车辆打滑控制系统以及方法

文档序号:3968535阅读:385来源:国知局
专利名称:车辆打滑控制系统以及方法
技术领域
本发明涉及应用于车辆的技术以及车辆的控制方法。
背景技术
一种已提出的车辆在驱动轮的角速度地变化率(角加速度)不小于预设水平时检测为由驱动轮的空转导致打滑的发生,并限制从电机到驱动轴的转矩输出(例如,见日本专利特开平10-304514)。
响应由转矩限制引起的角加速度减小,现有技术的车辆检测为打滑收敛并解除至驱动轴的转矩输出的限制。然而,这种转矩限制的解除可能导致向电机的电力供给不稳定。所述车辆通常具有增加蓄电池的电压并向电机输出电压已增加的电力供给的增压器电路。在在短时间内就收敛的打滑的情况下,例如当车辆驶过台阶时,至驱动轴的转矩输出的限制与响应打滑的收敛解除转矩限制之间的时间间隔很短。在这种突然解除转矩限制的情况下,由增压器电路提供的电压增加延迟,不能向电机输出电压充分增加的电力供给。这可能导致过大的电流流过包含电机的电力系统。

发明内容
为了消除现有技术的这种缺点,本发明的车辆以及车辆控制方法旨在使在发生打滑的状态下对电机的电力供给稳定。本发明的车辆以及车辆控制方法还旨在防止在发生打滑的状态下过大的电流流过与电机相连的电力系统。
为了实现至少部分上述和其它相关目的,本发明采用如下所述的车辆和车辆控制方法。
本发明的一种车辆由输出到与驱动轮相连的驱动轴的动力驱动,并包括将蓄电装置的电压变换成所期望的形式的电压的电压变换器;接收由所述电压变换器变换了电压的电力的供给并向所述驱动轴输出动力的电机;检测由于所述驱动轮的空转造成的打滑的打滑检测单元;以及控制器,响应由所述打滑检测单元检测到的打滑,所述控制器驱动和控制所述电机以限制到所述驱动轴的转矩输出从而使检测到的打滑收敛,并基于到所述驱动轴的转矩输出的限制设定用于开始解除所述转矩输出的限制的初始转矩,响应检测到的打滑的收敛,所述控制器驱动和控制所述电机以施加所设定的初始转矩,由此解除到所述驱动轴的转矩输出的限制。
响应检测到由所述驱动轮的空转导致的打滑,本发明的车辆驱动和控制所述电机以限制到所述驱动轴的转矩输出从而使检测到的打滑收敛。本发明的车辆基于转矩输出的限制设定用于开始解除所述转矩输出的限制的初始转矩。响应检测到的打滑的收敛,本发明的车辆驱动和控制所述电机以施加所设定的初始转矩,由此解除到所述驱动轴的转矩输出的限制。基于在检测到打滑时至驱动轴的转矩输出的限制,设定用以响应打滑的收敛开始转矩限制的初始转矩。在解除转矩限制的过程中,本发明的控制程序可满意地使电压变换器的电压变换操作稳定,而与转矩限制的程度无关。稳定的电压变换能确保在发生打滑的状态下对电机的电力供给稳定。
对于本发明的车辆的一个方面,所述控制器可将以预定的水平解除到所述驱动轴的转矩输出的限制的结果转矩(resulting torque)设定为所述初始转矩。
对于本发明的车辆的另一方面,在到所述驱动轴的转矩输出的限制被解除达到所述初始转矩的水平之后,所述控制器可驱动和控制所述电机以在预设的时间段内限制所述转矩限制的解除的程度。该设置有效地确保对电机的电力供给稳定。此外,所述控制器可驱动和控制所述电机,以在经过所述预设的时间段之前用第一时间变化斜度解除到所述驱动轴的转矩输出的限制,并在经过所述预设的时间段之后,用比所述第一时间变化斜度大的第二时间变化斜度解除所述转矩限制。这能使得对电机的稳定的电力供给在一定程度上与响应打滑的收敛迅速解除至驱动轴的转矩限制相兼容。在这些情况下,所述预设的时间段可表示使所述电压变换器的电压变换操作稳定所需的时间。
本发明的车辆还可包括测量所述驱动轴的角加速度的角加速度测量单元,所述控制器可驱动和控制所述电机,以利用响应通过所述打滑检测控制检测到打滑被设定为与所测量出的角加速度的峰值相对应的转矩限制值限制到所述驱动轴的转矩输出,并基于转矩限制值设定所述初始转矩。
此外,在本发明的车辆中,当通过所述打滑检测单元检测到的打滑在短时间内收敛时,所述控制器可实施控制以施加所设定的初始转矩,由此解除到所述驱动轴的转矩输出的限制。而且,所述车辆还可包括估计路面状况的变化的路面状况变化估计单元,响应估计到路面状况的变化,所述控制器可实施控制以施加所设定的初始转矩,由此解除到所述驱动轴的转矩输出的限制。在这些情况下,所述车辆还可包括测量所述驱动轴的角加速度的角加速度测量单元,在短时间内所述打滑不收敛的情况下或者在估计到路面状况无变化的情况下,所述控制器可设定在响应由所述打滑检测单元检测到的打滑所测量到的所述驱动轴的角加速度的时间积分值较小时具有较大的转矩限制解除程度的第二初始转矩,响应检测到的打滑的收敛,所述控制器可驱动和控制所述电机以施加所设定的第二初始转矩,由此解除到所述驱动轴的转矩输出的限制。在短时间内打滑不收敛的情况下或者在估计到路面状况无变化的情况下,这种设置使得能在防止发生打滑的特定范围内迅速地解除转矩限制。
本发明不限于具有上述任何设置的车辆,而且还可通过这种车辆的控制方法实施。


图1示意性示出本发明的一个实施例中车辆20的构造;
图2是示出由该实施例的车辆20中主电子控制单元70执行的驱动控制例程的流程图3是示出电机转矩Tm*随加速器开度Acc和车速V的变化的图4是示出由该实施例的车辆20中主电子控制单元70执行的打滑状态检测例程的流程图5是示出由该实施例的车辆20中主电子控制单元70执行的打滑发生时处理例程的流程图6是示出转矩上限Tmax随角加速度α的变化的图7是示出由该实施例的车辆20中主电子控制单元70执行的路面状况变化估计例程的流程图8是示出由该实施例的车辆20中主电子控制单元70执行的打滑收敛时处理例程的流程图9是示出由该实施例的车辆20中主电子控制单元70执行的通常状态转矩限制解除例程的流程图10是示出由该实施例的车辆20中主电子控制单元70执行的转矩限制值设定例程的流程图11是示出由该实施例的车辆20中主电子控制单元70执行的路面状况变化状态转矩限制解除例程的流程图12示出响应于打滑期间路面状况的变化,角加速度α以及电机转矩Tm*的时间变化;
图13示意性示出一个变形例中车辆120的构造;
图14示意性示出另一个变形例中车辆220的构造;
图15示意性示出另一个变形例中车辆320的构造。
具体实施例方式
下面作为优选实施例说明实施本发明的一种方式。图1示意性示出本发明的一个实施例中车辆20的构造。如所示出的,本实施例的车辆20包括电机22和控制整个车辆的主电子控制单元70,所述电机22经由DC/DC变换器电路25和逆变器电路24接收来自蓄电池26的电力供给,并向经由差速器29与驱动轮62a和62b机械地相连的驱动轴28输出动力。
电机22是可用作电动机和发电机的同步电动发电机。逆变器电路24具有多个开关(切换)元件以将从蓄电池26输入的电力转换为用于驱动电机22的适当形式的电力,并输出所转换的电力。
DC/DC变换器电路25用于增大蓄电池26的电压,并将增大的电压提供给逆变器电路24。DC/DC变换器25由主电子控制单元70致动和控制,以将所需水平的电压施加给逆变器电路24(的输入端子)。
主电子控制单元70构造成包括CPU 72、存储处理程序的ROM 74、临时存储数据的RAM 76、未示出的输入和输出端口以及未示出的通信端口的微处理器。主电子控制单元70经由其输入端口接收各种输入信号,该输入信号包括来自检测驱动轴28(电机22的转动轴)的转动位置的转动位置检测传感器32(例如,旋转变压器(resolver))的转动位置θm,来自检测换档杆81的当前位置的换档位置传感器82的换档位置SP,来自检测加速踏板83的踩下量的加速踏板位置传感器84的加速器开度Acc,来自检测制动踏板85的踩下量的制动踏板位置传感器86的制动踏板位置BP,以及来自车速传感器88的车速V。主电子控制单元70经由其输出端口向包括在逆变器电路24中的开关元件以及包括在DC/DC变换器电路25中的开关元件输出开关控制信号。
下面说明如上所述构造的实施例的车辆20的操作,尤其是响应于检测到由驱动轮62a和62b的空转导致发生打滑时驱动和控制电机22的一系列操作。图2是示出由该实施例的车辆20中主电子控制单元70执行的驱动控制例程的流程图。该例程以预先设定的时间间隔(例如,每隔8毫秒)重复执行。
当驱动控制例程开始时,主电子控制单元70的CPU 72首先输入用于控制所需的各种数据,即,来自加速踏板位置传感器84的加速器开度Acc、来自车速传感器88的车速V、由通过转动位置检测传感器32检测的转动位置θm计算出的驱动轴28的转速Nm(步骤S100)。然后该例程基于输入的加速器开度Acc和车速V设定将从电机22输出到驱动轴28的电机转矩Tm*(步骤S102)。在该实施例的结构中,电机转矩Tm*随加速器开度Acc和车速V的变化被预先规定并作为图(map)存储于ROM 74中。该实施例的程序从所存储的图中读取并设定对应于给定的加速器开度Acc和给定的车速V的电机转矩Tm*。图3示出该图的一个示例。
然后该例程由输入的转速Nm计算驱动轴28的角加速度α(步骤S104),并基于计算出的角加速度α执行打滑状态检测处理以检测驱动轮62a和62b的打滑状态(步骤S106)。在该实施例中,角加速度α通过从该例程的当前循环中输入的当前转速Nm减去该例程的前一循环中输入的前一转速Nm(当前转速Nm-前一转速Nm)而计算出。在该实施例中,由于转速Nm由每分钟的转数(rpm)表示且该例程的执行时间间隔为8毫秒,所以角加速度α的单位是[rpm/8毫秒]。也可采用任何其它合适的单位来表示作为角速度的时间变化的角加速度。为了减小潜在的误差,角加速度α可以是该例程的当前及过去几个循环(例如,过去三个循环)中计算出的角加速度的当前和过去数据的平均值。下文将说明打滑状态检测处理的细节。
图4是示出由该实施例的车辆20中主电子控制单元70执行的打滑状态检测例程的流程图。当打滑状态检测例程开始时,主电子控制单元70的CPU 72首先判断在图2的驱动控制例程中的步骤S104计算出的角加速度α是否超过用以认定由于车轮空转而发生打滑的阈值αslip(步骤S120)。当判定计算出的角加速度α超过阈值αslip时,该例程检测为由于驱动轮62a和62b的空转而发生打滑,并将打滑发生标记F1设定为值1以表示发生打滑(步骤S122)。然后打滑状态检测例程终止。
另一方面,当判定计算出的角加速度α没有超过阈值αslip时,该例程检查打滑发生标记F1的值(步骤S124)。当判定打滑发生标记F1不等于1时,打滑状态检测例程检测为没有发生打滑而是检测为驱动轮62a和62b的附着状态,然后终止。另一方面,当判定打滑发生标记F1等于1时,该例程随后判断角加速度α是否为负值以及负的角加速度α是否持续预定的时段(步骤S126和S128)。当判定角加速度α为负值并且负的角加速度α持续预定的时段时,该例程检测为驱动轮62a和62b上发生的打滑收敛并将表示打滑收敛的打滑收敛标记F2设定为值1(步骤S130)。然后打滑状态检测例程终止。当判定角加速度α不为负值或者负的角加速度α没有持续或超过预定的时段时,打滑状态检测例程检测为打滑不收敛,然后终止。
再次参照图2的流程图,驱动控制例程根据打滑状态检测处理的结果执行一系列处理(步骤S108至S114)。响应于检测到其中打滑发生标记F1和打滑收敛标记F2都等于0的不打滑(附着状态),驱动控制例程利用在步骤S102所设定的电机转矩Tm*驱动和控制电机22(步骤S114),然后终止。响应于检测到其中打滑发生标记F1等于1而打滑收敛标记F2等于0的打滑的发生,驱动控制例程执行一系列打滑发生时处理(步骤S110)。响应于检测到其中打滑发生标记F1和打滑收敛标记F2都等于1的打滑的收敛,驱动控制例程执行一系列打滑收敛时处理(步骤S112)。然后该例程利用由相应的一系列程序限制的所述电机转矩Tm*的设定值驱动和控制电机22(步骤S114),然后终止。为了向驱动轴28输出与电机转矩Tm*的最终设定值相等的转矩,驱动和控制电机22的具体程序向逆变器电路24的开关元件和DC/DC变换器电路25的开关元件输出开关控制信号。下文将说明所述一系列打滑发生时处理和所述一系列打滑收敛时处理。
所述一系列打滑发生时处理限制驱动轴28为消除打滑所需的电机转矩Tm*,且根据图5的流程图中所示的打滑发生时处理例程执行。当打滑发生时处理例程开始时,主电子控制单元70的CPU 72首先比较由在图2的驱动控制例程中的步骤S104计算出的角加速度α的当前值与一峰值αpeak(步骤S140)。当计算出的角加速度α的当前值超过峰值αpeak时,该例程将峰值αpeak更新为计算出的角加速度α的当前值(步骤S142)。峰值αpeak基本上表示响应于打滑的发生而增大的角加速度α的峰值,且初始值设定为等于0。在角加速度α增大并达到其峰值之前,峰值αpeak被连续更新为角加速度α的最近值。当角加速度α达到其峰值时,峰值αpeak被固定为该时刻的角加速度α的值。该例程随后基于所设定的峰值αpeak设定转矩上限Tmax(步骤S144),该转矩上限表示为消除打滑从电机22输出的转矩的可允许上限。该实施例的程序利用示出转矩上限Tmax随角加速度α的变化的图6的转矩上限设定图。在所示示例的图中,转矩上限Tmax随角加速度α的增加而减小。当角加速度α增加以增大峰值αpeak并增强打滑程度时,转矩上限Tmax被设定为较小值。这种设定限制来自电机22的输出转矩。在设定转矩上限Tmax之后,该例程利用转矩上限Tmax限制电机转矩Tm*的设定值(步骤S146和S148)然后终止。所述的一系列处理在发生打滑的情况下将来自电机22的输出转矩限制到用于消除打滑的低转矩水平(即,对应于图6的图中的角加速度峰值αpeak的转矩上限Tmax)。这种设置能有效消除打滑。
基于图7的流程图中所示的在发生打滑的情况下估计路面状况的变化的路面状况变化估计处理的结果,执行所述一系列打滑收敛时处理。首先说明路面状况变化估计处理,然后说明所述一系列打滑收敛时处理。图7的路面状况变化估计例程在预设的时间间隔内(例如,每隔8毫秒)重复执行。当路面状况变化估计例程开始时,主电子控制单元70的CPU 72首先接收由通过转动位置检测传感器32检测到的转动位置θm计算出的驱动轴28的转速Nm(步骤S150),并由输入的转速Nm计算驱动轴28的角加速度α(步骤S152)。
然后该例程检查路面状况变化检测标记FC的值(步骤S154)。当在步骤S156判定角加速度α超过阈值αslip,即在发生打滑的情况下,路面状况变化检测标记FC被设定为等于1,这表示满足检测路面状况变化的条件(步骤S158)。响应于路面状况变化检测标记FC等于0的判定结果,该例程比较计算出的角加速度α与阈值αslip(步骤S156)。当计算出的角加速度α不大于阈值αslip时,该例程立即终止。另一方面,当计算出的角加速度α大于阈值αslip时,该例程将路面状况变化检测标记FC的值设定为1(步骤S158)。
在将路面状况变化检测标记FC的值设定为1之后或者响应于在步骤S154确定路面状况变化检测标记FC等于1,该例程判断角加速度α是否已经达到第一峰值(步骤S160)。当角加速度α已经达到第一峰值时,将此时的角加速度α的值设定为第一峰值角加速度α1(步骤S162)。角加速度α的第一峰值表示在角加速度α超过阈值αslip之后,角加速度α的时间微分值从正值到负值的变化。在设定第一峰值角加速度α1之后,该例程判断角加速度α是否已经达到第二峰值(步骤S164)。当角加速度α达到第二峰值时,将此时的角加速度α的值与系数“-1”的乘积设定为第二峰值角加速度α2(步骤S166)。角加速度α的第二峰值表示紧接在第一峰值之后观测到的负峰值。将角加速度α乘以系数“-1”来设定第二峰值角加速度α2,使得第二峰值角加速度α2与第一峰值角加速度α1的符号相同。
在设定第一峰值角加速度α1与第二峰值角加速度α2之后,该例程接着比较第二峰值角加速度α2与阈值αref(步骤S168)以及第一峰值角加速度α1与常数“k”的乘积(步骤S170)。设定的阈值αref大于在由于车轮空转而导致发生打滑的情况下为第一峰值角加速度α1设定的通常允许的最大值。例如,在由于车轮空转而导致对象车辆20在低μ路面上打滑的试验中,在为第一峰值角加速度α1设定的可允许的最大值为100[rpm/8msec]的情况下,阈值αref可设定为等于120或140。常数k设定为不小于1的值,例如1.2或1.4。
当第二峰值角加速度α2小于阈值αref且不大于第一峰值角加速度α1与常数“k”的乘积时,路面状况变化估计例程估计为路面状况没有变化,并将路面状况变化检测标记FC以及路面状况变化标记Fchange都设定为值0(步骤S172),然后例程终止。当第二峰值角加速度α2不小于阈值αref或者当第二峰值角加速度α2小于阈值αref但大于第一峰值角加速度α1与常数“k”的乘积时,该例程估计为路面状况变化,即从低μ路面变为高μ路面,并将路面状况变化标记Fchange设定为值“1”(步骤S174)。在驱动轮62a和62b在低μ路面上空转的情况下,紧接在车轮空转开始之后出现第一峰值,并且在车轮空转收敛时观察到第二峰值。在路面状况没有变化的情况下,通常出现于车轮空转收敛时的第二峰值的值尽管通常维持在取决于路面状况(摩擦系数)以及车辆的性能的固定的范围内。在路面状况发生变化的情况下,即在从低μ路面变为高μ路面的情况下,第二峰值角加速度α2在车轮空转收敛时会超出该固定的范围。当第二峰值角加速度α2不小于阈值αref时,估计为路面状况变化(即从低μ路面变化到高μ路面),所述阈值αref设定为大于在由于车轮空转而导致打滑的情况下对第一峰值角加速度α1设定的通常可允许的最大值。当第二峰值角加速度α2小于阈值αref但大于第一峰值角加速度α1与常数“k”的乘积时,也估计为路面状况变化。这种检测是基于这样的试验结果,即,在路面状况无变化情况下,通常出现于车轮空转收敛时的第二峰值通常不大于第一峰值。
根据图7的路面状况变化估计处理的结果,执行图8的流程图中所示的打滑收敛时处理例程。当打滑收敛时处理例程开始时,主电子控制单元70的CPU 72首先检查路面状况变化标记Fchange的值(步骤S200)。当路面状况变化标记Fchange的值不等于1时,即,在估计为路面状况没有变化的情况下,该例程执行图9的流程图中所示的通常状态转矩限制解除处理(步骤S202)。另一方面,当路面状况变化标记Fchange等于1时,即,在估计为路面状况发生变化的情况下,该例程执行图11的流程图中所示的路面状况变化状态转矩限制解除处理(步骤S204)。然后,打滑收敛时处理例程终止。下面首先说明图9的通常状态转矩限制解除处理,然后说明图11的路面状况变化状态转矩限制解除处理。
通常状态转矩限制解除处理首先检查转矩限制解除标记Fa的值(步骤S210)。当转矩限制解除标记Fa等于0时,该例程确定当前循环为第一循环。因此,该例程输入转矩限制值δ(以与角加速度的单位相同的单位“rpm/8sec”表示)(步骤S212),并将转矩限制解除标记Fa设定为值1(步骤S214)。这里,转矩限制值δ是用来增大与由所述系列打滑发生时处理设定的角加速度峰值相对应的转矩上限Tmax从而设定转矩限制的解除程度的参数。转矩限制值δ根据图10的转矩限制值设定例程来设定。响应于在图4的打滑状态检测例程的步骤S122将打滑发生标记F1设定为值1,即,当角加速度α超过阈值αslip时,执行图10的转矩限制值设定例程。该转矩限制值设定例程输入由通过转动位置检测传感器32检测到的驱动轴28的转动位置θm计算出的转速Nm,由输入的转速Nm计算角加速度α,并重复计算从计算出的角加速度α超过阈值αsilp的时刻到角加速度α的值再次变为小于阈值αsilp时角加速度α的时间积分αint(步骤S230至S236)。在该实施例中,根据下面给出的公式(1)计算角加速度的时间积分αint。在公式(1)中,“Δt”表示该例程中重复执行步骤S230至S236的时间间隔,在该实施例中设定为等于8毫秒。
αint←αint+(α-αslip)·Δt...(1)
当在角加速度α再次变为小于阈值αsilp时结束时间积分αint的计算时,该例程将计算出的时间积分αint乘以一个预设的系数K,以设定与时间积分αint相对应的转矩限制值δ(步骤S238),然后终止。该实施例的程序利用预设的系数K计算转矩限制值δ。另一个可应用的程序准备示出转矩限制值δ随时间积分αint的变化的图,从该图读取并设定对应于计算出的时间积分αint的转矩限制值δ。
再次参照图9的流程图,在输入如上所述设定的转矩限制值δ之后,或者响应于在步骤S210确定转矩限制解除标记Fa不等于0(而是等于1),通常状态转矩限制解除例程判断是否已到转矩限制值δ的更新定时(步骤S216)。当判定已到更新定时时,该例程将转矩限制值δ减去一个预设值以更新并重新设定转矩限制值δ(步骤S218)。在随后的步骤S220中利用在步骤S212中输入的转矩限制值δ设定转矩上限Tmax之后,所述更新处理在每个更新定时逐步增加转矩上限Tmax的设定值,从而逐渐解除转矩限制。另一方面,当判定还没有达到更新定时时,不执行转矩限制值δ的更新。然后该例程基于根据图6的图的转矩限制值δ将转矩上限Tmax设定为从电机22输出的转矩可允许上限(步骤S220)。然后该例程利用所设定的转矩上限Tmax限制在图2的驱动控制例程中的步骤S102设定的电机转矩Tm*(步骤S222和S224),并判断转矩限制值δ是否变为不大于0(步骤S226)。当转矩限制值δ变为不大于0时,该例程将打滑发生标记F1、打滑收敛标记F2以及电机转矩限制解除标记Fa设定为值0(步骤S228),然后终止。以这种方式,该实施例的程序基于由角加速度α的时间积分αint计算出的转矩限制值δ设定转矩上限Tmax,并利用该转矩上限Tmax设定用于开始解除至驱动轴28的输出转矩的限制的转矩(初始转矩)。响应于打滑收敛,这种转矩控制以与打滑状态相对应的适当的程度解除转矩限制,从而有效地防止打滑的再次发生而不会过度限制转矩。
下面说明图11的响应于估计为路面状态变化的路面状况变化状态转矩限制解除处理。图11的路面状况变化状态转矩限制解除例程首先检查转矩限制解除标记Fb的值(步骤S250)。当转矩限制解除标记Fb的值等于0时,该例程确定当前循环为第一循环。因此,该例程将转矩限制解除标记Fb设定为值1,并将与在图5的打滑发生时处理例程中的步骤S144设定的角加速度的峰值αpeak相对应的转矩上限Tmax加上一个预定值β,以重新设定作为从电机22输出的转矩的可允许上限的转矩上限Tmax,从而开始转矩限制的解除(步骤S252和S254)。此处,预定值β通过试验确定以防止由伴随着通过DC/DC变换器电路25所致的电压增加延迟的逆变器电路24的输入电压下降导致的过大的电流流过电机22,以开始消除转矩限制。例如,预定值β可以设定在30~70Nm的范围内(本实施例中设定为等于50Nm)。在重新设定转矩上限Tmax之后,该例程利用转矩上限Tmax限制在图2的驱动控制例程中的步骤S102设定的电机转矩Tm*,由此设定用于开始转矩限制的消除的初始转矩(步骤S256和S258),然后终止。在打滑期间增大路面摩擦系数的路面状况的变化使得打滑在较短的时间内收敛。从而角加速度α的时间积分αint取得较小值。这在图9的通常状态转矩限制解除例程中减小了设定为与角加速度α的时间积分α成比例的转矩限制值δ,并将转矩上限Tmax设定为较大值。因此,将从电机22中输出的电机转矩Tm*设定为较大的值。存在由于DC/DC变换器电路25所致的电压增加延迟导致过大的电流被供给到电机22的可能。在打滑期间路面状况变化的情况下,为防止潜在的过大的电流供给到电机22,执行图11的路面状况变化状态转矩限制解除例程,取代图9的通常状态转矩限制解除例程。
当在步骤S250确定转矩限制解除标记Fb等于1时,该例程随后判断从利用在步骤S254中设定的转矩上限Tmax限制电机转矩Tm*以来(即,从开始通过图5的打滑发生时处理例程解除转矩限制以来)是否已经过预设的第一时间(步骤S260)。该例程重复地将预定值TLow加到转矩上限Tmax上,由此更新转矩上限Tmax(步骤S262),直到判定已经过预设的第一时间。此处,预定值TLow被设定为较小值,以确保转矩上限Tmax随时间缓慢变化。预设的第一时间规定为使DC/DC变换器电路25所致的电压增加操作稳定的等待时间,例如在400~600毫秒范围内(在该实施例中为500毫秒)。当确定已经经过预设的第一时间时,即,确定已经经过使DC/DC变换器电路25所致的电压增加操作稳定的等待时间时,该例程重复地将大于预定值TLow的预定值THi加到转矩上限Tmax上,由此更新转矩上限Tmax以实现转矩限制的迅速解除,直到确定已经经过预设的第二时间(步骤S264和S266)。在更新转矩上限Tmax之后,该例程利用转矩上限Tmax的更新的设定值限制电机转矩Tm*(步骤S258),然后终止。这种设置能在打滑收敛的情况下实现转矩限制的迅速解除,同时确保DC/DC变换器电路25的电压增加操作稳定。当在步骤S264确定已经经过预设的第二时间时,该例程将打滑发生标记F1、打滑收敛标记F2以及转矩限制解除标记Fb设定为值0以完全消除转矩限制(步骤S268),然后终止。
图12示出响应于在打滑期间路面状况的变化,角加速度α和电机转矩Tm*的时间变化。如所示出的,响应于在t1时刻打滑的发生,设定与角加速度的峰值αpeak相对应的转矩上限Tmax以限制至驱动轴28的输出转矩。在该转矩限制状态,路面状况的变化,即,从低μ路面变为高μ路面,导致第二峰值角加速度α2大于第一峰值角加速度α1,并且在某些情况下,甚至大于阈值αref。响应于在t2时刻打滑的收敛,在打滑发生时设定的转矩上限Tmax增加预定值β以开始转矩限制的解除。转矩限制以缓和的斜度解除,直到经过预设的时间段(时刻t2到时刻t3)。这样可以使DC/DC变换器电路25的电压增加操作稳定。在已经经过预设的时间段并且DC/DC变换器电路25的电压增加操作已经稳定的时刻t3,迅速解除转矩限制。
如上所述,响应于在打滑期间估计到路面状况变化,本实施例的车辆20通过对在打滑发生时设定为与角加速度的峰值αpeak相对应的转矩上限Tmax加上一个预设值β而更新转矩上限Tmax,并利用更新后的转矩上限Tmax开始解除至驱动轴28的输出转矩的限制。这种设置可满意地使DC/DC变换器电路25的电压增加操作以及向电机22的电力供给稳定,而与打滑期间的转矩限制无关。在响应于打滑的发生设定的转矩限制以预定值β解除之后,该实施例的控制程序以缓和的斜度解除转矩限制(限制解除的程度),直到经过了预设的时间段。这能确保DC/DC变换器电路25的电压增加操作稳定。在经过了预设的时间段之后,迅速解除转矩限制。
响应于打滑的收敛,本实施例的车辆20通过对在打滑发生时设定为与角加速度的峰值αpeak相对应的转矩上限Tmax加上一个预设值β而更新转矩上限Tmax,并利用更新后的转矩上限Tmax开始解除至驱动轴28的输出转矩的限制。然后车辆20通过两个不同的时间变化斜度(slope of timechange)增加转矩上限Tmax以完全消除转矩限制。一个修改的程序可以通过三个或更多不同的时间变化斜度增加转矩上限Tmax以完全消除转矩限制。另一个修改的程序可以通过固定的时间变化斜度来更新转矩上限Tmax。
响应于估计到路面状况变化,本实施例的车辆20通过对在打滑发生时设定为与角加速度的峰值αpeak相对应的转矩上限Tmax加上一个预设值β,由此更新用于开始消除转矩限制的转矩上限Tmax(这意味着执行图11的路面状况变化状态转矩限制解除处理)。一个可行的变型例可以规定一个预设时间段作为打滑收敛所需的时间,并执行一系列与图11的路面状况变化状态转矩限制解除处理相类似的处理,直到经过该预设的时间段。另外一个可行的变型例可以执行一系列与图11的路面状况变化状态转矩限制解除处理相类似的处理,而不考虑路面状况的变化或所经过的打滑收敛的时间段。
以上讨论的实施例针对具有机械地连接以直接向与驱动轮62a和62b相连的驱动轴输出动力的电机22的车辆20。本发明的技术也可应用于任何具有能够向驱动轴输出动力的电机的车辆。例如,本发明的技术可应用于一系列包括发动机、与发动机的输出轴相连的发电机以及利用来自该发电机的电力的供给向驱动轴输出动力的电机的混合动力车辆。本发明的技术还可应用于图13的机械分配式混合动力车辆120,该混合动力车辆包括发动机122、与发动机122相连的行星齿轮装置126、与行星齿轮装置126相连并产生电力的电机124、以及与行星齿轮装置126相连并与同驱动轮62a和62b相连的驱动轴机械地相连以向该驱动轴输出动力的电机22。该技术还可应用于图14的电力分配式混合动力车辆220,该混合动力车辆包括发动机222、电机224以及电机22,其中,电机224具有与发动机222的输出轴相连的内转子224a和连接到与驱动轮62a和62b相连的驱动轴的外转子224b,并通过内转子224a相对于外转子224b的电磁作用相对转动,电机22与驱动轴机械地连接以向驱动轴输出动力。该技术还可应用于图15的混合动力车辆320,该混合动力车辆包括经由变速器324(例如,无级变速器或自动有级变速器)与同驱动轮62a和62b相连的驱动轴相连的电机22,以及经由离合器CL与电机22的转轴相连的发动机322。在驱动轮发生打滑的情况下,考虑到与驱动轴机械地相连的电机的快速输出响应,控制程序主要控制该电机,由此限制至驱动轴的转矩输出。也可与该电机的控制协作执行另一电机的控制和发动机的控制。
以上讨论的实施例在所有方面应认为是示例性的而不是限制性的。在不脱离本发明的主要特征的精神和范围的条件下可存在很多变形例、改变和变化。
工业应用性
本发明的技术可应用于与诸如汽车和列车(train car)的车辆相关的工业。
权利要求
1.一种由输出到与驱动轮相连的驱动轴的动力驱动的车辆,所述车辆包括
将蓄电装置的电压变换成所期望的形式的电压的电压变换器;
接收由所述电压变换器变换了电压的电力的供给并向所述驱动轴输出动力的电机;
检测由于所述驱动轮的空转造成的打滑的打滑检测单元;以及
控制器,所述控制器,响应由所述打滑检测单元检测到的打滑,驱动和控制所述电机以限制到所述驱动轴的转矩输出从而使检测到的打滑收敛,并基于到所述驱动轴的转矩输出的限制设定用于开始解除到所述驱动轴的转矩输出的限制的初始转矩,所述控制器,响应检测到的打滑的收敛,驱动和控制所述电机以施加所设定的初始转矩,由此解除到所述驱动轴的转矩输出的限制。
2.根据权利要求1所述的车辆,其特征在于,所述控制器将以预定的水平解除到所述驱动轴的转矩输出的限制的结果转矩设定为所述初始转矩。
3.根据权利要求1或2所述的车辆,其特征在于,在到所述驱动轴的转矩输出的限制被解除达到所述初始转矩的水平之后,所述控制器驱动和控制所述电机以在预设的时间段内限制所述转矩限制的解除的程度。
4.根据权利要求3所述的车辆,其特征在于,所述控制器驱动和控制所述电机以在经过所述预设的时间段之前用第一时间变化斜度解除到所述驱动轴的转矩输出的限制,并在经过所述预设的时间段之后,用比所述第一时间变化斜度大的第二时间变化斜度解除所述转矩限制。
5.根据权利要求3或4所述的车辆,其特征在于,所述预设的时间段表示使所述电压变换器的电压变换操作稳定所需的时间。
6.根据权利要求1-5中任一项所述的车辆,其特征在于,所述车辆还包括
测量所述驱动轴的角加速度的角加速度测量单元,
其中,所述控制器驱动和控制所述电机,以利用响应通过所述打滑检测控制检测到打滑被设定为与所测量的角加速度的峰值相对应的转矩限制值来限制到所述驱动轴的转矩输出,并基于所述转矩限制值设定所述初始转矩。
7.根据权利要求1-6中任一项所述的车辆,其特征在于,当通过所述打滑检测单元检测到的打滑在短时间内收敛时,所述控制器实施控制以施加所设定的初始转矩,由此解除到所述驱动轴的转矩输出的限制。
8.根据权利要求1-7中任一项所述的车辆,其特征在于,所述车辆还包括
估计路面状况的变化的路面状况变化估计单元,
其中,所述控制器,响应估计到路面状况的变化,实施控制以施加所设定的初始转矩,由此解除到所述驱动轴的转矩输出的限制。
9.根据权利要求7或8所述的车辆,其特征在于,所述车辆还包括
测量所述驱动轴的角加速度的角加速度测量单元,
其中,在短时间内所述打滑不收敛的情况下或者在估计到路面状况无变化的情况下,所述控制器设定第二初始转矩,该第二初始转矩相对于响应由所述打滑检测单元检测到的打滑所测量到的所述驱动轴的角加速度的时间积分值较小时具有较大的转矩限制解除程度,所述控制器,响应检测到的打滑的收敛,驱动和控制所述电机以施加所设定的第二初始转矩,由此解除到所述驱动轴的转矩输出的限制。
10.一种车辆控制方法,所述车辆具有将蓄电装置的电压变换成所期望的形式的电压的电压变换器和接收电压已被变换的电力的供给并向与驱动轮相连的驱动轴输出动力的电机,所述控制方法包括以下步骤
(a)检测由所述驱动轮的空转造成的打滑;
(b)响应所述步骤(a)中检测到的打滑,驱动和控制所述电机以限制到所述驱动轴的转矩输出从而使检测到的打滑收敛;
(c)基于所述步骤(b)中的转矩输出的限制,设定用于开始解除所述转矩输出的限制的初始转矩;以及
(d)响应所述步骤(a)中检测到的打滑的收敛,驱动和控制所述电机以施加在所述步骤(c)中设定的初始转矩,由此解除到所述驱动轴的转矩输出的限制。
全文摘要
一种具有经由逆变器电路接收来自蓄电池并通过DC/DC变换器电路增压后的电力的供给并向驱动轴输出转矩的电机的车辆。响应在打滑过程中基于驱动轴的角加速度小于一阈值ref而估计的路面状况的变化,本发明的控制程序在打滑发生时设定的转矩上限Tmax加上一个预设值,从而更新转矩上限Tmax以开始转矩限制的解除。然后所述控制程序用较小的时间变化斜度更新转矩上限Tmax以抑制所述转矩限制的解除程度。在经过被规定为使DC/DC变换器电路的电压增加操作稳定的等待时间的预设时间段之后,所述控制程序用更大的时间变化斜度更新转矩上限Tmax以迅速消除转矩限制。
文档编号B60L3/10GK1829620SQ20048002159
公开日2006年9月6日 申请日期2004年7月26日 优先权日2003年7月30日
发明者本美明 申请人:丰田自动车株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1