电路部件连接用粘接剂及使用该粘接剂的半导体装置的制作方法

文档序号:3773761阅读:137来源:国知局

专利名称::电路部件连接用粘接剂及使用该粘接剂的半导体装置的制作方法
技术领域
:本发明涉及电路部件连接用粘接剂及使用该粘接剂的半导体装置。更具体地涉及以倒装接合方式通过加热、加压向电路基板连接半导体元件用的电路部件连接用粘接剂、其中分散有导电粒子的电路部件连接用粘接剂(电路部件连接用各向异性导电粘接剂)及使用它们的半导体装置。
背景技术
:通常,作为通过倒装接合方式将半导体芯片(以下有时筒称为"芯片,,)直接安装于电路基板的方式,已知有在半导体芯片的电极部分形成焊凸并焊接于电路基板的方式,对设置在半导体芯片的突起电极涂布导电性粘接剂并电连接于电路基纟反电4及的方法。对于这些方式,在各种环境下暴露时,由于连接的芯片和基板的热膨胀系数差而在连接界面会产生应力,从而存在连接可靠性降低的问题。因此,为了緩和连接界面的应力,研究了通常在芯片和基板的间隙填充环氧树脂等底部填料的方式。底部填料的填充方式有在连接芯片和基板后注入低粘度的液态树脂的方式以及在基板上设置底部填料后搭载芯片的方式。另一方面,作为事先在基板上设置底部填料后搭载芯片的方法,有涂布液态树脂的方法和粘贴膜状树脂的方法。然而,在涂布液态树脂时利用分配器难以进^^青密涂布量的控制,在近年的芯片薄型化中,由于过多的涂布因而在接合时渗出的树脂会逸出到芯片的侧面,污染接合工具,从而需要对工具进行洗涤,成为量产时工艺烦杂的原因。另外,粘贴膜状树脂的情况,通过控制树脂的厚度容易形成最佳树脂量,然而在将膜粘贴于基板时需要称为临时压合工序的膜粘贴工序。在临时压合工序中,使用分割成宽度大于目标芯片宽度的巻轴状胶带,对应于芯片尺寸,半切断存在于巻轴状胶带的基材上的粘接剂,在粘接剂不反应程度的温度下通过热压粘贴于基板。由于膜向芯片搭载位置的供给精度较差,为了确保成品率,通过临时压合粘贴的膜通常大于芯片尺寸。因此,与邻接部件间需要有富余的距离,在高密度化安装时成为妨碍。另一方面,与微小芯片等对应的微细宽度的巻轴加工是困难的,需要粘贴大于芯片尺寸的膜来应对,需要多余的安装面积。因此,作为供给与芯片尺寸相同尺寸的粘接剂的方法,提出了在晶片状态供给粘接剂后,在通过切割等进行芯片加工的同时也进行粘接剂的加工,得到带粘接剂的芯片的方法(参照例如专利文献1和2)。专利文献l:曰本特许第2833111号说明书专利文献2:日本特开2006-049482号公报
发明内容发明要解决的问题然而,以往提出的晶片前置型的底部填充法存在如下所述的问题,并没有被市场化。例如专利文献l的方法,是对晶片粘贴膜状粘接剂后利用切割进行单片化而得到带粘接膜的芯片的方法。才艮据上述方法,其为制作晶片/粘接剂/分隔物(separator)的层叠体、对其切割后剥离分隔物而得到带粘接剂的芯片的方法,但是在切断层叠体时,粘接剂和分隔物剥离,结果是存在单片化的半导体芯片会飞散、流出的问题。接着,专利文献2的方法是与具有粘着材料层和粘接剂层的晶片加工用胶带有关的方法,提供了将晶片粘贴于晶片加工用胶带后进行切割、拾取,然后将单片化的芯片倒装片连接于基板的方法。然而,通常,在倒装片安装中,为了将芯片电路面的称为凸块的端子与相对的基板侧的端子连接,利用倒装片接合器将芯片侧的位置对准标识(定位标识)和基板侧的位置对准标识的位置对准并进行粘贴,与此相对,在芯片的电路面粘贴有粘接剂时粘接剂会覆盖电路面的位置对准标识,产生不能对准位置的问题,在专利文献2中并没有提供对应该问题的对策。另一方面,作为得到树脂的透明性的技术,在日本特许第3408301号说明书中记载了包括绝缘性粘接剂以及分散在粘接剂中的导电粒子和透明玻璃粒子的各向异性导电膜。但是,由于玻璃粒子为非晶质,线膨胀系数大,难以实现作为倒装片安装后的特性所必需的低线膨胀系数。因此,本发明的目的在于提供,在未固化状态下对晶片的密合性优异且附于晶片的定位标识的识别性高,在固化后芯片和基板的粘接性以及连接可靠性优异的电路部件连接用粘接剂及使用该粘接剂的半导体装置。解决问题的手段本发明涉及下述内容。(1)一种电路部件连接用粘接剂,其介于具有突出的连接端子的半导体芯片和形成有配线图案的基板之间,通过加压、加热,电连接相对的所述连接端子和所述配线图案的同时粘接所述半导体芯片和所述基板;所述电路部件连接用粘接剂包括树脂组合物和分散在该树脂组合物中的复合氧化物粒子,所述树脂组合物含有热塑性树脂、交联性树脂和使该交联性树脂形成交联结构的固化剂。(2)上述(1)所述的电路部件连接用粘接剂,其中,所述树脂组合物和所述复合氧化物粒子的折射率差为±0.06范围内。(3)上述(1)或(2)所述的电路部件连接用粘接剂,其中,所述复合氧化物粒子由折射率为1.5~1.7且包含2种以上金属元素的复合氧化物构成。(4)上述(1)~(3)的任意一项所述的电路部件连接用粘接剂,其中,所述复合氧化物粒子是由含有选自铝和镁中的至少一种金属元素以及该金属元素以外的金属元素或准金属元素的氧化物所构成的粒子。(5)上述(4)所述的电路部件连接用粘接剂,其中,所述准金属元素为硅元素和/或硼元素。(6)上述(1)~(5)的任意一项所述的电路部件连接用粘接剂,其中,所述复合氧化物粒子为比重4以下的由复合氧化物所构成的粒子。(7)—种电路部件连接用粘接剂,其介于具有突出的连接端子的半导体芯片和形成有配线图案的基板之间,通过加压、加热,电连接相对的所述连接端子和所述配线图案的同时粘接所述半导体芯片和所述基板;所述电路部件连接用粘接剂包括树脂组合物和分散在该树脂组合物中的含有堇青石粒子的复合氧化物粒子,所述树脂组合物含有热塑性树脂、交联性树脂和使该交联性树脂形成交联结构的固化剂。(8)上述(1)~(7)的任意一项所述的电路部件连接用粘接剂,其中,所述复合氧化物粒子为平均粒径3)im以下的复合氧化物粒子。(9)上述(1)~(8)的任意一项所述的电路部件连接用粘接剂,其中,相对于所述树脂组合物100重量份含有25~200重量份所述复合氧化物粒子。(10)上述(1)~(9)的任意一项所述的电路部件连接用粘接剂,其中,所述电路部件连接用粘接剂在未固化时的可见光平行透射率为15~100%。(11)上述(l)~(10)的任意一项所述的电路部件连接用粘接剂,其中,所述电路部件连接用粘接剂在180"C加热20秒钟后以差示扫描量热计(DifferentialScanningCalorimeter,DSC)测定的反应率为80%以上。(12)上述(1)~(11)的任意一项所述的电路部件连接用粘接剂,其中,所述电路部件连接用粘接剂固化后在40°C~100"C的线膨胀系数为70x10—6厂C以下。(13)上述(1)~(12)的任意一项所述的电路部件连接用粘接剂,其中,所述热塑性树脂为重均分子量100万以下、玻璃化温度(Tg)4(TC以下且在侧链具有与所述交联性树脂反应的官能团的共聚性树脂,所述交联性树脂为环氧树脂,所述固化剂为微嚢型固化剂。(14)上述(1)~(13)的任意一项所述的电路部件连接用粘接剂,其中,分散有平均粒径3-5nm的导电粒子。(15)—种半导体装置,其具备上述(l)~(14)的任意一项所述的电路部件连接用粘接剂电连接具有连接端子的半导体芯片和形成有配线图案的基板而成的电子部件。发明的效果根据本发明,可以提供在未固化状态下对晶片的密合性优异且附于晶片的定位标识的识别性高,在固化后芯片和基板的粘接性以及连接可靠性优异的电路部件连接用粘接剂及使用该粘接剂的半导体装置。即,提供满足下述特性的优化的电路部件连接用粘接剂、其中分散有导电粒子的电路部件连接用各向异性导电粘接剂以及使用它们的半导体装置通过对晶片的密合性和对切割胶带的密合性的优化而兼顾切割时的剥离抑制和切割后的简便剥离性,抑制毛刺、裂紋等的产生而进行切割所需的未固化时的膜的高弹性化,能够以高精度将切割后的粘接剂芯片与电路基板对准的树脂的定位标识的识别性,在芯片安装时能够以低温且短时间固化的高反应性,填料高填充引起的低热膨胀化下的高连接可靠性。根据本发明的电路部件连接用粘接剂,作为可以对应窄间距化和窄间隙化的前置的底部填充法,切割时没有污染,并且在切割后可以简便地从切割胶带剥离而得到带粘接剂的半导体芯片。进而,可以兼顾实现带粘接剂芯片的高精度的位置对准的透明性以及低热膨胀系数化引起的高连接可靠性。图1为第一实施方式涉及的电路部件连接用粘接剂的截面图。图2为第二实施方式涉及的电路部件连接用粘接剂的截面图。图3为表示具有突出的连接端子的半导体芯片的截面图。图4为表示形成有配线图案的基板的截面图。图5为表示用第一实施方式涉及的电路部件连接用粘接剂电连接并粘接半导体芯片和基板而成的电子部件的截面图。图6为表示用第二实施方式涉及的电路部件连接用粘接剂电连接并粘接半导体芯片和基板而成的电子部件的截面图。图7为表示用第二实施方式涉及的电路部件连接用粘接剂电连接并粘接半导体芯片和基板而成的电子部件的截面图。图8为表示图5所示的电子部件的制造工艺的一个方式的截面图;(a)为表示半导体芯片层叠有第一实施方式涉及的电路部件连接用粘接剂的层叠体的截面图,(b)为表示基板的截面图。图9为表示图6或图7所示的电子部件的制造工艺的一种方式的截面图。(a)为表示半导体芯片层叠有第二实施方式涉及的电路部件连接用粘接剂的层叠体的截面图,(b)为表示基板的截面图。图10为表示具有用第一实施方式涉及的电路部件连接用粘接剂电连接半导体芯片和基板而成的电子部件的半导体装置的截面图。图11为表示电路部件连接用粘接剂的透过性的图。符号说明1…第一实施方式涉及的电路部件连接用粘接剂、2…第二实施方式涉及的电路部件连接用粘接剂、3…半导体芯片、4…基板、5…电子部件搭载基板、10…粘接剂、12…导电粒子、20…半导体部件、22,42…连接端子、30,40...绝缘基板、32…配线图案、34…焊球具体实施例方式下面参照优选的实施方式。这里,附图的说明中同一要素赋予同一符号,省略重复的说明。另外,为了容易理解对附图的部分结构夸大描述,尺寸比率不一定与说明的情况一致。图1为本发明的第一实施方式涉及的电路部件连接用粘接剂的截面图,图2为本发明的第二实施方式涉及的电路部件连4妄用粘接剂的截面图。图1所示的第一实施方式涉及的电路部件连接用粘接剂1为膜状粘接剂,由粘接剂IO构成,该粘接剂10包括含有热塑性树脂、交联性树脂和固化剂的树脂组合物以及分散在该树脂组合物中的复合氧化物粒子。图2所示的第二实施方式涉及的电路部件连接用粘接剂2为膜状粘接剂,由粘接剂10和分歉在该粘接剂10中的平均粒径为3~5jxm的导电粒子12构成,所述粘接剂10包括含有热塑性树脂、交联性树脂和固化剂的树脂组合物以及分散在该树脂组合物中的复合氧化物粒子。图3为表示由本发明的电路部件连接用粘接剂接合的、具有突出的连接端子的半导体芯片的截面图。图3所示的半导体芯片3具有半导体部件20和在其主面突出形成的连接端子22。图4为表示由本发明的电路部件连接用粘接剂接合的、形成有配线图案的基板的截面图。图4所示的基板4具有绝缘基板30和在其主面形成的配线图案(电极)32。图5为表示用第一实施方式涉及的电路部件连接用粘接剂电连接并粘接半导体芯片和基板而成的电子部件的截面图。就图5所示的电子部件来说,具有半导体部件20和连接端子22的半导体芯片3与具有绝缘基板30和配线图案32的基板4以连接端子22和配线图案32相对的方式配置,通过由粘接剂IO构成的第一实施方式涉及的电路部件连接用粘接剂l,半导体芯片3和基板4被粘接,同时实现连接端子22和配线图案32的接触,两者被电连接。图6为表示用第二实施方式涉及的电路部件连接用粘接剂电连接并粘接半导体芯片和基板而成的电子部件的截面图。就图6所示的电子部件来说,具有半导体部件20和连接端子22的半导体芯片3与具有绝缘基板30和配线图案32的基板4以连接端子22和配线图案32相对的方式配置,通过由粘接剂IO和导电粒子12构成的第二实施方式涉及的电路部件连接用粘接剂2,半导体芯片3和基板4被粘接,同时实现连接端子22和配线图案32的4矣触,两者被电连接。另外,导电粒子12存在于连接端子22间或者配线图案32间不短路的位置。图7为表示用第二实施方式涉及的电路部件连接用粘接剂电连接并粘接半导体芯片和基板而成的电子部件的截面图,表示与图6所示的电子部件不同的情况。就图7所示的电子部件来说,具有半导体部件20和连4秦端子22的半导体芯片3与具有绝缘基板30和配线图案32的基板4以连接端子22和配线图案32相对的方式配置,通过由粘接剂IO和导电粒子12构成的第二实施方式涉及的电路部件连接用粘接剂2,半导体芯片3和基板4被粘接,同时介由导电粒子12实现连接端子22和配线图案32的接触,两者被电连4^。另外,不参与电连接的导电粒子12存在于连接端子22间或者配线图案32间不短路的位置。图8为表示图5所示的电子部件的制造工艺的一个方式的截面图。图8(a)为表示在具有半导体部件20和连接端子22的半导体芯片3的连接端子22侧层叠有由粘接剂IO构成的第一实施方式涉及的电路部件连接用粘接剂1的层叠体的截面图,图8(b)为表示具有绝缘基板30和配线图案32的基板4的截面图。如图8所示,通过以连接端子22和配线图案32相对的方式压合图8(a)的层叠体和图8(b)的基板,在加压状态加热电路部件连接用粘接剂1,从而可以得到图5所示的电子部件。图9为表示图6或图7所示的电子部件的制造工艺的一个方式的截面图。图9(a)为表示在具有半导体部件20和连接端子22的半导体芯片3的连接端子22侧层叠有由粘接剂IO和导电粒子12构成的第二实施方式涉及的电路部件连接用粘接剂2的层叠体的截面图,图9(b)为表示具有绝缘基板30和配线图案32的基板4的截面图。如图9所示,通过以连接端子22和配线图案32相对的方式压合图9(a)的层叠体和图9(b)的基板,在加压状态加热电路部件连接用粘接剂2,从而可以得到图6或7所示的电子部件。图10为表示用第一实施方式涉及的电路部件连接用粘接剂电连接具有半导体芯片和基板而成的电子部件的半导体装置的截面图。图IO所示的半导体装置由电子部件和搭栽该部件的电子部件搭载基板构成。构成图IO的半导体装置的电子部件中,具有半导体部件20和连接端子22的半导体芯片3与在绝缘基板30的一个面具有配线图案32、在另一个面具有焊球34的基板4以连接端子22和配线图案32相对的方式来配置,通过由粘接剂IO构成的第一实施方式的电路部件连接用粘接剂1,半导体芯片3和基板4被粘接,同时实现连接端子22和配线图案32的接触,两者被电连接。另外,配线图案32和焊球34通过形成在绝缘基板30中的导孔(未图示)实现导通。并且,图10所示的半导体装置如下形成通过焊球34位于电子部件^搭载基板5的连接端子42上的方式配置上述的电子部件和在绝缘基板40形成有连接端子42的电子部件搭载基板5,使其电连接。本发明中半导体芯片3中使用的连接端子22可以采用利用金线形成的金制柱状凸块,通过热压、超声波并用热压机将金属球固定于半导体芯片的电极而形成的连接端子以及通过镀敷、蒸镀形成的连接端子。突出的连接端子22不必一定由单一金属构成,也可以含有金、4艮、铜、镍、铟、钯、锡、铋等多种金属成分,也可以是层叠这些金属的金属层而成的形态。并且,具有突出的连接端子22的半导体芯片3也可以是具有突出的连接端子的半导体晶片的状态。为了半导体芯片3的突出的连接端子22与形成有配线图案32的基板4相对来配置,半导体芯片3优选在与突出的连接端子22相同的面上具有位置对准标识(定位标识)。形成有配线图案32的电路基板4所使用的电路基板可以是通常的电路基板,也可以是半导体芯片。电3各基板的情形中,配线图案32,可以形成在将环氧树脂、具有苯并三溱骨架的树脂浸透玻璃布或无纺布而形成的绝缘基板30上或者具有装配层的基板上,也可以通过蚀刻除去形成在聚酰亚胺、玻璃、陶瓷等绝缘基板30表面的铜等的金属层的多余部分来形成,或者还可以对绝缘基板30表面进行镀敷、蒸镀等来形成。配线图案32不必一定由单一金属构成,也可以含有金、银、铜、镍、铟、钯、锡、铋等多种金属成分,也可以是这些金属的金属层被层叠的形态。进而,基板为半导体芯片的情况下,配线图案32通常由铝构成,但也可以在其表面形成金、银、铜、镍、铟、4巴、锡、铋等的金属层。状态可以如下得到将按照芯片化前具有突出的连接端子的半导体晶片、配置在半导体晶片的突出的连接端子面的电路部件连接用粘"f妻剂、在电路部件连接用粘接剂侧配置有粘着层的切割胶带的顺序层叠而成的层叠体通过切割切成单片,从切割胶带剥离单片化的带电路部件连接用粘接剂的半导体芯片。在半以如下得到在芯片化前具有突出的连接端子的半导体晶片的连接端子面配置电路部件连接用粘接剂,按照使粘着层接触上述半导体晶片的没有配置电路部件连接用粘接剂的面的方式来配置切割胶带得到层叠体,通过切割将该层叠体切成单片,从切割胶带剥离单片化的带电路部件连接用粘接剂的半导体芯片。在条形基材上涂布有粘着材料的切割胶带可以适用市售的切割胶带。通过UV紫外线照射进行粘着层的固化、粘着力减小而且容易剥离层叠在粘着面的被粕着体这样的放射线反应型的切割胶带可以适用市售品。电路部件连接用粘接剂来说,粘贴在半导体芯片的具有突出连接端子的面的状态中,优选透过电路部件连接用粘接剂可以识别形成在芯片的电路面上的位置对准标识。位置对准标识可以用通常的搭载在倒装片接合机是的芯片识别用装置来进行识别。该识别装置通常由具有卣灯的卣光源、光波导、照射装置及CCD照相机构成。关于由CCD照相机获取的图像,通过图像处理装置判断与事先存储的对准用图像图案的一致性,进行位置对准作业。本发明中所说的能够识别位置对准标识,是指使用倒装片接合机的芯片识别用装置获取的位置对准标识的图像与存储的位置对准标识的图像的一致性良好,能够进行位置对准作业。例如使用爱立发抹式会社制造的商品名倒装片接合机CB-1050的设备,在具有突出连接端子的面粘贴有电路部件连接用粘接剂的层叠体的与连接端的吸附管口后,由装置内的识别装置透过粘接剂层对形成在半导体芯片表面的识别标识进行拍摄,与事先存储在图像处理装置的半导体芯片的识别标识一致而能够对准的情况可以选择作为可识别的电路部件连接用粘接剂,不能对准的情况可以选择作为不可识别的电路部件连接用粘接剂。电路部件连接用粘接剂未固化时的平行透射率优选为15-100%,更优选为18-100%,进一步优选为25~100%。平行透射率小于15%时,会有不能利用倒装片接合机进行识别标识的识别,不能进行位置对准作业的倾向。平行透射率可以使用日本电色抹式会社制造的浊度计、商品名NDH2000,利用积分球式光电光度法进行测定。例如将膜厚50nm的帝人杜邦薄膜抹式会社制造的PET膜(Purex、全光线透过率90.45、浊度4.47)作为基准物质进行校正后,在PET基材上涂布厚度25pm的电路连接用粘接剂,对其进行测定。由测定结果可以求出浊度、全光线透过率、扩散透过率及平行透射率。可见光透过率可以由抹式会社日立制作所制造的商品名U-3310型分光光度计进行测定。例如可以将膜厚50pm的帝人杜邦薄膜株式会社制造的PET膜(Purex、555nm、透过率86.03%)作为基准物质进4于基线校正测定后,在PET基材上涂布厚度25pm的电路连接用粘接剂,测定400nm~800nm的可见光区域的透过率。就倒装片接合机中使用的卣光源和光波导的波长相对强度来说,550nm600nm最强,因而本发明中可以取555nm的透过率进行透过率的比较。就电路部件连接用粘接剂来说,在180。C加热20秒钟后由DSC测定的反应率优选为80%以上。反应率更优选为84%以上,进一步优选为86%以上。这里,反应率例如可以通过下述方法测定。首先,在铝制测定容器中称量210mg反应前的电路部件连接用粘接剂,使用DSC以20。C/分钟的升温速度从30。C至300。C进行放热量测定,求出初期》丈热量。接着,使用热压装置的加热头在180。C加热电路部件连接用粘接剂20秒钟,得到加热后的电路部件连接用粘接剂。取2~10mg该电路部件连接用粘接剂,在与上述同样的条件下由DSC进行放热量测定,将其设为加热后放热量。于是,通过下述式由得到的放热量算出反应率(%)。(初期》文热量-加热后放热量)/(初期》文热量)xioo电路部件连接用粘接剂优选UV照射后对切割胶带的粘接力为10N/m以下,且对半导体晶片的粘接力为70N/m以上。UV照射后对切割胶带的粘接力大于10N/m时,切割后从切割胶带剥离单片化的带电路部件连接用粘接剂的半导体芯片的作业中往往会发生芯片破坏、粘接剂层变形。另一方面,对半导体晶片的粘接力小于70N/m时,由于切割时刀片的旋转切削引起的沖击和水压的影响,在芯片和粘接剂界面往往会发生剥离。电路部件连接用粘接剂与UV照射后的切割胶带的粘接力例如可以由下述方法测定。首先,通过加热温度设定为8(TC的层压机将电路部件连接用粘接剂层压于晶片后,使UV照射前的切割胶带的粘着面接触电路部件连接用粘接剂并在40。C进行层压,然后在切割胶带侧以15mW进行300mJ左右的UY照射。接着,对UV照射后的切割胶带切入10mm宽度的切口,准备拉伸测定用的短条。随后,将晶片按压在工作台上,将制成短条的切割胶带的一端固定在拉伸测定机的拉伸夹具上,剥离电路部件连接用粘接剂和UV照射后的切割胶带,进行90。剥离试验。通过该测定可以测定电路部件连接用粘接剂和UV照射后的切割胶带的粘接力。电路部件连接用粘接剂和半导体晶片的粘接力例如可以由下述方法测定。首先,通过加热温度设定为80。C的层压机将电路部件连接用粘接剂层压于晶片后,使粘着面朝向电路部件连接用粘接剂粘贴KAPTON(注册商标)胶带(日东电工抹式会社制造、宽度10mm、厚度25iam)而充分密合,然后对粘接了KAPTON(注册商标)胶带的电路部件连接用粘4妄剂切入10mm宽度的切口。将加工好的电路部件连接用粘接剂和KAPTON(注册商标)胶带的层叠体的一端从晶片剥离,固定于拉伸测定机的拉伸夹具。将晶片按压在工作台上,提拉短条,将电路部件连接用粘接剂从晶片剥离,进行90。剥离试验。通过该测定可以测定电路部件连"l妄用粘接剂和半导体晶片的粘接力。就电路部件连接用粘接剂来说,连接后为了抑制半导体芯片和电路基板连接后的温度变化、加热吸湿引起的膨胀等,实现高连接可靠性,固化后在40~IO(TC的线膨胀系数优选为70x10力。C以下,更优选为60xlO力。C以下,进一步优选为55x10—"。C以下,特别优选为50x10力。C以下。固化后的线膨胀系数大于70xl0力。C时,由于安装后的温度变化和加热吸湿引起的膨胀,在半导体芯片的连接端子和电路基板的配线间往往不能保持电连接。电路部件连接用粘接剂包括粘接树脂组合物和复合氧化物粒子,粘接树脂组合物的平行透射率优选为15%以上,更优选为30%以上,进一步优选为40%以上。如果平行透射率为40%以上,则即使高填充了复合氧化物粒子的情况也能够满足规定的透过率,因此优选。如果粘接树脂组合物的平行透射率小于15%,则即使在不添加复合氧化物粒子的状态下,也往往不能由倒装片接合机进行识别标识的识别,不能进行位置对准作业。本发明中使用的复合氧化物粒子的折射率优选为1.5-1.7,更优选为1.53-1.65。如果复合氧化物粒子的折射率小于1.5,配合于粘接杉于脂组合物中时与树脂组合物的折射差变大,因而光透过电路部件连接用粘接剂的内部时会发生散射,不能进行位置对准。另一方面,折射率大于1.7的情况,同样与树脂的折射率差变大,从而往往会发生散射而不能对准位置。折射率可以使用阿贝折射计以钠D线(589nm)作为光源进行测定。本发明中使用的复合氧化物粒子优选平均粒径为15pm以下且最大粒径为40nm以下的粒子;平均粒径更优选为5nm以下,平均粒径进一步优选为3jnm以下。复合氧化物粒子特别优选平均粒径为3jam以下且最大粒径为20nm以下的粒子;进一步特别优选平均粒径为3pm以下且最大粒径为5pm以下的粒子。平均粒径大于15pm时,复合氧化物粒子啮入芯片的凸块(连接端子)和电路基板(形成有配线图案的基板)的电极之间,特别是低压安装的情况下或凸块的材质为镍等硬质的情况下变得无法埋入,从而妨碍电连接,是不优选的。另外,最大粒径大于40pm时,可能变得比芯片和基板的间隙还大,往往会成为在安装时由于加压而损坏芯片的电路或基板的电路的原因。另外,本发明中使用的复合氧化物粒子的比重优选为4以下,更优选为2~4,进一步优选为23.2。比重大于4时,添加到粘接树脂组合物的清漆中时,由于比重差大,会成为在清漆中发生沉降的原因,往往得不到复合氧化物粒子均匀分散的电路部件连接用粘接剂。另夕卜,本发明中使用的复合氧化物粒子与粘接树脂组合物的折射率差优选为±0.06以内,更优选为±0.02以内,进一步优选为±0.01以内。折射率差超过土0.06时,添加到粘接树脂组合物中会减小透过率,会有在粘贴于半导体芯片的具有突出连接端子的面的状态下不能透过电路部件连接用粘接剂来识别在芯片的电路面形成的位置对准标识的情况。作为这样的复合氧化物,折射率为1.5-1.7、与粘接树脂组合物的折射率差为±0.06以内的复合氧化物是特别良好的;作为这样的复合氧化物可举出例如包含锌、铝、锑、镱、钇、铟、铒、锇、镉、钩、钾、银、铬、钴、钐、镝、锆、锡、4,、鴒、4態、钽、4太、4失、铜、钠、铌、4臬、钒、铪、4巴、钡、4义、镨、铍、镁、锰、钼、铕、镧、磷、镥、钌、铑、硼等金属元素的氧化物。这些物质也可以混合^f吏用。复合氧化物优选为包含2种以上金属作为原料、且具有与原料金属单独形成氧化物时的结构不同的结构的化合物。特别优选为由在原料中包含选自铝、镁或钛中的至少一种金属元素以及2种以上其他元素的氧化物的化合物构成的复合氧化物粒子。作为这种复合氧化物可举出硼酸铝、堇青石、镁橄榄石、莫来石等。复合氧化物也可以是铝、硅的复合氧化物中镁这样的金属被元素置换的化合物。另外,本发明中硅元素、硼元素这样的准金属元素(半金属)也用作构成复合氧化物的金属。复合氧化物粒子的线膨胀系数,在0700。C以下的温度范围优选为7x10力。C以下,更优选为3x10力。C以下。热膨胀系数大于7x10—VC时,为了降低电路部件连接用粘接剂的热膨胀系数有时需要大量添加复合氧化物粒子。从折射率可以微调节和低线膨胀的角度考虑,复合氧化物进一步优选为堇青石。堇青石为通常由MgOAl203'Si02构成的组成所表示的化合物,折射率为1.54。MgO/Al2(VSi02的比例为2/2/5,通过稍微改变该比例可以微调节折射率。另外,结晶时的线膨胀系数显示为2x10力。C以下。包含在电路部件连接用粘接剂中的复合氧化物粒子优选含有堇青石粒子。复合氧化物粒子可以仅由堇青石粒子构成,也可以含有堇青石粒子以外的复合氧化物粒子。后者的情况下,以复合氧化物粒子总量为基准,堇青石粒子的含量优选为50重量%以上,更优选为70重量%以上,进一步优选为90重量°/。以上。在电路部件连接用粘接剂中,相对树脂组合物ioo重量份,复合氧化物粒子的含量优选为25~200重量份。该含量更优选为25~150重量份,进一步优选为50~150重量份,特别优选为75~125重量份。如果复合氧化物粒子的配合量小于25重量份,有时会导致电路部件连接用粘接剂的线膨胀系数的增大和弹性模量的降低,此时压合后半导体芯片和基板的连接可靠性会降低。另一方面,如果复合氧化物粒子的配合量大于200重量份,由于电路部件连接用粘接剂的熔融粘度增加,半导体的突出电极和基板的电路有时难以充分地连接。电路部件连接用粘接剂含有树脂组合物和分散在该树脂组合物中的复合氧化物粒子,树脂组合物含有热塑性树脂、交联性树脂及可使该树脂形成交联结构的固化剂。在不妨碍本发明效果的程度,树脂组合物或电路部件连接用粘接剂也可以含有其他添加剂(填料、增塑剂、着色剂、交联助剂等)。另外,树脂组合物也可以仅由热塑性树脂、交联性树脂及可使该树脂形成交联结构的固化剂构成,电路部件连接用粘接剂也可以仅由树脂组合物和分散在该树脂组合物中的复合氧化物粒子构成。作为树脂组合物含有的热塑性树脂,可举出聚烯烃(聚乙烯、聚丙烯等)、乙烯系共聚物(乙烯-a烯烃共聚物、乙烯-醋酸乙烯酯共聚物、乙烯-(甲基)丙烯酸酯共聚物等)、苯乙烯系嵌段共聚物、丙烯酸系聚合物(指具有(曱基)丙烯酰基的单体的聚合物)、丙烯酸系共聚物(指包含具有(曱基)丙烯酰基的单体作为共聚单体的共聚物)、苯氧基树脂,优选丙烯酸系聚合物、丙烯酸系共聚物或苯氧基树脂。热塑性树脂的重均分子量优选为IOO万以下,更优选为50万以下,进一步优选为30万以下。另外,热塑性树脂的Tg优选为40。C以下,更优选为35。C以下。树脂组合物含有的交联性树脂为通过加热、光照射等赋予能量在共同使用的固化剂作用下三维交联的树脂(三维交联树脂),优选具有可通过热或光与固化剂反应的官能团的树脂。作为这样的交联性树脂,可举出环氧树脂、双马来酰亚胺树脂、三溱树脂、聚酰亚胺树脂、聚酰胺树脂、氰基丙烯酸酯树脂、酚树脂、不饱和聚酯树脂、蜜胺树脂、脲树脂、聚氨酯树脂、聚异氰酸酯树脂、呋喃树脂、间苯二酚树脂、二甲苯树脂、苯胍胺树脂、酞酸二烯丙酯树脂、有机硅树脂、聚乙烯醇缩丁醛树脂、硅氧烷改性环氧树脂、硅氧烷改性聚酰胺酰亚胺树脂、丙烯酸酯树脂等,这些树脂可以单独使用或者作为2种以上的混合物来使用。使这样的交联性树脂形成交联结构的固化剂可以按照交联性树脂的反应性(官能团的种类等)来决定。作为固化剂,可以例示酚系、咪唑系、酰肼系、硫醇系、苯并P恶嗪、三氟化硼-胺络合物、锍盐、胺酰亚胺、多元胺的盐、双氰胺、有机过氧化物系固化剂。为了延长使用时间,这些固化剂也可以由聚氨酯系、聚酯系的高分子物质等被覆而微嚢化。热塑性树脂优选为重均分子量100万以下(优选50万以下、更优选30万以下)、Tg4(TC以下(优选35。C以下)且在侧链包含至少一处可与交耳关性树脂反应的官能团的共聚性树脂,固化剂优选微嚢型固化剂。特别优选将这样的共聚性树脂和微嚢型固化剂并用。另外,Tg(玻璃化温度)可以通过JISK7121"塑料的转变温度测定方法"规定的DSC法来测定。作为重均分子量100万以下、Tg40。C以下且在侧链包含至少一处可与交联性树脂反应的官能团的共聚性树脂,优选在侧链包含环氧基、羧基、羟基等作为可与交联性树脂反应的官能团的丙烯酸系共聚物。特別优选使用丙烯酸缩水甘油酯或曱基丙烯酸缩水甘油酯等作为丙烯酸系共聚物的原料而得到的含环氧基丙烯酸系共聚物。作为共聚性树脂的共聚所用的原料可以使用(曱基)丙烯酸羟乙酯、(曱基)丙烯酸羟丙酯、(甲基)丙烯酸羟丁酯等(曱基)丙烯酸羟基烷基酯,或曱基丙烯酸甲酯、(甲基)丙烯酸丁酯、(曱基)丙烯酸2-乙基己酯、(曱基)丙烯酸环己酯、(甲基)丙烯酸糠酯、(曱基)丙烯酸月桂酯、(曱基)丙烯酸十八烷基酯、(曱基)丙烯酸三曱基环己酯、(曱基)丙烯酸三环癸酯、四环十二烷基-3-丙烯酸酯等(曱基)丙烯酸酯,苯乙烯、乙烯基曱苯、聚丙二醇单曱基丙烯酸酯、丙烯酸羟乙酯、丙烯腈、曱基丙烯酸苄酯、环己基马来酰亚胺等。微嚢型固化剂是指,以固化剂为核,实质上由聚氨酯、聚苯乙烯、明胶、聚异氰酸酯等高分子物质或硅酸钙、沸石等无机物以及镍、铜等的金属薄膜等被膜覆盖的物质。微嚢型固化剂的平均粒径优选为lOiam以下,更优选为5pm以下。除了微嚢型固化剂以外,树脂组合物还可以包含非微嚢型的固化剂。另夕卜,为了增大粘接强度,树脂组合物也可以包含偶联剂,为了增强成膜性也可以包含聚酯、聚氨酯、聚乙烯醇缩丁醛树脂、聚丙烯酸酯、聚曱基丙歸酸曱酯、丙烯酸系橡胶、聚苯乙烯、苯氧基树脂、NBR、SBR、聚酰亚胺、有机硅改性树脂(有机硅改性丙烯酸系树脂、有机硅改性环氧树脂、有机硅改性聚酰亚胺)等热塑性树脂,另外,为了复合氧化物粒子的表面改性,还可以包含硅油、聚硅氧烷、有机硅低聚物、偶联剂。电路部件连接用粘接剂也可以通过添加由有机高分子化合物被覆的粒径3~5|Lim的导电粒子和/或金属的导电粒子而形成各向异性导电粘接剂。由有机高分子化合物净皮覆前的导电粒子为Au、Ag、Ni、Cu、焊锡等金属粒子或碳等;为了得到充分的储存寿命,表层不是Ni、Cu等过渡金属类,而优选Au、Ag、Pt的贵金属类,更优选Au。另外,也可以是由Au等贵金属类被覆Ni等过渡金属类的表面而得到的粒子。进而,通过进行^皮覆等对非导电性的玻璃、陶瓷、塑料等形成上述的导通层而使最外层为贵金属类的情况或者热熔融金属粒子的情况下,由于通过加热加压具有变形性,可以吸收电极高度的偏差,在连接时与电极的接触面积增加而可靠性提高,因此优选。为了得到良好的电阻,贵金属类的被覆层的厚度优选100埃以上。但是,在Ni等过渡金属上设置贵金属类层的情况下,因为由贵金属类层的缺损或在导电粒子的混合分散时产生的贵金属类层的缺损等引起的氧化还原作用会产生游离自由基,引起保存性降低,因此优选300埃以上。如果变厚则其效果会饱和,从而优选最大为l|iim,但没有特别限制。这些导电粒子的表面根据需要由有机高分子化合物被覆。用于被覆的有机高分子化合物为水溶性时,被覆作业性良好,因此优选。作为水溶性高分子,可举出海藻酸、果胶酸、羧曱基纤维素、琼脂、凝胶多糖、茁霉多糖(Pullulan)等多糖类,聚天冬氨酸、聚谷氨酸、聚赖氨酸、聚苹果酸、聚曱基丙烯酸、聚甲基丙烯酸铵盐、聚曱基丙烯酸钠盐、聚酰胺酸、聚马来酸、聚衣康酸、聚富马酸、聚(对苯乙烯羧酸)、聚丙烯酸、聚丙烯酰胺、聚丙烯酸曱酯、聚丙烯酸乙酯、聚丙烯酸铵盐、聚丙烯酸钠盐、聚酰胺酸、聚酰胺酸铵盐、聚酰胺酸钠盐及聚乙醛酸等聚羧酸、聚羧酸酯及其盐,聚乙烯醇、聚乙烯吡咯烷酮、聚丙烯醛等乙烯基系单体等。这些化合物可以单独使用,也可以并用2种以上。被覆的厚度优选lpm以下,由于导电粒子是排除该被覆来连4^端子和连接端子电连接,因此在加热、加压时需要排除与连接端子接触部分的被覆。相对粘接剂树脂成分100体积份,导电粒子在O.l30体积份的范围根据用途区别使用。为了防止由过剩的导电粒子引起的邻接电路的短路等,更优选为0.1~10体积4分。由具有突出的连接端子的半导体晶片、电路部件连接用粘接剂(或者电路部件连接用各向异性导电粘接剂)、UV照射固化型的切割胶带构成的层叠体也可以如下得到通过具有加热构件和加压辊的装置或具有加热构件和真空挤压构件的装置,将半导体晶片和电路部件连接用粘接剂层压后,进一步通过晶片装配器等装置与切割胶带层压。另外,由具有突出的连接端子的半导体晶片、电路部件连接用粘接剂(或者电路部件连接用各向异性导电粘接剂)、UV照射固化型的切割胶带构成的层叠体可以如下得到在准备好层压电路部件连接用粘接剂和切割胶带层压而成的层叠体后,利用具有加热构件和加压辊的晶片装配器或者具有加热构件和真空挤压构件的晶片装配器层压在半导体晶片上。半导体晶片和电路部件连接用粘接剂的层压或者半导体晶片和电路部件连接用粘接剂的层叠体的层压优选在电路部件连接用粘接剂发生软化的温度进行,例如优选加热至4080'C而进行,更优选加热至60-80。C而进行,进一步加热至70~80。C而进行层压。在低于电路部件连接用粘接剂发生软化的温度进行层压时,半导体晶片的突出的连接端子向周边的埋入不足,形成巻入孔隙的状态,往往会成为切割时的剥离、拾取时电路部件连接用粘接剂的变形、位置对准时识别标识识别不良、进而孔隙引起的连接可靠性的降低等的原因。对由半导体晶片、电路部件连接用粘接剂、切割胶带构成的层叠体进行切割时,可以通过使用IR识别相机透过晶片识别半导体晶片的电路图案或切割用的位置对准标识,进^f于划线的对准。对于由半导体晶片、电路部件连接用粘接剂、切割胶带构成的层叠体,切割半导体晶片和电路部件连接用粘接剂的工序可以使用常见的切割才几进行。利用切割机的切割可以应用通常被称为切割的工序。切割优选以分段切割方式进行切割,即第1阶段仅切断晶片,第2阶段切断至第1阶段的切断沟内残存的晶片和电路部件连接用粘接剂和切割胶带的界面或者至切割胶带的内部。由半导体晶片、电路部件连接用粘接剂、切割胶带构成的层叠体的切割也可以应用利用激光的切割。切割后的uv照射工序可以在切割胶带侧利用常见的曝光机等以15~30mW进行150~300mJ程度的UV照射来完成。从切割胶带侧向半导体晶片侧上顶而剥离切割胶带和粘接剂来得到单片化的带粘接剂半导体芯片的工序可以利用能够从晶片拾取芯片的装置来实施,可以如下进行以从与半导体芯片被层叠的面相反的面推展切割胶带的方式来推,在电路部件连接用粘接剂和UV照射后的切割胶带的界面进行剥离、剥开。带粘接剂的芯片的吸引工序、位置对准工序、加热加压工序可以用常见的倒装片接合机进行。另外,也可以在进行了吸引工序、位置对准工序,并将位置对准后的半导体芯片临时固定于基板后,利用仅进行压合的压合^L加热加压来连接。进而,还可以不仅加热加压,还施加超声波来进行连接。实施例下面通过实施例更详细地说明本发明,但本发明并不限于这些实施例。(实施例1)使用作为交联性树脂的环氧树脂NC7000(日本化药抹式会社制造、商品名)15重量份,作为与该交联性树脂反应的固化剂的芳烷基酚树脂XLC-LL(三井化学林式会社制造、商品名)15重量份,作为分子量IOO万以下、Tg40°C以下且在側链包含至少一处可与交联性树脂反应的官能团的共聚性树脂的含环氧基丙烯酸系橡胶HTR-860P-3(日本长濑(NagasechemteX)抹式会社制造、商品名、重均分子量30万)20重量份,作为微嚢型固化剂的HX-3941HP(旭化成抹式会社制造、商品名)50重量份及硅烷偶联剂SH6040(东丽道康宁公司制造、商品名),以表1记载的组成溶解在甲苯和醋酸乙酯的混合溶剂中,得到粘接树脂组合物的清漆。使用辊涂布器将该清漆的一部分涂布到分隔物膜(PET膜)上后,用70。C的烘箱干燥10分钟,在分隔物上得到厚度25pm的粘接剂树脂组合物膜。将该膜设置在阿贝折射计(钠D线)的试样台上,剥离分隔物并滴落1滴匹配油(matchingoil),放置折射率1.74的试样,测定折射率。其结果是,粘接剂树脂组合物的折射率为1.59(25°C)。另一方面,称量清漆后,将进行过粉碎、为除去大粒径而进行过5pm分级处理得到的平均粒径ljiim的堇青石粒子(2Mg0.2Al203.5Si02、比重2.4、线膨胀系数1.5x10—6/°C、折射率1.54)以表l记载的组成混合,搅拌而M后,使用辊涂布器涂布在分隔物膜(PET膜)上,然后用7(TC的烘箱干燥10分钟,在分隔物上得到厚度25pm的透过性确认用膜。得到的透过性确认用膜如图11所示,可以透过并识别背侧的图像。另外,除了上述制作以外,称量清漆后,将进行过粉碎、为除去大粒径而进行过5nm分级处理得到的平均粒径1pm的堇青石粒子(2Mg0.2Al203.5Si02、比重2.4、线膨胀系数1.5x10力。C、折射率1.54)以表1记载的组成混合,搅拌而分散后,使用辊涂布器涂布在分隔物膜(PET膜)上后,用70。C的烘箱干燥10分钟,在分隔物上得到厚度20nm的电路部件连接用粘接剂的绝缘性粘接剂层。(实施例2~4)与实施例1同样地以表1记载的組成、经过与实施例1同样的工艺而制作粘接树脂组合物的清漆后,制作透过性确认用膜,同时得到电路部件连接用粘接剂的绝缘性粘接剂层。(实施例5)与实施例1~4同样地以表1记载的组成、经过与实施例1同样的工艺而得到粘接树脂组合物的清漆。除了在该清漆中使用硼酸铝(9A1203.2B203、四国化成工业抹式会社制造、比重3.0、线膨胀系数2.6x10—6/°C、折射率1.62)以外,经过与实施例1同样的工艺制作透过性确认用膜,同时得到电路部件连接用粘接剂的绝缘性粘接剂层。(实施例6)与实施例1同样地以表1记载的组成、经过与实施例1同样的工艺,加入堇青石粒子调节粘接树脂组合物的清漆,在分隔物膜上得到厚度45pm的电路部件连接用粘接剂。接着,使凸块面朝上将带金线凸块(经过调平处理、凸块高度30pim、184个凸块)的芯片(边长10mm方形、厚度280jxm)放置在临时压合装置的工作台上,使粘接侧朝向凸块面将连同分隔物切割成边长12mm方形的电路部件连接用粘接剂被覆于芯片,进而放置有机硅制热传导性覆盖膜并以80°C、lMPa粘贴于芯片。粘贴后,将从芯片外形突出部分的树脂切断,从粘接剂剥离分隔物而得到带粘接剂的芯片。该带粘接剂的芯片可以由倒装片接合机的识别照相机识别芯片电路面的定位标识。另夕卜,与Ni/Au镀覆Cu电路印刷基板进行位置对准,接着在180。C、0.98N/凸块、20秒钟的条件下进行加热、加压,得到半导体装置。得到的半导体装置的176个凸块连结链(daisychain)的连接电阻为8.6Q,确认为良好的连接状态。另外,将半导体装置在30。C、相对湿度60%的槽内放置192小时后,进'行3次IR回流处理(265。C最大),没有发生芯片剥离或者导通不良。进而,将IR回流后的半导体装置放置在温度循环试验机(-55°C30分钟、室温5分钟、125。C30分钟)内,在槽内进行连接电阻测定,确认经过600个循环后没有发生导通不良。(实施例7)将作为交联性树脂的环氧树脂EP1032H60(日本环氧树脂抹式会社制造、商品名)、苯氧基^"脂YP50S(东都化成抹式会社制造、商品名、重均分子量7万)、作为微嚢型固化剂的HX-3941HP(旭化成株式会社制造、商品名)及硅烷偶联剂SH6040(东丽道康宁公司制造、商品名)以表1记载的组成混合,并溶解在曱苯和醋酸乙酯的混合溶剂中,得到粘接树脂组合物的清漆。将进行过粉碎、为除去大粒径而进行过5jnm分级处理的平均粒径lpm的堇青石粒子(2Mg0.2Al203.5Si02、比重2.4、线膨胀系数1.5x10力。C、折射率1.54)50重量+分混合、搅拌而分散在该清漆中后,使用辊涂布器涂布在分隔物膜(PET膜)上,然后用7(TC的烘箱千燥10分钟,得到厚度45pm的电路部件连接用粘接剂。接着,与实施例6同样地粘贴于带金线凸块的芯片后,向Au/Ni镀覆Cu电路印刷基板进行连接,得到半导体装置。得到的半导体装置的176个凸块连结链的连接电阻为8.6Q,确认为良好的连接状态。另外,将半导体装置在30。C、相对湿度60。/。的槽内放置192小时后,进行3次IR回流处理(265。C最大),没有发生芯片剥离或者导通不良。进而,将IR回流后的半导体装置放置在温度循环试验机(-55。C30分钟、室温5分钟、125。C30分钟)内,在槽内进行连接电阻测定,确认经过600个循环后没有发生导通不良。表1<table>tableseeoriginaldocumentpage24</column></row><table>(实施例8)对于实施例1中得到的绝缘性粘接剂层,进一步混合平均粒径3pm的导电粒子,该导电粒子在以聚苯乙烯为核的粒子的表面设置有厚度0.2jim的镍层,在镍层的外侧设置有厚度0.04pm的金层,除此以外,按照与上述同样的步骤以表2记载的组成制作透过性确认用膜,在分隔物上得到厚度5pm的电路部件连接用粘接剂的粒子层。利用层压机将绝缘性粘接剂层和粒子层贴合,得到厚度25pm的电路部件连接用各向异性导电粘接剂。(实施例9~11)对于实施例2~4中得到的绝缘性粘接剂层,进一步在以聚苯乙烯为核的粒子的表面设置厚度0.2pm的镍层,除此以外,经过与实施例8同样的工艺得到厚度25pm的电路部件连接用各向异性导电粘接剂。(实施例12)对于实施例5中得到的绝缘性粘接剂层,进一步在以聚苯乙烯为核的粒子的表面设置厚度0.2pm的镍层,除此以外,经过与实施例8同样的工艺得到厚度25pm的电路部件连接用各向异性导电粘接剂。表2<table>tableseeoriginaldocumentpage25</column></row><table>(单位重量份)(比较例1)使用作为交联性树脂的环氧树脂NC7000(日本化药抹式会社制造、商品名),作为与交联性树脂反应的固化剂的芳烷基酚树脂XLC-LL(三井化学株式会社制造、商品名),作为分子量100万以下、Tg40。C以下且在侧链包含至少一处可与交联性树脂反应的官能团的共聚性树脂的含环氧基丙烯酸系橡胶HTR-860P-3(日本长濑抹式会社制造、商品名、重均分子量30万),作为微囊型固化剂的HX-3941HP(旭化成株式会社制造、商品名)及硅烷偶联剂SH6040(东丽道康宁公司制造、商品名),以表3记载的组成溶解在曱苯和醋酸乙酯的混合溶剂中,得到粘接树脂组合物的清漆。将为了除去大粒径而进行过5pm分级处理得到的平均粒径0.5|im的二氧化硅粒子SE2050(林式会社Admatechs社制造、商品名、比重2.22、线膨胀系数5xl0—7/°C、折射率1.46)以表3记载的组成混合、搅拌而分散在该清漆中后,使用辊涂布器涂布在分隔物膜(PET膜)上后,用7(TC的烘箱干燥10分钟,在分隔物上得到厚度25pm的透过性确认用膜。得到的透过性确认用膜如图IO所示,难以透过而识别背侧的图像。接着,称量清漆后,以表3记载的组成混合、搅拌而分散平均粒径0.5pm的二氧化硅粒子SE2050后,使用辊涂布器涂布在分隔物膜(PET膜)上后,用7(TC的烘箱干燥10分钟,在分隔物上得到厚度20^m的电路部件连接用粘接剂的绝缘性粘接剂层。(比较例2)与比较例1同样地以表3记载的组成、经过与比较例1同样的工艺制作粘接树脂组合物的清漆后,制作透过性确认用膜,同时得到电路部件连接用粘接剂的绝缘性粘接剂层。(比较例3)与比较例1和比较例2同样地以表3记载的组成、经过与比较例1同样的工艺得到粘接树脂组合物的清漆后,使用辊涂布器涂布在分隔物膜(PET膜)上后,用7(TC的烘箱干燥10分钟,在分隔物上得到厚度20nm的电路部件连接用粘接剂的绝缘性粘接剂层。(比较例4)以表3记载的组成将作为交联性树脂的环氧树脂NC7000(日本化药林式会社制造、商品名),作为分子量100万以下、Tg40。C以下且在侧链包含至少一处可与交联性树脂反应的官能团的共聚性树脂的含环氧基丙烯酸系橡胶HTR-860P-3(日本长濑林式会社制造、商品名、重均分子量30万),作为固化剂的2PHZ(四国化成工业制抹式会社制造、商品名),硅烷偶联剂SH6062(东丽道康宁公司制造、商品名),A1160(日本尤尼卡抹式会社制造、商品名)以及二氧化硅;欽粒AEROSIL(注册商标)R805(日本AEROSIL抹式会社制造、商品名、一次粒径17nm)溶解在曱苯和醋酸乙酯的混合溶剂中,得到粘接树脂组合物的清漆。搅拌^t后,使用辊涂布器涂布在分隔物膜(PET膜)上,然后用70°C的烘箱干燥10分钟,在分隔物上得到厚度25nm的透过性确认用膜。接着,经过与比较例1同样的工艺在分隔物上得到厚度20nm的电路部件连接用粘接剂的绝缘性粘接剂层。(比较例5)以表3记载的组成将作为交联性树脂的环氧树脂NC7000(日本化药抹式会社制造、商品名),作为与交联性树脂反应的固化剂的芳烷基酚树脂XLC-LL(三井化学抹式会社制造、商品名),替代微嚢型固化剂的液态环氧树脂埃皮考特(工匕。:n—卜)828(日本环氧树脂社制造、商品名)及固化剂2PHZ(四国化成工业才朱式会社制造、商品名),作为分子量100万以下、Tg40。C以下且在侧链包含至少一处可与交联性树脂反应的官能团的共聚性树脂的含环氧基丙烯酸系橡胶HTR-860P-3(日本长濑抹式会社制造、商品名、重均分子量30万),硅烷偶联剂SH6040(东丽道康宁公司制造、商品名)以及二氧化硅微粒AEROSIL(注册商标)R805(日本AEROSIL抹式会社制造、商品名、一次粒径17nm)溶解在曱苯和醋酸乙酯的混合溶剂中,得到粘接树脂组合物的清漆。搅拌^"ft后,使用辊涂布器涂布在分隔物膜(PET膜)上,然后用70°C的烘箱干燥10分钟,在分隔物上得到厚度25pm的透过性确认用膜。接着,经过与比较例1同样的工艺在分隔物上得到厚度20pim的电路部件连接用粘接剂的绝缘性粘接剂层。(比较例6)除了实施例1的堇青石粒子更换成二氧化硅微粒AEROSIL(注册商标)R805(日本AEROSIL株式会社制造、商品名、一次粒径17nm)以外,以表3记载的组成、经过与实施例1同样的工艺制作粘接树脂组合物的清漆后,制作透过性确认用膜,同时得到电路部件连接用粘接剂的绝缘性粘接剂层。表3<table>tableseeoriginaldocumentpage27</column></row><table><table>tableseeoriginaldocumentpage28</column></row><table>(单位重量份)(比较例7~12)对于比较例1~6中得到的绝缘性粘接剂层,进一步混合平均粒径3jum的导电粒子,该导电粒子在以聚苯乙烯为核的粒子的表面设置有厚度0.2pm的镍层,在镍层的外侧设置有厚度0.04nm的金层,除此以外按照与上述同样的步骤以表2记载的组成制作透过性确认用膜,在该透过性确认用膜上得到厚度5pm的电路部件连接用粘接剂的粒子层。利用层压机将绝缘性粘接剂层和粒子层贴合,得到厚度25pm的电路部件连接用各向异性导电粘接剂。表4<table>tableseeoriginaldocumentpage28</column></row><table>(半导体晶片/电路部件连接用粘接剂/切割胶带层叠体)将JCM(-工,、乂一工厶)公司制造的芯片粘接膜装配器的吸附台加热至80。C后,使凸块侧朝上地将形成有镀金凸块的、厚度150pm、直径6英寸的半导体晶片搭载在吸附台上。连同分隔物将实施例15和比4交例16记载的电路部件连"l妄用粘接剂切割成200mmx200mm尺寸,以绝缘性粘接剂层侧朝向半导体晶片的凸块侧、不巻入空气的方式,从半导体晶片端利用芯片粘接装配器的粘贴辊按压而进行层压。层压后,沿着晶片的外形切断粘接剂的突出部分。切断后,剥离分隔物,接着,使粘接剂的粘贴面朝上将分隔物剥离后的晶片和电路部件连接用粘接剂的层叠体搭载到台温度设定为4(TC的芯片粘接膜装配器的吸附台上,进而在晶片外周设置12英寸晶片用的切割架。以UV固化型切割胶带UC-334EP-110(古川电工制造、商品名)的粘着面朝向半导体晶片侧、不巻入空气的方式,从切割架端利用芯片粘接装配器的粘贴辊按压而进行层压。层压后,在切割架的外周和内周的中间附近切断切割胶带,得到被固定于切割架的半导体晶片/电路部件连接用粘接剂/切割胶带层叠体。(切割)使半导体晶片的背部研磨面朝上,将被固定于切割架的半导体晶片/电路部件连接用粘接剂/切割胶带层叠体搭载于抹式会社DISC制造的全自动切割机DFD6361(商品名)。通过IR照相机透过晶片进行划线的位置对准。第一阶段从背部研磨面切割至100(im,以长边侧15.1mm间隔及短边侧1.6mm间隔切割至剩余的晶片、电路部件连接用粘接剂和切割胶带内。切割后进行洗涤,利用喷射使水分飞散后从切割胶带侧进行UV照射。然后,从切割胶带侧向半导体晶片侧推顶,得到电路部件连接用粘接剂形成在凸块侧的15.1mmx1.6mm的半导体芯片。(压合)使带电路部件连接用粘接剂的半导体芯片的背部研磨面朝向林式会社ALTECS制造的超声波倒装片接合机SH-50MP(商品名)的吸附头侧来吸引芯片,通过茉丽特(Moritex)公司制造的卣光源和光波导从电路部件连接用粘接剂层侧照射光,识别形成在半导体芯片表面的位置对准标识来进行位置对准。另一方面,对在厚度0.7mm的无^U皮璃上以1400埃的膜厚形成有铟-锡氧化物(ITO)电极的基板的ITO制的位置对准标识进行识别,进行位置对准。然后,不加热,以0.5MPa使芯片接触玻璃基板1秒钟,通过电路部件连接用粘接剂将半导体芯片临时固定在玻璃基板上。接着,在温度210°C、压力50MPa的条件下使芯片接触玻璃5秒钟的同时使粘接剂固化,完成凸块和ITO电极的连接以及芯片和玻璃基板的粘接。压合后进行连接电阻值的确认。为了确认电路部件连接用粘接剂的连接可靠性,连接电阻值确认后的半导体芯片-玻璃基板连接体被投入60。C、90Q/。RH的高温高湿装置或者-4(TC、15分钟和100。C、15分钟的温度循环试验机中,观测一定时间后的连接电阻值变化。(线膨胀系数测定)将各实施例和各比较例记载的电路部件连接用粘接剂连同分隔物在设定成180。C的烘箱中放置3小时,进行加热固化处理。将加热固化后的膜从分隔物剥离,切割成30mmx2mm大小。使用精工仪器公司(SeikoInstruments)制造的TMA/SS6100(商品名),卡盘间设定为20mm后,在测定温度范围20°C~300°C、升温速度5。C/分钟、相对截面积为0.5MPa压力的载荷条件,按照拉伸试验模式进行热机械分析,求出线膨胀系数。(反应率测定)在铝制测定容器中称量2~lOmg各实施例及各比较例记载的电路部件连接用粘接剂后,利用珀金埃尔默(PerkinElmer)公司制造的DSCPylis1(商品名)以20。C/分钟的升温速度从3(TC至30(rC进行放热量测定,将其作为初期发热量。接着,利用夹在分隔物间的热电偶对热压装置的加热头进行温度确认,设定成20秒钟后达到180。C的温度。通过该加热头设定,将夹在分隔物间的电路部件连接用粘接剂加热20秒钟,得到实施了与热压时同等的加热处理的状态的膜。称量2~10mg加热处理后的膜并放入铝制测定容器中,由DSC以20。C/分钟的升温速度从30。C至300。C进行放热量测定,将其设为加热后放热量。通过下述式由得到的放热量算出反应率(%)。(初期》i:热量-加热后》丈热量)/(初期放热量)xioo对于各实施例和各比较例,将作为电路部件连接用粘接剂的特性的平行透射率、固化后的线膨胀系数、可否用倒装片接合机进行定位标识识别、反应率、还有压合后的连接电阻值以及可靠性试验后的连接电阻值表示在表5和表6中。表5<table>tableseeoriginaldocumentpage31</column></row><table>如表5所示,可知,实施例的使用了作为折射率1.5~1.7的复合氧化物粒子的堇青石、硼酸铝的电路部件连接用粘接剂,平行透射率为15%以上,浊度为85%以下,因此使用倒装片接合机的识别系统可以透过粘接剂识别芯片电路面的识别标识;由于填充了热膨胀系数小的复合氧化物粒子,固化后的线膨胀系数降低,在连接可靠性试验中不发生导通不良的热压时的加热条件下达到80%以上的反应率,由此可以确认显示出稳定的低连接电阻,作为倒装片连接用粘接剂是优异的。另一方面,如表5所示,可知,比较例1、2中,由于使用了折射率为1.46的二氧化硅,浊度大,平行透射率小,因此不能由倒装片接合机进行识别作业,不能进行位置对准,从而半导体装置不能确保初期导通;比较例3中,由于没有配合复合氧化物粒子,因此线膨胀系数大,发生导通不良;比较例4和5中,反应率低,没有快速固化性,因此发生半导体装置的导通不良;另外,比较例6中,由于AEROSIL(注册商标)的比表面积大,能够在树脂中配合的量少,以少的配合量难以降低线膨胀系数,因此产生发生导通不良等的缺陷。产业上利用的可能性本发明的电路部件连接用膜上粘接剂,作为能够应对窄间距化和窄间隙化的前置的底部填充法,没有切割时的污染,并且在切割后可以简便地从切割胶带剥离而得到带粘接剂的半导体芯片。进而,可以用作能够兼顾实现带粘接剂芯片的高精度位置对准的透明性以及低热膨胀系数化带来的高连接可靠性的、快速固化性的应对晶片粘贴的电路部件连接用粘接剂。权利要求1.一种电路部件连接用粘接剂,其介于具有突出的连接端子的半导体芯片和形成有配线图案的基板之间,通过加压、加热,电连接相对的所述连接端子和所述配线图案的同时粘接所述半导体芯片和所述基板;所述电路部件连接用粘接剂包括树脂组合物和分散在该树脂组合物中的复合氧化物粒子,所述树脂组合物含有热塑性树脂、交联性树脂和使该交联性树脂形成交联结构的固化剂。2.根据权利要求1所述的电路部件连接用粘接剂,其中,所述树脂组合物和所述复合氧化物粒子的折射率差为±0.06范围内。3.根据权利要求1或2所述的电路部件连接用粘接剂,其中,所述复合氧化物粒子由折射率为1.5~1.7且包含2种以上金属元素的复合氧化物构成。4.根据权利要求1~3的任意一项所述的电路部件连接用粘接剂,其中,所述复合氧化物粒子是由含有选自铝和镁中的至少一种金属元素以及该金属元素以外的金属元素或准金属元素的氧化物所构成的粒子。5.根据权利要求4所述的电路部件连接用粘接剂,其中,所述准金属元素为珪元素和/或硼元素。6.根据权利要求1~5的任意一项所述的电路部件连接用粘接剂,其中,所述复合氧化物粒子为比重4以下的由复合氧化物所构成的粒子。7.—种电路部件连接用粘接剂,其介于具有突出的连接端子的半导体芯片和形成有配线图案的基板之间,通过加压、加热,电连接相对的所述连接端子和所述配线图案的同时粘接所述半导体芯片和所述基板;所述电路部件连接用粘接剂包括树脂组合物和分散在该树脂组合物中的含有堇青石粒子的复合氧化物粒子,所述树脂组合物含有热塑性树脂、交^:性树脂和使该交联性树脂形成交联结构的固化剂。8.根据权利要求1~7的任意一项所述的电路部件连接用粘接剂,其中,所述复合氧化物粒子为平均粒径15pm以下的复合氧化物粒子。9.根据权利要求1~8的任意一项所述的电路部件连接用粘接剂,其中,相对于所述树脂组合物100重量份含有25-200重量份所述复合氧化物粒子。10.根据权利要求19的任意一项所述的电路部件连接用粘接剂,其中,所述电路部件连接用粘接剂在未固化时的可见光平行透射率为15~100%。11.根据权利要求1~10的任意一项所述的电路部件连接用粘接剂,其中,所述电路部件连接用粘接剂在180。C加热20秒钟后以差示扫描量热计测定的反应率为80%以上。12.根据权利要求1~11的任意一项所述的电路部件连接用粘接剂,其中,所述电路部件连接用粘接剂固化后在40°C~IOO'C的线膨胀系数为70xIO力。C以下。13.根据权利要求1~12的任意一项所述的电路部件连接用粘接剂,其中,所述热塑性树脂为重均分子量100万以下、玻璃化温度40。C以下且在侧链具有与所述交联性树脂反应的官能团的共聚性树脂,所述交联性树脂为环氧树脂,所述固化剂为微嚢型固化剂。14.根据权利要求1~13的任意一项所述的电路部件连接用粘接剂,其中,分散有平均粒径3-5jim的导电粒子。15.—种半导体装置,其具备用权利要求1~14的任意一项所述的电路部而成的电子部件。全文摘要本发明提供一种电路部件连接用粘接剂,其介于具有突出的连接端子的半导体芯片和形成有配线图案的基板之间,通过加压、加热,电连接相对的所述连接端子和所述配线图案的同时粘接所述半导体芯片和所述基板;所述电路部件连接用粘接剂包括树脂组合物和分散在该树脂组合物中的复合氧化物粒子,所述树脂组合物含有热塑性树脂、交联性树脂和使该交联性树脂形成交联结构的固化剂。文档编号C09J9/02GK101578698SQ20088000188公开日2009年11月11日申请日期2008年1月9日优先权日2007年1月10日发明者永井朗申请人:日立化成工业株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1