一种无定形锰酸锂电致变色薄膜的制备方法与流程

文档序号:11190995阅读:929来源:国知局
一种无定形锰酸锂电致变色薄膜的制备方法与流程

本发明涉及电致变色薄膜领域,具体涉及一种无定形锰酸锂电致变色薄膜的制备方法。



背景技术:

电致变色(electrochromism,ec)是指材料的光学性能(反射率、透过率、吸收率)在外加电场作用下发生可逆的、稳定的颜色变化的现象。电致变色材料按组成可分为无机电致变色材料(主要为过渡金属氧化物,以及普鲁士蓝等)和有机电致变色材料(导电聚合物、紫罗精类、金属有机配位络合物等)两大类,由于电致变色材料具有变色电压低、颜色变化多种多样、节能环保等优点,在智能窗、汽车防炫目后视镜、伪装材料、电致变色织物、信息储存和检测、显示器等领域有着广泛的应用前景。

limn2o4通常在锂电池领域中作为电极材料使用,而有关电致变色领域的应用则很少有报道,尤其是无定形limn2o4薄膜的电致变色性能研究,鲜有报道,而且无机电致变色材料的颜色变化通常只有蓝色、棕黑色,而没有无色到橙色的颜色变化,这不利于纯无机复合电致变色材料在全彩显示器领域的应用。



技术实现要素:

本发明提供了一种无定形锰酸锂电致变色薄膜的制备方法,该制备方法得到的无定形锰酸锂电致变色薄膜的变色速率快、光学调制范围良好,而且引入的橙色和无色的颜色变化区间不仅为制备多重变色的无机电致变色材料提供了可能,同时对于全彩显示器和信息储存领域的应用具有重要意义。

一种无定形锰酸锂电致变色薄膜的制备方法,包括:

步骤1,将醋酸锂、乙酸锰和一水合柠檬酸溶于水,调节ph至弱碱性,持续搅拌得到初始锰酸锂溶胶;

步骤2,在初始锰酸锂溶胶中加入醇,加热至所需粘度,得到锰酸锂溶胶;

步骤3,将导电玻璃浸入锰酸锂溶胶中,利用提拉法在导电玻璃表面成膜,经热处理得到所述无定形锰酸锂电致变色薄膜。

步骤1进行时,先将醋酸锂和乙酸锰溶于水中,并混合均匀,然后将一水合柠檬酸作为络合剂加入,利用氨水调节ph至弱碱性促使溶液水解,并持续搅拌以得到初始锰酸锂溶胶。

作为优选,醋酸锂、乙酸锰、一水合柠檬酸的摩尔比为1~1.1:2:3,初始锰酸锂溶胶中锰离子的浓度为0.1~0.25mol/l。

通过控制醋酸锂、乙酸锰和一水合柠檬酸的加入量,可以有效调节所得锰酸溶胶的浓度,进而控制所制备锰酸锂薄膜的厚度和密度。

作为优选,步骤1中调节ph至8~9,并持续搅拌3~5h,得到初始锰酸锂溶胶。

作为优选,所述醇为乙醇、乙二醇、1,5-戊二醇中的至少一种。进一步优选,所述醇为乙醇。作为优选,醇与水的体积比为1:3~10。

作为优选,步骤2中加入醇后,在60~95℃下加热3~8min,得到锰酸锂溶胶。通过改变醇的种类和加入量,以及加热的温度和时间,调节锰酸锂溶胶具有合适的粘度,保证后续提拉法成膜的顺利进行,同样能起到控制所制备锰酸锂薄膜厚度和密度的作用。

作为优选,提拉法的提拉速度为5~40cm/min。进一步优选,提拉法的提拉速度为10~20cm/min。

作为优选,热处理的温度为350~450℃,热处理时间为1~3h。通过调节热处理的温度以及时间,控制锰酸锂电致变色薄膜为无定形态,从而保证其电致变色性能。

步骤3中,遮盖导电玻璃的非导电面,仅在导电玻璃的导电面上成膜。

作为优选,所述导电玻璃为fto玻璃或ito玻璃。

作为优选,导电玻璃浸入锰酸锂溶胶之前,依次利用丙酮、乙醇和水超声清洗10~20min,吹干待用。

与现有技术相比,本发明有如下优点:

(1)制得的无定形的limn2o4薄膜拓宽了无机电致变色材料的颜色域,引入了橙黄色的颜色变化,而且其电致变色颜色变化区间在无色和橙黄色之间,变色前后只在蓝紫色波段有明显的吸光度变化,这不仅为制备多重变色的无机阳极电致变色薄膜材料提供了可能,同时对于全彩显示器和信息储存领域的应用具有重要意义。

(2)无定形的limn2o4薄膜变色效果明显、变色速度快、重复性好而且变色电压低。

(3)limn2o4材料具有无毒、成本低廉、环保、安全等优点,而且制备过程简单、重复性好,便于工业化应用。

附图说明

图1为实施例1和实施例2制备的无定形limn2o4电致变色薄膜的xrd图谱;

图2为实施例1制备的无定形limn2o4电致变色薄膜的sem照片;

图3为实施例2制备的无定形limn2o4电致变色薄膜的sem照片;

图4为实施例1和实施例2制备的无定形limn2o4电致变色薄膜的紫外可见透射光谱;

图5为实施例1和实施例2制备的无定形limn2o4电致变色薄膜的光学透过率随时间的变化曲线。

具体实施方式

实施例1

(1)将fto导电玻璃依次用丙酮、乙醇、去离子水超声清洗,每次清洗20min,吹干待用;

(2)将0.132g醋酸锂、0.98g醋酸锰溶于25ml水中,然后加入1.26g一水合柠檬酸,再加入2.5ml浓氨水调节ph为弱碱性,持续搅拌3h,得到初始锰酸锂溶胶;

(3)在初始锰酸锂溶胶中加入5ml乙醇,再在80℃下加热5min,得到锰酸锂溶胶;

(4)将洁净的fto导电玻璃的非导电面用胶带覆盖,再浸入锰酸锂溶胶中,利用提拉法成膜,提拉速率为10cm/min,然后在400℃热处理1h,得到锰酸锂(limn2o4)电致变色薄膜。

对制备的limn2o4电致变色薄膜进行性能测试,主要包括结构和形貌表征、电致变色性能测试两部分。

由图1可知,所制备的limn2o4薄膜为无定形态,仅有少量尖晶石型limn2o4(jcpds#35-0782)的(111)面的衍射峰。由图2可知,所制备的limn2o4薄膜的表面形貌为颗粒状的结构紧密堆积而成。

电致变色性能测试采用一室三电极体系,利用电化学工作站提供电源,工作电极为无定型的limn2o4薄膜电致变色薄膜,对电极为铂片,参比电极为ag/agcl电极,电解液为1mliclo4/pc(碳酸丙烯酯),同时紫外可见分光光度计提供光源,两者联用进行原位测试得到有关电致变色性能的曲线。

变色速率的测试条件为:±2.0v的方波电压,每段方波电压持续30s,相应的原位动力学光谱测试的光源波长为460nm,得到光学透过率随时间的变化曲线,其中着色和褪色时间是指达到90%的最大光学透过率变化所需的时间。

有关光学透过率随时间变化的循环稳定性曲线的测试条件为:±2.0v的方波电压,每段方波电压持续30s,相应的原位动力学光谱测试的光源波长为460nm,其中着色和褪色时间是指达到90%的最大光学透过率变化所需的时间。

由图4和图5可知所制备的无定形态的limn2o4薄膜具有良好的电致变色性能,其着色态和褪色态在460nm波长处的光学透过率变化可达43.4%,对应的电致变色颜色变化区间为无色和橙黄色之间,相应的着色时间和褪色时间为2.6s和1.9s,变色速率较快。

综合形貌、结构和电致变色性能的测试结果,可以得出所制备limn2o4薄膜为无定形态,电致变色性能突出,具有良好的光学调制范围和较快的变色速率等,而且颜色变化可在无色和橙黄色之间,变色前后只在蓝紫色波段有明显的吸光度变化,拓宽了无机电致变色材料的颜色变化区间,同时对于全彩显示器和信息储存领域的应用具有重要意义。

实施例2

(1)将fto导电玻璃依次用丙酮、乙醇、去离子水超声清洗,每次清洗20min,吹干待用;

(2)将0.132g醋酸锂、0.98g醋酸锰溶于25ml水中,然后加入1.26g一水合柠檬酸,再加入2.5ml浓氨水调节ph为弱碱性,持续搅拌3h,得到初始锰酸锂溶胶;

(3)在初始锰酸锂溶胶中加入5ml1,5-戊二醇,再在80℃下加热5min,得到锰酸锂溶胶;

(4)将洁净的fto导电玻璃的非导电面用胶带覆盖,再浸入锰酸锂溶胶中,利用提拉法成膜,提拉速率为10cm/min,然后在400℃热处理1h,得到锰酸锂(limn2o4)电致变色薄膜。

对制备的limn2o4电致变色薄膜进行性能测试,主要包括结构和形貌表征、电致变色性能测试两部分。

由图1可知,所制备的limn2o4薄膜为无定形态。由图3可知,所制备的limn2o4薄膜的表面形貌为颗粒状的结构紧密堆积而成。

电致变色性能测试采用一室三电极体系,利用电化学工作站提供电源,工作电极为无定型的limn2o4薄膜电致变色薄膜,对电极为铂片,参比电极为ag/agcl电极,电解液为1mhclo4/pc(碳酸丙烯酯),同时紫外可见分光光度计提供光源,两者联用进行原位测试得到有关电致变色性能的曲线。

无定形锰酸锂电致变色薄膜着色态和褪色态的紫外可见透射光谱测试条件为:2.0v电压下着色30s,-2.0v电压下褪色30s,相应的原位光谱扫描的范围在300-850nm之间。

变色速率的测试条件为:±2.0v的方波电压,每段方波电压持续30s,相应的原位动力学光谱测试的光源波长为460nm,得到光学透过率随时间的变化曲线,其中着色和褪色时间是指达到90%的最大光学透过率变化所需的时间。

由图4和图5可知所制备的无定形态的limn2o4薄膜具有良好的电致变色性能,其着色态和褪色态在460nm波长处的光学透过率变化可达21.9%,对应的电致变色颜色变化区间为无色和橙黄色之间,相应的着色时间和褪色时间为7.2s和14.4s,变色速率较快。

综合形貌、结构和电致变色性能的测试结果,可以得出所制备limn2o4薄膜为无定形态,电致变色性能良好,具有较快的变色速率,而且颜色变化在无色和橙黄色之间,变色前后只在蓝紫色波段有明显的吸光度变化,拓宽了无机电致变色材料的颜色变化区间,同时对于全彩显示器和信息储存领域的应用具有重要意义。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1