混合动力车辆的动力传动系统的制作方法

文档序号:3915429阅读:110来源:国知局
专利名称:混合动力车辆的动力传动系统的制作方法
技术领域
本发明涉及车辆的动力传动系统,特别是具有主原动机和整合了飞轮的第二发动机的混合动力车辆。
背景技术
美国机动车工程师学会(SAE)的2008年4月14-17日的技术文件2008 - 01-0083介绍了由无级变速器(CVT)组成的配置,其连接在车辆发动机和变速箱之间,设置成通过齿轮组驱动飞轮。该配置可以增加或减少由发动机提供给车辆驱动车轮的动力。飞轮能加速转到发动机的速率,在车辆制动条件下甚至可以达到更高的速率。飞轮典型地至少部分由碳纤维组成并且在真空室里运转以便将空气动力学损耗减至最低。可以提供附加的齿轮装置以允许附加一些设备,如空调和由飞轮驱动的动力转向设施。
专利文件US2008/0105475公开了一种具有车辆动力系统、飞轮以及连接动力系统和飞轮的无级变速器的机动车辆。车辆减速时,来自动力系统和它的相关传动系统的能量被传送至飞轮。车辆加速时,飞轮的能量被传送到动力系统。

发明内容
一方面,本发明包含车辆的动力传动系统,该车辆具有第一组和第二组车轮和只驱动第一组车轮的动力源,其中,该动力传动系统包括飞轮和连接第二组车轮的有着连续可变传动比的传动系统。
另一方面,本发明包含具有第一组车轮和第二组车轮、用来驱动第一组车轮的主发动机和用来驱动第二组车轮的第二发动机的车辆,其中,第二发动机包含根据本发明上述第一方面的动力传动系统。主发动机可以例如为内燃机或者电动马达。
根据本发明的动力传动系统可以轻松集成到具有前轮或后轮驱动的现有汽车平台中,比如,可以为车辆提供牵引控制力提升而且动力传动系统可以设置成响应来自上述系统的信号来运行。
传动系统可以是具有空挡的无限变速式机械无级变速器(IVT)。
在优选实施例中,传动系统是无级变速器(CVT),动力传动系统还包括位于无级变速器和飞轮之间的离合器。
借助于本发明,非车辆主发动机(例如内燃机)直接驱动的旋转的车轮组中的能量可以存储到飞轮中,并在之后释放以驱动上述车轮组。操纵传动比和离合器实现能量的存储和回收控制。当改变无级变速器的传动比使飞轮加速时,存储能量;当改变传动比使飞轮减速时,回收能量并将其传送至车轮。在一个运行模式中,离合器在汽车以恒速行驶时是断开的,在减速时闭合,使飞轮加速。
本发明优于飞轮和主发动机驱动相同车轮组的公知配置的原因在于不用将该配置的附加组件集成到引擎舱中。因此也就不用升级引擎支架以承受额外重量和飞轮运动产生的转动惯力,不用为了创建传送到飞轮和来自飞轮的驱动力(能量)的输入/输出路径而去改变现有动力传动系统。
最好有位于传动系统和飞轮之间的减速器。
减速器可以是行星齿轮配置。
减速器能够使高速的飞轮匹配低速运转的无级变速器。飞轮的旋转速度越快,能量存储得越多。
为了扩大传动系统的可用传动比(特别是无级变速器的有限变速范围,通常为六级),可以提供可选的齿轮组。可以采用变速箱的形式,其连接第二车轮组和传动系统之间。变速箱可以有两个或两个以上的传动比。
无级变速器的运转、特别是传动比的设置需要油压供应。因此,泵是必要的。机械泵由于卓越的效率而优于电子泵。油泵最好放在传动系统和第二组车轮之间以便可以被上述第二组车轮驱动。这种设置优于由飞轮驱动的油泵,因为在某些车辆行驶条件下,飞轮转速可能是零因而油压也可能为零。油压为零时无级变速器就不能改变传动比。在期望传动系统改变传动比的情况中,当车辆停止时(车轮也因而处于静止,不会驱动油泵),动力传动系统可以辅以油液蓄压器来维持传动所需的油压供应。
一旦车辆停驶,对飞轮的驱动也会因而停止,飞轮转速经过摩擦以及空气动力的损耗会逐渐衰减。这种衰减是能源的浪费。本发明有利地提供了进一步选择,包括能量转换装置,其可以利用存储在飞轮中的旋转能量。该装置可以采取例如直流发电机或交流发电机或液压泵的形式。该装置可以是装到飞轮轴上的独立装置或者是整合作为飞轮总成的一部分。
飞轮可以容纳于带有真空泵的真空室中,用于维持理想的低气压以使空气动力的损耗保持在最低限度。
作为更进一步的选择,可以在传动系统和第二组车轮之间多放一个离合器。这样做的好处是在上述车轮和飞轮之间不需要能量传送时可以使传动系统和上述车轮脱离。否则,车轮的运动不必要地驱动传动系统,产生相关摩擦损耗。
以下结合附图仅通过示例的方式说明本发明的一些实施例,附图中


图1是根据本发明的第一实施例的具有动力传动系统的车辆的示意性方框图2是根据本发明的第二实施例的具有动力传动系统的车辆的示意性方框图。
具体实施例方式
参照图1,车辆1装备有通过变速箱和主减速器总成4只向第一组车轮3提供动力的内燃机2。
第二组车轮5通过半轴6、主减速器和差速单元7连接到传动轴8。传动轴可以驱动飞轮9或者被其驱动。介于传动轴8和飞轮9之间的是有着连续可变传动比的传动单元10。传动单元可以是带有空挡的无限变速式机械无级变速器(IVT),但在本优选实施例中,传动单元10是无级变速器(CVT),并且提供电动液压离合器11以便在某些运行条件下使无级变速器IO (进而是车轮5)从飞轮9脱离。
通过由传动轴8驱动的油泵12提供油压给无级变速器10。
位于离合器11和飞轮9中间的行星齿轮配置13在无级变速器器10和飞轮9之间提供10: l的减速比。
电子控制模块(ECM) 14接收来自油门踏板位置传感器15、制动踏板位置传感器16、传动轴速度传感器17和与飞轮相关的速度传感器18的输入信号。电子控制模块14的输出端连到无级变速器10和离合器11上。
无级变速器10可以是常规的设计,其传动比可以通过电磁阀的操作以公知的方式变动。阀门(未显示)控制油路流向。阀门的启动在电子控制模块(ECM) 14的控制之下。无级变速器10可以是钢带型变速器,通常有六级变速范围。
下面介绍图1的实施例的某些示例性运行模式。
车辆以稳定的速度行驶,油门踏板上施以很轻的压力,离合器11保持断开,没有来自第二组车轮5的驱动力传送至飞轮9,所以后者会保持静止。然而,油压会通过由传动轴驱动的油泵12供应到无级变速器10。
如果驾驶员松开油门踏板或者踩踏制动踏板,就会被传感器15、 16检测到并传送信号到电子控制模块14。从传感器17也会检测到传动轴的速度,电子控制模块14输出使离合器11闭合的控制信号并计算无级变速器需要的速率以使飞轮加速。它输出第二个控制信号以便通过液压控制无级变速器10使速率被设置为计算的值。
因此,能量从第二组车轮5被传送到飞轮9而不是作为热量消耗在车辆的制动系统中。传送能量到飞轮的动作使车辆减速。
7一旦电子控制模块(ECM) 14检测到车辆1陷入停顿(通过监控传动轴速度传感器17的输出),它就会把离合器11断开,飞轮9继续以电子控制模块14监测到的速度自由旋转。这时存储在旋转的飞轮9中的巨大能量是其速度的函数。
在车辆1开始从静止加速(由电子控制模块14通过来自油门踏板位置传感器15和传动轴速度传感器17的信号检测)时,电子控制模块14将无级变速器IO重设为一个新(计算的)值,并且逐渐闭合离合器11以便用来自飞轮9的能量驱动第二组车轮5,从而辅助发动机2推动车辆。因而飞轮9开始减速直到它所存储的能量全部被回收(通过第二组车轮5),最后变为静止。这个时候,电子控制模块14可以断开离合器11直到检测到另外的减速操作。
现在参见图2,本实施例包含图1中的组件以及一些附加的组件和功能,如下所述。图l和图2中相同的组件在图中的标记数字也是相同的。齿轮组19位于第二组车轮5和油泵12之间,连接传动轴8和无级变速器10,用于增大无级变速器10传动比的范围。
附加的离合器20位于传动轴8和齿轮组19中间。
油液蓄压器21连接油泵12和无级变速器IO,用来保证为无级变速器IO提供足够的油量供应。
电子控制模块14有两个附加的控制输出端, 一个输出到齿轮组19,另一个输出到附加的离合器20。
交流发电机22连接飞轮9的传动轴,而且具有能够连接车辆电池充电设备(未显示)的输出线23。
图2的实施例能够以与图1中所介绍的运行方式相同的运行方式运行。此外,图2的实施例能够通过附加的离合器20将飞轮9 (和行星齿轮配置13)不只从车轮5上脱离,而且能从无级变速器10脱离。该附加的离合器20由电子控制模块14电子化控制。因此,在飞轮9既适宜不存储也不适宜释放能量的情况下,附加的离合器20断开。因此传动轴8不会驱动无级变速器10 (或齿轮组19),否则会产生不必要的摩擦损耗。附加的离合器20断开时,油泵12也得不到动力供给以维持对无级变 速器的油压从而可以设置一个传动比为离合器11、 20的再啮合做准备, 所以提供蓄压器21。
在本实施例中,可选择三种来自齿轮组19的固定的附加齿轮传动比 (在电子控制模块14的控制下)中的一种。
飞轮混合动力的主要优点是可以在飞轮和车辆车轮之间传送大量的 动力。路面行驶的汽车在制动过程中能够进行很高的动力转换,混合动力 系统效能的关键是尽可能多的获取通常被浪费掉的能源。这可以通过细致 匹配飞轮的转速和车辆的速度做到。高速飞轮的转速大概范围在0到 60000RPM或更高之间变化,而车辆的速度范围在0到160KPH变化。实 际的运行环境存在两种极端,第一种是飞轮转速为零而车辆速度达到最 高,第二种是飞轮转速达到最快而车辆速度为零。为了理想地适应这些极 端条件,需要使用无限变速式机械无级变速器或者用无级变速器传动系统 10来连接离合器。然而,无级变速器通常只有有限的六级传动比变动范围。 即便使用专门挑选的附加的齿轮传动比设置,这个变动范围也不足以覆盖 飞轮和车辆速度的整个运行范围。因此,齿轮组的传动比都针对某些特定 目标做优化,比如在确定的驱动周期最大限度的节省燃料消耗。
在本实施例中,使用无级变速器的六级传动比范围,齿轮组的传动比 是l: 1, 6的90%和36的卯%。这允许在每个齿轮选择之间为性能的优 化有10%的重叠。
齿轮的选择由电子控制模块以传统的方式通过电子化控制。
如果车辆长时间不用,比如在周末,在停驶时仍然有大量的能量存储 在飞轮9中,可以使用交流发电机22来利用这些能量。否则,飞轮9的 转速会逐渐衰减到零,其能量会永久损失。在这种情况下,交流发电机22 被激活。(这例如可以通过驾驶员操纵的开关(未显示)做到)。配置交流 发电机22以把飞轮的机械能量转换为能给车辆蓄电池(未显示)充电的 电流。
在可选设备中,电子控制模块14能学习驾驶员的使用模式,当预测到车辆将被搁置较长时间时,会控制交流发电机22的激活。
在图2的可选配置中,油泵12位于三速齿轮组和附加离合器20之间。
在另一实施例中,轴速度传感器(未显示)放置在无级变速器10的 任一侧(即无级变速器10和油泵12之间或无级变速器10和离合器11之 间)。轴速度传感器的输出端和电子控制模块14相连。它们帮助电子控制 模块14选择最佳的无级变速器传动比(根据车辆的现行运行条件),允许 电子控制模块14为飞轮9和车轮5之间驱动的平稳过渡控制离合器11和 12的滑移。
在另一可选配置中,离合器11和行星齿轮13被调换。这种配置减少 了连接到飞轮9的摩擦损耗。然而,离合器11需要能够以飞轮的速度运 行,并应对实质上更小的扭矩。
飞轮运行可以作为牵引控制的一种方式使用,比如可通过把它的控制 和车载稳定控制程序集成到一起。在装有常用牵引和/或稳定控制系统的车 辆中,通过自动减少发动机扭矩需求和/或通过防抱死制动系统对一个或更 多车轮施加制动力来控制车轮滑行。
本发明允许向并非由发动机直接驱动的车轮组提供反向或者正向扭 矩的附加选择。所以当离合器11闭合并且无级变速器的传动比被调整以 便飞轮速度提高时,飞轮9从车轮组5中获得能量,从而在该组车轮5上 产生制动力(负力矩)。反之,当离合器ll闭合并且无级变速器的传动比 被调整以便使飞轮9速度降低时,能量被传送到车轮5,从而提供正向扭 矩。
因此,在另一实施例中,电子控制模块14设置成与车辆的牵引控制模 块(未显示)通信,使飞轮响应来自牵引控制模块的指令信号以存储或释 放能量。
10
权利要求
1.一种用于车辆的动力传动系统,该车辆具有第一和第二组车轮和只驱动第一组车轮的动力源,其中,动力传动系统包括飞轮和连接到第二组车轮的有持续可变传动比的传动系统。
2. 根据权利要求1所述的动力传动系统,其特征在于,传动系统是有 空档的无限变速式机械无级变速器。
3. 根据权利要求1所述的动力传动系统,其特征在于,传动系统是无 级变速器,而且传动系统还包括位于无级变速器和飞轮之间的离合器。
4. 根据上述任一权利要求所述的动力传动系统,其特征在于,还包括 位于传动系统和飞轮之间的减速器。
5. 根据权利要求4所述的动力传动系统,其特征在于,减速器是行星 齿轮配置。
6. 根据上述任一权利要求所述的动力传动系统,其特征在于,还包括 用来连接在第二组车轮和传动系统之间的变速箱。
7. 根据上述任一权利要求所述的动力传动系统,其特征在于,还包括 为传动系统供油的机械油泵,该油泵位于传动系统和第二组齿轮之间。
8. 根据权利要求7所述的动力传动系统,其特征在于,还包括用于在 车辆静止时为传动系统维持油压供应的蓄压器。
9. 根据上述任一权利要求所述的动力传动系统,其特征在于,还包括 和飞轮关联的能量转换装置。
10. 根据上述任一权利要求所述的动力传动系统,其特征在于,还包 括位于传动系统和第二组车轮之间的离合器。
11. 一种车辆,具有第一组车轮和第二组车轮、用来驱动第一组车轮 的主发动机和用来驱动第二组车轮的第二发动机,其特征在于,第二发动 机由根据上述任一权利要求的动力传动系统组成。
12. 根据权利要求11所述的车辆,其特征在于,该车辆具有牵引控制系统,动力传动系统设置成响应来自上述牵引控制系统的信号运行。
13. 实质上类似于以上参照附图所述的动力传动系统。
14. 实质上类似于以上参照附图所述的车辆。
全文摘要
一种混合动力车辆的动力传动系统,该混合动力车辆具有连接到一组车轮(3)作为主发动机的内燃机(2),连接到第二组车轮(5)作为从属发动机的飞轮(9)。飞轮(9)中能量的存储和释放由无级变速器(10)和离合器(11)控制。该配置能够比较容易地将机械混合动力纳入现有的前轮驱动车辆平台中。
文档编号B60W10/10GK101665081SQ200910168079
公开日2010年3月10日 申请日期2009年8月24日 优先权日2008年9月4日
发明者杜纳特·安德里亚斯·约瑟芬·吉斯, 蒂莫西·詹姆斯·鲍曼 申请人:福特全球技术公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1