33 and 7.02-6.71(all m,C6H4NO2and P(C6H5)3.13C NMR(CD2Cl2)δ313.43(t,JPC=11.2Hz,Ru=CH),158.40(s,ipso-C of C6H4NO2),148.11(s,p-C of C6H4NO2),135.49(m,m-C or o-C of P(C6H5)3),132.21(s,m-C of C6H4NO2),130.91(s,p-C of P(C6H5)3,130.72(s,o-C of C6H4NO2),128.86(m,m-C or o-Cof P(C6H4)3,116.03(d,JPC=21.6Hz,ipso-C of P(C6H5)3).31P NMR(CD2Cl2)δ32.27(s,PPh3).分析C43H35Cl2NO2P2Ru,计算C,62.10;H,4.24;N,1.68。测得C,62.31;H,4.66;N,1.84。
RuCl2(=CHPh)(PCy3)2(络合物10)的合成一种RuCl2(=CHPh)(PPh3)2(242mg,0.31mmol)在CH2Cl2(10ml)中的溶液和三环己基膦(190mg,0.68mmol,2.2当量)在CH2Cl2(3ml)的溶液在室温下搅拌30分钟。溶液过滤,在真空下除去溶剂。残余物多次用丙酮或甲醇(5ml部分)洗涤,并在真空下干燥。得到了紫色的微晶固体。收率290mg(89%)。
1H NMR(CD2Cl2)δ20.02(s,Ru=CH)(s,Ru=CH),8.44(d,3JHH=7.6Hz,o-H of C6H5),7.56(t,3JHH=7.6Hz,p-H of C6H5),7.33(t,3JHH=7.6Hz,m-H of C6H5),2.62-2.58,1.77-1.67,1.46-1.39 and 1.25-1.16(all m,P(C6H11)3.13C NMR(CD2Cl2)δ294.72(s,Ru=CH),153.17(s,ipso-C of C6H5),131.21,129.49 and 129.27(alls.C6H5),32.49(pseudo-t,Japp=9.1Hz,ipso-C of P(C6H11)3),30.04(s,m-C of P(C6H11)3,28.24(pseudo-t,Japp=4.5Hz,o-C of P(C6H11)3),26.96(s,p-C of P(C6H11)3).31P NMR(CD2Cl2)δ36.61(s,PCy3).
分析C43H72Cl2P2Ru,计算C,62.76;H,8.82。测得C,62.84;H,8.71。
RuCl2(=CHPh)(PCy3)2(络合物10)的一釜合成一种RuCl2(PPh3)3(4.0g,4.17mmol)在CH2Cl2(40ml)的溶液在-78℃下用一种-50℃的苯基重氮基甲烷(986mg,8.35mmol,2.0当量)在戊烷(10ml)中的溶液处理。加入重氮基化合物,可以观察到颜色由橙-棕自然变化成绿-棕色,同时剧烈冒泡。反应混合物在-70℃至-60℃下搅拌5-10分钟后,用注射器加入三环己基膦(2.57g,9.18mmol,2.2当量)在CH2Cl2中的溶液。出现颜色由棕-绿至红色的变化,溶液允许升至室温,搅拌30分钟。将溶液过滤,浓缩成一半的体积并过滤。加入甲醇(100ml),沉淀出紫色微晶固体,络合物10,将其滤出,用丙酮和甲醇(10ml部分)洗涤几次,在真空下干燥几小时。收率3.40g(99%)。
RuCl2(=CH-p-C6H4NMe2)(PCy3)2(络合物11)的合成用RuCl2(=CH-p-C6H4NMe2)(PPh3)2(316mg,0.38mmol)和三环己基膦(235mg,0.84mmol,2.2当量)做原料,步骤和合成络合物10的相同,得到了绿色的微晶固体RuCl2(=CH-p-C6H4NMe2)(PCy3)2。收率284mg(86%)。
1H NMR(CD2Cl2)δ18.77(s,Ru=CH),8.25-8.14(s(vbr.),o-H of C6H4NMe2),6.55(d,3JHH=7.2Hz,m-H of C6H4NMe2),2.97(s,N(CH3)2),2.63-2.61,1.80-1.67,1.43-1.41 and 1.21-1.17(all m,P(C6H11)3).13C NMR(CD2Cl2)δ286.13(s(br.);Ru=CH),151.28(s;ipso-C of C6H4NMe2),144.80,134.85 and 110.50(all s;C6H4NMe2),40.30(s,N(CH3)2,32.54(pseudo-t,Japp=8.2Hz,ipso-C of P(C6H11)3),30.10(s,m-C of P(C6H11)3),28.36(m,o-C of P(C6H11)3),27.07(s,p-C ofP(C6H11)3.31P NMR(CD2Cl2);δ34.94(s,PCy3).
分析C45H77Cl2NP2Ru,计算C,62.41;H,8.96;N,1.62。测得C,62.87;H,9.04;N,1.50。
RuCl2(=CH-p-C6H4OMe)(PCy3)2(络合物12)的合成用RuCl2(=CH-p-C6H4OMe)(PPh3)2(171mg,0.21mmol)和三环己基膦(130mg,0.46mmol,2.2当量)做原料,步骤和合成络合物10的相同,得到了暗紫色的微晶固体RuCl2(=CH-p-C6H4OMe)(PCy3)2。收率152mg(85%)。
1H NMR(CD2Cl2)δ19.48(s,Ru=CH),8.43(s(br.),o-H of C6H4OMe),6.82(d,3JHH=8.6Hz,m=H of C6H4OMe),3.82(s,OCH3),2.64-2.59,1.78-1.68,1.46-1.39 and 1.26-1.15(all m,P(C6H11)3,13C NMR(CD2Cl2);δ290.90(s(br.),Ru=CH),148.34(s,ipso-C of C6H4OMe),134.91,132.30 and 128.83(all s,C6H4OMe),55.81(s,OCH3),32.51(pseudo-t,Japp=9.1Hz,ipso-C ofP(C6H11)3),30.06(s,m-C of P(C6H11)3),28.28(pseudo-t,Japp=5.2Hz,o-C of P(C6H11)3),27.00(s,p-C of P(C6H11)3).31P NMR(CD2Cl2)δ35.83(s,PCy3).
分析C44H74Cl2OP2Ru,计算C,61.96;H,8.74。测得C,62.36;H,8.71。
RuCl2(=CH-p-C6H4Me)(PCy3)2(络合物13)的合成用RuCl2(=CH-p-C6H4Me)(PPh3)2(416mg,0.52mmol)和三环己基膦(321mg,1.14mmol,2.2当量)做原料,步骤和合成络合物10的相同,得到了淡-紫色的微晶固体RuCl2(=CH-p-C6H4Me)(PCy3)2。收率385mg(88%)。
1H NMR(CD2Cl2)δ19.80(s,Ru=CH),d,3JHH=7.6Hz,o-H of C6H4Me),7.13(d,3JHH=7.6Hz,m-H of C6H4Me),2.08(s,CH3),2.62-2.58,1.77-1.67,1.43-1.40 and 1.22-1.17(all m,P(C6H11)3).13C NMR(CD2Cl2)δ293.86(t,JPC=8.3Hz,Ru=CH),141.48(s,ipso-C of C6H4Me),131.56 and129.85(both s,C6H4Me),32.52(pseudo-t,Japp=9.2Hz,ipso-C of P(C6H11)3),30.07(s,m-C ofP(C6H11)3),28.26(pseudo-t,Japp=4.1Hz,o-C of P(C6H11)3),27.00(s,p-C of P(C6H11)3),22.39(s,CH3).31P NMR(CD2Cl2)δ36.09(s,PCy3).
分析C44H74Cl2P2Ru,计算C,63.14;H,8.91。测得C,63.29;H,8.99。
RuCl2(=CH-p-C6H4F)(PCy3)2(络合物14)的合成用RuCl2(=CH-p-C6H4F)(PPh3)2(672mg,0.84mmol)和三环己基膦(515mg,1.84mmol,2.2当量),步骤与合成络合物10的相同,得到了紫色的微晶固体。收率583mg(83%)。1H NMR(CD2Cl2)δ19.86(s.Ru=CH),8.52-8.50(s(br.),o-H of C6H4F),7.00(dd,3JHH=3JHF=8.8Hz,m-H ofC6H4F),2.63-2.59,1.77-1.68,1.47-1.40 and 1.26-1.17(all m,P(C6H11)3).13C NMR(CD2Cl2)δ291.52(t,JPC=8.6HZ,Ru=CH),162.10(d,JCF=254.3Hz,p-C of C6H4F),150.57(s,ipso-C ofC6H4F),134.10(d,JCF=8.9Hz,o-C of C6H4F),116.00(d,JCF=21.3Hz,m-C of C6H4F),32.49(pseudo-t,Japp=9.3Hz,ipso-C of P(C6H11)3),30.05(s.m-C of P(C6H11)3),28.22(pseudo-t,Japp=5.2Hz,o-C of P(C6H11)3),26.94(s,p-C of P(C6H11)3.31P NMR(CD2Cl2)δ36.60(s,PCy3).19FNMR(CD2Cl2)δ45.47(s,C6H4F).
分析C43H71Cl2FP2Ru,计算C,61.41;H,8.51。测得C,61.32;H,8.59。
RuCl2(=CH-p-C6H4Cl)(PCy3)2(络合物15)的合成用RuCl2(=CH-p-C6H4Cl)(PPh3)2(543mg,0.66mmol)和三环己基膦(408mg,1.45mmol,2.2当量)做原料,步骤与合成络合物10的相同,得到了紫色的微晶固体RuCl2(=CH-p-C6H4Cl)(PCy3)2。收率493mg(87%)。1HNMR(CD2Cl2)δ19.98(s,Ru=CH),8.43(d,3JHH=8.7Hz,o-H of C4H4Cl ),7.29(d,3JHH=8.7Hz,m-H of C6H4Cl),2.63-2.58,1.76-1.68,1.46-1.41 and 1.25-1.17(all m,P(C6H11)3).13C NMR(CD2Cl2)δ291.52(t,JPC=8.0HZ,Ru=CH),151.81(s,ipso-C of C6H4Cl),134.64(s,p-C of C6H4Cl),132.56 and129.51(both s,o-C and m-C of C6H4Cl),32.51(pseudo-t,Japp=8.9Hz,ipso-C of P(C6H11)3),30.06(sm-C of P(C6H11)3),28.22(pseudo-t,Japp=5.2Hz,o-C of P(C6H11)3).26.96(s,p-C of P(C6H11)3).31P NMR(CD2Cl2)δ36.81(s,PCy3).
分析C43H71Cl2P2Ru,计算C,60.24;H,8.35。测得C,60.22;H,8.45。
RuCl2(=CH-p-C6H4NO2)(PCy3)2(络合物16)的合成用RuCl2(=CH-p-C6H4NO2)(PPh3)2(609mg,0.73mmol)和三环己基膦(452mg,1.61mmol,2.2当量)为原料,步骤和实例11中的相同,得到了红-紫色的微晶固体RuCl2(=CH-p-C6H4NO2)(PCy3)2。收率527mg(83%)。1H NMR(CD2Cl2);δ20.71(s,Ru=CH),8.64 (d,3JHH=8.4Hz o-H of C6H4NO2),8.13(d,3JHH=8.4Hz,m-H ofc6h4no2),2.63-2.58,1.73-1.68,1.47-1.40 and 1.26-1.17(all m,P(C6H11)3),13C NMR(CD2Cl2)δ289.07(t,JPC=7.6Hz,Ru=CH),155.93(s.ipso-C of C6H4NO2),145.34(s,p-C of C6H4NO2),131.22and 125.06(both s,o-C and m-C of C6H4NO2),32.57(pseudo-t,Japp=9.2Hz,ipso-C of P(C6H11)3),30.05(s,m-C of P(C6H11)3),28.16(pseudo-t,Japp=4.1Hz,o-C of P(C6H11)3).31P NMR(CD2Cl2)δ38.11(s,PCy3).
分析C43H71Cl2NO2P2Ru,计算C,59.50;H,8.25;N,1.61。测得C,59.18;H,8.25;N,1.49。
RuCl2(=CHPh)(PCp3)2(络合物17)的一釜合成用RuCl2(PPh3)3(4.00g,4.17mmol),苯基重氮基甲烷(986mg,8.35mmol,2.0当量)和三环戊基膦(2.19g,9.18mmol,2.2当量)做原料,和合成络合物10相同的步骤,得到了紫色的微晶固体络合物17。由于络合物溶解性较好,只用甲醇洗涤。收率2.83g(92%)。
1H NMR(CD2Cl2)δ20.20(s,Ru=CH),8.47(d,3JHH=7.5Hz,o-H of C6H5),7.63(t,3JHH=7.5Hz,p-H of C6H5),7.36(t,3JHH=7.5Hz,m-H ofC6H5),2.68-2.62,1.81-1.77,1.62-1.52 and 1.49-1.44(all m,P(C5H9)3).13C NMR(CD2Cl2)δ300.52(t,JPC=7.6Hz Ru=CH),153.38(s,ipso-C of C6H5),130.99,129.80 and 129.53(all s,C6H5)35.54(pseudo-t,Japp=11.2Hz,ipso-C of P(C5H9)3)29.99 and 26.39(both s,P(C5H9)3).13P NMR(CD2Cl2)δ29.96(s,PCp3).
分析C37H60Cl2P2Ru,计算C,60.15;H,8.19。测得C,60.39;H,8.21。
RuCl2(=CHPh)(PiPr3)2(络合物18)的一釜合成用RuCl2(PPh3)3(4.00g,4.17mmol),苯基重氮基甲烷(986mg,8.35mmol,2.0当量)和三异丙基膦(1.79ml,9.18mmol,2.2当量)为原料,与合成络合物17相同的步骤,得到了紫色的微晶固体络合物18。收率2.26g(93%)。1H NMR(CD2Cl2)δ20.10(s,Ru=CH),8.52(d,3JHH=7.6Hz,o-H of C6H5),7.36(t,3JHH=7.6Hz,p-H of C6H5),7.17(t,3JHH=7.6Hz,m-H of C6H5),2.88-2.85,(m,PCHCH3);1.19(dvt,N=13.6Hz,PCHCH3).13C NMR(CD2Cl2)δ296.84(s(br.),Ru=CH),152.81(s,ipso-C of C6H5),131.37,129.54 and 129.20(all s,C6H5)22.99(vt,N=2JPC+4JPC=18.9Hz,PCHCH3),19.71(s,PCHCH3).13P NMR(CD2Cl2)δ45.63(s,PiPr3).
分析C25H48Cl2P2Ru,计算C,51.54;H,8.31。测得C,51.69;H,8.19。
RuCl2(=CH2)(PCy3)2(络合物19)的合成一种RuCl2(=CHPh)(PCy3)2(821mg,1.00mmol)在CH2Cl2(15ml)的溶液在室温和乙烯气压下搅拌15分钟。在真空下除去溶剂,残余物重复地用丙酮或戊烷(5ml)洗涤,在真空下干燥数小时。得到了白色的微晶固体。收率745mg(定量地)。1H NMR (CD2Cl2)δ18.94(s,Ru=CH2),2.50-2.44,1.81-1.70,1.49-1.43 and 1.25-1.23(all m,P(C6H11)3).13C NMR(CD2Cl2)δ294.71(t,JPC=7.6Hz,JCH=164.0Hz(gated decoupled),Ru=CH),31.05(pseudo-t,Japp=9.6Hz,ipso-C of P(C6H11)3),29.58(s,m-C of P(C6H11)3),28.20(pseudo-t,Japp=5.3Hz,o-C of P(C6H11)3),26.94(s,p-C of P(C6H11)3).31P NMR(CD2Cl2)δ43.74(s,PCy3).
分析C37H68Cl2P2Ru,计算C,59.50;H,9.18。测得C,59.42;H,9.29。
RuCl2(=CHMe)(PCy3)2(络合物20)的合成与合成络合物19的步骤相同,用RuCl2(=CHPh)(PCy3)2(763mg,0.93mmol)和丙烯(或2-丁烯)为原料,得到了红-紫色的微晶固体RuCl2(=CHMe)(PCy3)2。收率691mg(98%)。
1H NMR(CD2Cl2)δ19.26(q,3JHH=5.1Hz,Ru=CH),2.57(d,3JHH=5.1Hz,CH3),2.59-2.53,1.87-1.79,1.57-1.50 and 1.28-1.23(allm,P(C6H11)3).3C NMR(CD2Cl2)δ316.32(t,JPC=7.6Hz,Ru=CH),49.15(s,CH3),32.37(pseudo-t,Japp=9.4Hz,ipso-C of P(C6H11)3),29.87(s,m-C of P(C6H11)3),28.22(pseudo-t,Japp=5.0Hz,o-Cof P(C6H11)3),26.94(s,p-C of P(C6H11)3).31P NMR(CD2Cl2)δ35.54(s,PCy3).
分析C38H70Cl2P2Ru,计算C,59.58;H,9.27。测得C,59.91;H,9.33。
RuCl2(=CHEt)(PCy3)2(络合物21)的合成与合成络合物19的步骤相同,用RuCl2(=CHPh)(PCy3)2和10倍过量的1-丁烯(或顺-3-己烯)为原料,得到了红-紫色的微晶固体RuCl2(=CHEt)(PCy3)2。收率616mg(97%)。1H NMR(CD2Cl2)δ19.12(t,3JHH=5.0Hz,Ru=CH),2.79(dq,3JHH=5.0,3JHH,=7.1Hz,CH2CH3),2.55-2.49,1.84-1.81,1.54-1.47and 1.26-1.23(all m,P(C6H11)3),1.35(t,3JHH,=7.1Hz,CH2CH3).13C NMR(CD2Cl2)δ322.59(t,JPC=9.3Hz,Ru=CH),53.48(s,CH2CH3),32.20(pseudo-t,Japp=8.9Hz,ipso-C of P(C6H11)3),29.85(s,m-C of P(C6H11)3,29.57(s,CH2CH3,28.22(pseudo-t,Japp=4.6Hz,o-C of P(C6H11)3),26.88(s,p-C of P(C6H11)3).31P NMR(CD2Cl2)δ36.39(s,PCy3).
分析C39H72Cl2P2Ru,计算C,60.45;H,9.37。测得C,60.56;H,9.30。
RuCl2(=CH-n-Bu)(PCy3)2(络合物22)的合成用RuCl2(=CHPh)(PCy3)2(354mg,0.43mmol)和1-己烯(538μl,4.30mmol,10当量)为原料,与合成络合物19的步骤相同,得到了红-紫色的微晶固体RuC2(=CH-n-Bu)(PCy3)2。收率328mg(95%)。
1H NMR(CD2Cl2);δ19.24(t,3JHH=5.1Hz,Ru,=CH),2.74(dt,3JHH=5.1,3JHH,=5.2Hz,(CHCH2),2.56-2.47,1.82-1.78,1.70-1.68,1.54-1.43,1.26-1.22 and 0.95-0.86(all m,CH2CH2CH3and P(C6H11)3).13C NMR(CD2Cl2)δ321.13(t,JPC=7.6Hz,Ru=CH),58.85(s,CHCH2)32.25(pseudo-t,Japp=9.4Hz,ipso-C ofP(C6H11)3),29.90(s,m-C of P(C6H11)3),28.23(pseudo-t,Japp=5.3Hz,o-C of P(C6H11)3,26.91(s,p-C of P(C6H11)3),30.53,22.94 and 14.06(all s,CH2CH2CH3).31P NMR(CD2Cl2)δ36.05(s,PCy3).
分析C41H76Cl2P2Ru,计算C,61.32;H,9.54。测得C,61.51;H,9.71。
RuCl2(=CHCH=CH2)(PCy3)2(络合物23)的合成把1,3-丁二烯慢速地通入络合物10(703mg,0.85mmol)在CH2Cl2(15ml)的溶液中,温度为-20℃,时间为20秒钟。溶液在10分钟内升至室温,观察到颜色由紫色至橙-棕色的变化。溶剂在真空下除去,残余物重复地用丙酮或戊烷(5ml)洗涤,在真空下干燥数小时。得到了红-紫色微晶固体。收率627mg(95%)。1H NMR(CD2Cl2)δ19.06(d,3JHH=10.5Hz,Ru=CH),8.11(ddd,3JHH10.5,3JHHcis=9.3,3JHHtrans=16.8Hz,CH=CH2),6.25(d,3JHHcis=9.3,Hcisof CH=CH2),6.01(d,3JHHtrans=9.3,Htransof CH=CH2),2.59-2.53,1.83-1.78,1.52-1.47 and 1.25-1.21(all m,P(C6H11)3).13C NMR(CD2Cl2)δ296.00(t,JPC7.6Hz,Ru=CH),153.61(s,CH=CH2),115.93(s,CH=CH2),32.32(pseudo-t,Japp=8.9Hz,ipso-C of P(C6H11)3),29.82(s,m-C of P(C6H11)3),28.15(pseudo-t,Japp=5.1Hz,o-C of P(C6H11)3),26.91(s,p-C of P(C6H11)3).31P NMR(CD2Cl2)δ36.17(s,PCy3).
分析C39H70Cl2P2Ru,计算C,60.61;H,9.13。测得C,60.79;H,9.30。
RuCl2(=C=CH2)(PCy3)2(络合物24)的合成用络合物10(413mg,0.50mmol)和1,2-丙二烯为原料,与合成络合物23的步骤相同,得到了褐色的微晶固体RuCl2(=C=CH2)(PCy3)2。收率373mg(98%)。
1H NMR(CD2Cl2)δ3.63(s,Ru=C=CH2),2.71-2.64,2.05-2.01,1.81-1.53 and 1.32-1.23(all m,P(C6H11)3.13CNMR(CD2Cl2)δ327.41(t,JPC=17.2Hz,Ru=C=CH2),99.34(s,Ru=C=CH2),33.30(pseudo=t,Japp=8.9Hz,ipso-C of P(C6H11)3),30.41(s,m-Cof P(C6H11)3),28.32(pseudo-t,Japp=5.0Hz,o-C of P(C6H11)3),27.02(s,p-C of P(C6H11)3).31PNMR(CD2Cl2)δ35.36(s,PCy3).
分析C38H68Cl2P2Ru,计算C,60.14;H,9.03。测得C,60.29;H,8.91。
RuCl2(=CHCH2OAc)(PCy3)2(络合物25)的合成一种络合物10(423mg,0.51mmol)在CH2Cl2(10ml)的溶液在-20℃下用乙酸丙烯酯(555μl,5.10mmol,10当量)处理。溶液在10分钟内升至室温,观察到颜色由紫至橙-棕色的变化溶剂在真空下除去,残余物重复地用冰冷的甲醇(5ml部分)洗涤,在真空下干燥数小时。得到紫色的微晶固体RuCl2(=CHCH2OAc)(PCy3)2。收率342mg(83%)。1HNMR(CD2Cl2)δ18.90(t,3JHH=4.2Hz,Ru=CH),4.77(d,3JHH=3.6Hz,CH2OAc),2.09(s,C(O)CH3),2.53-2.47,1.81-1.70,1.59-1.53 and 1.26-1.22,(all m,P(C6H11)3).13C NMR(CD2Cl2)δ305.76(t,JPC=7.6Hz,Ru=C),170.41(s.C(O)CH3),83.19(s,CH2OAc),32.59(pseudo-t,Japp=8.6Hz,ipso-C of P(C6H11)3),29.94(s,m-C of P(C6H11)3),28.23(m,o-C of P(C6H11)3),26.91(s,p-C ofP(C6H11)3),20.91(s,C(O)CH3).31P NMR(CD2Cl2)δ36.66(s,PCy3).
分析C39H72Cl2O2P2Ru,计算C,58.05;H,8.99。测得C,58.13;H,9.07。
RuCl2(=CHCH2Cl)(PCy3)2(络合物26)的合成用络合物10(583mg,0.71mmol)和烯丙基氯(577μl,7.08mmol,10当量)为原料,与合成络合物25的步骤相同,得到了紫色的微晶固体RuCl2(=CH-CH2Cl)(PCy3)2。收率552mg(80%)。
1H NMR(CD2Cl2)δ18.74(t,3JHH=4.5Hz,Ru=CH),4.43(d,3JHH=4.8Hz,CH2Cl),2.55-2.50,1.81-1.70,1.59-1.52 and 1.27-1.23(all m,P(C6H11)3).13C NMR(CD2Cl2)δ303.00(t,JPC=7.8Hz,Ru=C),63.23(s,CH2Cl),32.05(pseudo-t,Japp=8.8Hz,ipso-C of P(C6H11)3),29.50(s,m-C of P(C6H11)3),27.81(pseudo-t,Japp=5.2Hz,o-C of P(C6H11)3),26.56(s,p-C of P(C6H11)3).31P NMR(CD2Cl2)δ37.36(s,PCy3).
分析C38H69Cl3P2Ru,计算C,57.39;H,8.74。测得C,57.55;H,8.81。
RuCl2(=CH(CH2)3OH)(PCy3)2(络合物27)的合成用络合物10(617mg,0.82mmol)和4-戊烯-1-醇(823ml,8.2mmol,10当量)为原料,与合成络合物25的步骤相同,得到了紫色的微晶固体RuCl2(=CH(CH2)3OH)(PCy3)2。收率459mg(76%)。
1H NMR(CD2Cl2)δ19.20(t,3JHH=4.6Hz,Ru=CH,5.46(s(br.),OH),2.82-2.78,2.06-2.01 and 1.62-1.58(all m,CH2CH2CH2OH),2.55-2.51,1.84-1.81,1.55-1.52 and 1.26-1.23(all m,P(C6H11)3).13CNMR(CD2Cl2)δ305.665,JPC=7.3Hz,Ru=C,62.66(s,CH2OH),33.01 and 30.08(both s,CH2CH2)32.32(pseudo-t,Japp=8.5Hz,ipso-C of P(C6H11)3),29.94(s,m-C of P(C6H11)3),28.28.(pseudo-t,Japp=5.3Hz,o-C of P(C6H11)3),26.91(s,p-C of P(C6H11)3).31P NMR(CD2Cl2)δ37.06(s,PCy3).
分析C40H74Cl2P2ORu,计算C,59.69;H,9.27。测得C,59.51;H,9.09。
用络合物3-9做催化剂进行降冰片烯的ROMP降冰片烯(59mg,0.63mmol)溶于CH2Cl2(0.7ml)中,在室温下,用络合物3-9(6.25μmol)在CH2Cl2(0.3ml)中的溶液处理。反应混合物在3-5分钟内变成粘稠状,颜色由棕-绿转成橙色。溶液在室温下搅拌1小时,然后曝露在空气中,用含微量2,6-二-叔-丁基-4-甲基苯酚和乙基乙烯基醚的CH2Cl2(2ml)处理。得到的绿色溶液搅拌20分钟,用硅胶短柱过滤,在剧烈搅拌的甲醇中沉淀出来。得到白色,粘的聚合物并分离了出来,用甲醇洗涤数次,在真空下干燥。收率95-99%,≈90%反式,Mn=31.5-42.3kg/mol,PDI(甲苯)1.04-1.10。
在用络合物3-9进行降冰片烯ROMP中测定引发和增长速率将络合物3-9为基础的催化剂1.25×10-5mol称至NMR管中,溶解在苯-d6(0.3ml)中。加入二茂铁在苯-d6(20μl)的溶液做为内标物。混合物用降冰片烯(23.5mg,0.25mmol,20当量)在苯-d6(250μl)中的溶液处理。立即开始1H NMR的常规测定,40分钟内取60谱,然后5小时内取200谱。积分引发和增长产物的Hα共振可测得引发速度常数(ki)。监测单体对内标物浓度的降低可以测定增长速度常数。结果列于以上的表III中。
络合物10与3-甲基-1-丁烯和3,3-二甲基-1-丁烯的反应在各个NMR-管中,络合物10(5.0mg,6.1μmol)在二氯甲烷-d2(0.5ml)中的溶液分别用10当量的3-甲基-1-丁烯,3,3-二甲基-1-丁烯(61.0μmol)处理。对后一种反应物,在12小时内未观察到发生了反应。颜色逐渐的(5分钟内)由红-紫转化成橙色表明络合物10与3-甲基-1-丁烯进行了反应。在δ18.96(d,3JHH=7.5Hz,Ru=CHiPr),2.27(m,CHCH3)和1.01(d,3JHH=7.2HzCHCH3)的1HNMR共振可能是由于生成RuCl2(=CH-i-Pr)(PCy3)2的缘故。但是,这类迅号的强度并不随反应进行而增加,10分钟后,络合物19的相应共振成为主要的。
用络合物10-16做为催化剂进行环辛烯和1,5-环辛二烯的ROMP络合物10-16(6.0μmol)各自地溶解在CH2Cl2(0.5ml)中,在室温下用纯的环辛烯或1,5-环辛二烯(3.0mmol,500当量)处理。伴随由紫至橙的颜色变化,反应混合物在3-5分钟内变稠了。溶液在室温下搅拌2.5小时,曝露在空气中,用含微量2,6-二-叔-丁基-4-甲基苯酚和乙基乙烯基醚的CH2Cl2(5ml)处理。20分钟后,粘稠的溶液经过短硅胶柱过滤,在剧烈搅拌的甲醇中沉淀出来。分离出得到的聚合物,用甲醇洗涤数次,在真空下干燥。环辛烯反应物(白色粘稠聚合物)收率95-100%,Mn=111-211kg/mol,PDI(甲苯)1.51-1.63;聚丁二烯(白色胶状聚合物)收率96-99%,56-68%顺式,Mn57.9-63.2kg/mol,PDI(甲苯)1.56-1.67。
用络合物10-16做催化剂,测定1-己烯无环置换的引发速度常数将络合物10-16为基础的催化剂6.05μmol加入NMR管中并溶于二氯甲烷-d2(550μl)中。在0℃下,加入1-己烯(22.7μl,0.18mmol,30当量),开始NMR的常规测定(0℃),在40分钟内取60谱。积分络合物10-16和22的Hα共振测定引发速度常数。结果在表IV(前面)中给出。
RuCl2(=CH-p-C6H4Cl)(PCy3)2(络合物15)的X-射线衍射研究把己烷在24小时内慢扩散至络合物15在二氯甲烷(0.5ml)的浓溶液中,制得了络合物15的褐红色棱柱体单晶。选择的晶体大小为0.2mm×0.3mm×0.5mm,装在玻璃纤维上并送至装有改进的LT-1低温系统的Siemens P4衍射仪上。用标准技术进行劳厄对称性晶类,晶胞参数和晶体取向矩阵的确定。用MoKα辐射以2θ-θ扫描的技术收集低温(158K)强度数据。
所有7782个数据都对吸收,洛伦兹和极化因子进行了校正,并且处于近似绝对的标度。对于任何强度I(净)<0的反射都规定|F0|(结构因子观察)=0。除Friedal状态以外,既没有系统消光也没有任何的衍射对称。模型的改进证明中心对称三斜晶的空间群P1是正确的选择。
所有的晶体计算或是用UCLA晶体计算组合程序或SHELXTLPLUS程序。在分析中全部采用了中性原子的分析散射因子,包括反常色散的实数部分(Δf′)和虚数部分(iΔf″)都用了。在最小二乘方分析中最小化的量当w-1(权重因子-1)=σ2(|F0|)+0.0002(|F0|)2时,是∑x(|F0|-|Fc|)2。结构用直接法(SHELXTL)求解,并用全-矩阵最小二乘法技术加以改善。氢原子的定位由差示-傅利叶图所确定,并包括各向同性温度参数。根据其|F0|>3.0σ(|F0|)的6411个数据修正了726个变量,模型的改进得到收敛的结果RF=3.5%,RWF=3.6%和GOF=1.42。最终的差示-傅利叶图得到ρmax(最大电子密度)=0.52e-3。
权利要求
1.一种下式的化合物 其中M选自Os和Ru;R9和R10独立地选自氢,取代或未取代的烷基,取代或未取代的芳基;X和X1独立地选自任何的阴离子配位体;和L和L1独立地选自任何的中性电子给体。
2.根据权利要求
1的化合物,其中取代的烷基包括一种或多种选自芳基,醇,硫醇,酮,醛,酯,醚,胺,亚胺,酰胺,硝基,羧酸,二硫化物,碳酸酯,异氰酸酯,碳化二亚胺,碳烷氧基和卤素的官能团。
3.根据权利要求
1的化合物,其中取代的芳基包括一种或多种选自烷基,芳基,醇,硫醇,酮,醛,酯,醚,胺,亚胺,酰胺,硝基,羧酸,二硫化物,碳酸酯,异氰酸酯,碳化二亚胺,碳烷氧基和卤素的官能团。
4.根据权利要求
1的化合物,其中R9和R10独立地选自(a)氢;(b)C1-C20烷基;(c)芳基;(d)由选自卤素,芳基,烷氧基,芳氧基所取代的C1-C20烷基;(e)由选自卤素,烷基,芳基,烷氧基和芳氧基所取代的芳基。
5.根据权利要求
1的化合物,其中M是Ru,R9和R10是氢,X和X1是Cl,L和L1是相同的并且是选自-P(环己基)3,-P(环戊基)3,-P(异丙基)3,和-P(苯基)3。
6.一种合成下式化合物的方法 包括使下式的化合物 和下式的烯烃相接触的步骤 其中M选自Os和Ru;R1是氢;R选自氢,取代或未取代的烷基,和取代或未取代的芳基;R11和R12独立选自氢,取代或未取代的烷基,和取代或未取代的芳基;X和X1独立选自任何的阴离子配位体;L和L1独立选自任何的中性电子给体。
7.一种合成下式化合物的方法 包括使式(XX1MLnL1m)p的化合物和式R9CCR10的乙炔相接触的步骤,其中M选自Os和Ru;R9和R10独立选自氢,取代或未取代的烷基,和取代或未取代的芳基;X和X1独立选自任何的阴离子配位体;L和L1独立选自任何的中性电子给体;n和m独立是0-3,只要n+m=3;和p是大于0的整数。
8.一种合成下式化合物的方法 包括使下式的化合物 与一种下式的蓄积烯烃相接触的步骤 其中M选自Os和Ru;R1是氢;R选自氢,取代或未取代的烷基,和取代或未取代的芳基;R9和R10独立选自氢,取代或未取代的烷基,和取代或未取代的芳基;X和X1独立选自任何的阴离子配位体;L和L1独立选自任何的中性电子给体。
9.一种合成下式化合物的方法 包括使式(XX1MLnL1m)p的化合物和式RC(N2)R1的重氮基化合物在式L2的一种中性电子给体的存在下进行接触的步骤,其中M选自Os和Ru;R和R1独立选自氢,取代或未取代的烷基,和取代或未取代的芳基;X和X1独立选自任何的阴离子配位体;L,L1和L2独立选自任何的中性电子给体;n和m独立是0-3,只要n+m=3;和p是大于0的整数。
专利摘要
公开了在不同官能团存在下是稳定的钌锇卡宾化合物,可以用于催化无弯曲环状和无环烯烃的烯烃置换反应。还公开了制备卡宾化合物的方法。卡宾化合物有式(a)的结构,其中M是锇或钌;R
文档编号B01J31/00GK1990493SQ200610101678
公开日2007年7月4日 申请日期1996年8月1日
发明者R·H·格鲁布斯, P·施瓦布, S·T·古吟 申请人:加州理工学院导出引文BiBTeX, EndNote, RefMan
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1