混合动力车辆的控制装置的制作方法

文档序号:3848731阅读:146来源:国知局
专利名称:混合动力车辆的控制装置的制作方法
技术领域
本发明涉及混合动力车辆的控制装置。本申请主张2010年10月28日申请的日本专利申请特愿2010-241796的优先权,针对文献参考中记载的指定国,作为参照而将上述申请所记载的内容编入本申请,来作为本申请的记载的一部分。
背景技术
在至少具备发动机、进行发动机的启动的马达、控制马达的逆变器以及经由逆变器对上述马达提供电力的电池的混合动力车的发动机启动控制装置中,已知如下一种控制装置(专利文献I):基于表示电池温度、电池剩余容量以及能够输出的电池输出之间的关系的数据、由电池温度传感器检测出的电池温度以及由电池控制器检测出的电池剩余容量来计算电池的能够输出电力,计算启动发动机所需的电池的电力,设定马达的目标转速,使得在启动发动机时能够输出电力为所需电力以上。专利文献1:日本特开2008-62745号公报

发明内容
发明要解决的问题另外,利用现有技术计算出的该能够输出电力表示能够稳定地输出规定期间的电力值(一般相当于在电力控制中使用的“几秒值”),在与必要电力进行比较时也使用该电力值(几秒值)。如上所述,该电力值(几秒值)表示规定时间内能够稳定输出的电力值,因此该电力值是比能够瞬间输出的电力值(瞬时值)小的值。当利用这种电力值(几秒值)与必要电力进行比较时,尽管能够瞬间输出的电力值(瞬时值)超出必要电力,电力值(几秒值)也低于必要电力,因此可能不得已使马达目标转速过度降低。存在以下风险:马达目标转速越低,发动机启动的可靠性越低,到发动机启动完成为止的时间变长。当然,如果到发动机启动完成为止的时间变长,则超过以电力值(几秒值)假定的可稳定输出的规定期间的可能性也高,结果是有可能进一步降低发动机启动的可靠性。本发明所要解决的问题是,在利用通过来自电池的电力供给进行驱动的马达来启动发动机的车辆中提高发动机的启动的可靠性。用于解决问题的方案本发明通过以下方式来解决上述问题:一边利用电压控制单元在电池的限制电压的范围内与当前时刻能够输出的第一电力值相应地控制上述电池的输出,一边控制上述逆变器,从而启动内燃机。发明的效果 根据本发明,能够提高发动机的启动的可靠性。


图1是表示本发明的一个实施方式所涉及的混合动力车辆的整体结构的框图。图2是表示本发明的其它实施方式所涉及的混合动力车辆的传动系的图。图3是表示本发明的其它实施方式所涉及的混合动力车辆的传动系的图。图4是表示图1的整合控制器部件的细节的控制框图。图5a是表示图1的整合控制器部件的控制过程的流程图。图5b是表示图1的整合控制器部件的控制过程的流程图。
具体实施例方式包括本发明的实施方式所涉及的控制装置的混合动力车辆I是将内燃机和电动发电机之类的多个动力源用于车辆的驱动的并联构型方式汽车,图1所示的本例的混合动力车辆I具备内燃机(以下为发动机)10、第一离合器15、电动发电机(以下为马达发电机)20、第二离合器25、电池30、逆变器35、自动变速机40、传动轴(propeller shaft) 51、差动齿轮部件52、驱动轴53以及左右驱动轮54。发动机10是使汽油、轻油及其它燃料燃烧来输出驱动能的驱动源之一,基于来自发动机控制器部件70的控制信号来控制节气门的阀开度、燃料喷射阀的燃料喷射量等。第一离合器15安装于发动机10的输出轴与马达发电机20的旋转轴之间,将发动机10与马达发电机20之间的动力传递分离和接合(0N/0FF)。作为第一离合器15,能够例示可利用比例电磁阀连续控制油流量和油压的湿式多片离合器等。在第一离合器15中,基于来自整合控制器部件60的控制信号来控制油压部件16的油压,由此第一离合器15的离合器片接合(还包括滑动状态)或分离。此外,第一离合器15也可以采用干式离合器。马达发电机20是在转子中埋设有永磁体且在定子中缠绕有定子线圈的同步型马达发电机。在该马达发电机20中设置有用于检测转子旋转角的旋转变压器等旋转角传感器21。只要与逆变器35的驱动频率相应地控制马达发电机的转速,逆变器35的驱动频率的比就是转速比(变速比),从逆变器108提供的电力成为马达发电机20的驱动力。马达发电机20既作为电动机发挥功能也作为发电机发挥功能。另一方面,在通过外力使转子进行旋转的情况下,马达发电机20通过使定子线圈的两端产生电动势来生成(再生)交流电力。利用马达发电机20发电产生的交流电力在通过逆变器35转换为直流电力之后对电池30进行充电。另外,再生期间在马达发电机20中产生负的扭矩,因此马达发电机20还发挥对驱动轮进行制动的功能。另外,马达发电机20具备启动马达的功能。为了使发动机10启动,从电池30向马达发电机20提供电力,使马达发电机20进行动作来进行发动机10的推转。关于电池30,能够例示将多个锂离子二次电池、镍氢二次电池等进行串联连接或者并联连接而得到的电池组。在电池30中安装电流和电压传感器31和用于估计内部电阻值的温度传感器32,将这些检测结果输出到马达控制器部件80。第二离合器25安装于马达发电机20与左右驱动轮54之间,将马达发电机20与左右驱动轮54之间的动力传递分离和接合(0N/0FF)。关于第二离合器25,与上述第一离合器15同样地例如能够例示湿式多片离合器等。在第二离合器25中,基于来自变速器控制器部件90的控制信号来控制油压部件26的油压,由此将第二离合器25的离合器片接合(还包括滑动状态)或分离。
自动变速机40是对前进7速、后退I速等之类的变速比进行分级切换的有级式变速机,与车速、加速踏板开度等相应地自动切换变速比。基于来自变速器控制器部件90的控制信号对自动变速机40的变速比进行控制。如图1所示,能够将第二离合器25设为借用以自动变速机40的各变速级进行接合的多个摩擦接合要素中的几个摩擦接合要素的离合器。另外,也可以取代这样的离合器而将第二离合器25设为与自动变速机40分开的专用离合器。可以例如图2所示,将第二离合器25设为安装于马达发电机20的输出轴与自动变速机40的输入轴之间的专用离合器。或者如图3所不,可以将第二离合器25设为安装于自动变速机40的输出轴与传动轴51之间的专用离合器。此外,图2和图3是表示其它实施方式所涉及的混合动力车辆的结构的图,在图2和图3中,除传动系(power train)以外的结构与图1相同,因此仅表示传动系。此外,本例的自动变速机40能够使用普通的有级式自动变速机,因此省略其详细的结构,但在借用以自动变速机40的各变速级进行接合的多个摩擦接合要素中的几个摩擦接合要素来构成第二离合器25的情况下,将自动变速机40内的摩擦接合要素中的要以当前变速级进行接合的摩擦接合要素构成为第二离合器25。另外,作为自动变速机40,对上述前进7速、后退I速的有级式自动变速机不作特别限定,例如也可以是其它的前进5速、后退I速的有级变速机。在不借用自动变速机40的摩擦接合要素来构成第二离合器25的情况下,还能够使用无级式自动变速机。返回到图1,自动变速机40的输出轴经由传动轴51、差动齿轮部件52以及左右驱动轴53与左右驱动轮54相连接。此外,在图1中,55是左右的转向前轮。另外,在图1至图3中,例示了后轮驱动的混合动力车辆,但也能够设为前轮驱动的混合动力车辆、四轮驱动的混合动力车辆。本实施方式中的混合动力车辆I将驱动源设定为发动机10和/或者马达发电机20,由此换句话说能够与第一和第二离合器15、25的接合/滑动/分离状态相应地切换为以下要说明的各行驶模式。使用马达发电机行驶模式(以下为EV行驶模式)是以下模式:使第一离合器15分离的同时使第二离合器25接合,从而仅将马达发电机20的动力作为驱动源来行驶。使用发动机行驶模式(以下为HEV行驶模式)是以下模式:使第一离合器15和第二离合器25都接合,从而一边在驱动源中至少包括发动机10的动力一边行驶。除上述EV行驶模式和HEV行驶模式以外,还可以设定使用发动机滑动行驶模式(以下为WSC行驶模式:Wet Start Clutch),在该模式下,使第一离合器15接合的同时使第二离合器25变为滑动状态,从而一边在驱动源中包括发动机10的动力一边行驶。WSC行驶模式是特别在电池30的充电状态S0C(State of Charge:荷电状态)下降、发动机10的冷却水的温度低的情况下能够实现缓慢行驶的模式。此外,当从EV行驶模式转换为HEV行驶模式时,将已分离的第一离合器15接合,通过利用马达发电机20的扭矩能够进行发动机启动。另外,在HEV行驶模式中设定有发动机行驶模式、马达辅助行驶模式以及行驶发电模式。在发动机行驶模式下,不驱动马达发电机20,仅将发动机10作为动力源使驱动轮54移动。在马达辅助行驶模式下,同时驱动发动机10和马达发电机20两者,将它们作为动力源使驱动轮54移动。在行驶发电模式下,在将发动机10作为动力源使驱动轮54移动的同时,使马达发电机20作为发电机发挥功能来对电池30进行充电。此外,除了以上说明的模式以外,还可以具备发电模式,该模式是在停车时利用发动机10的动力使马达发电机20作为发电机发挥功能,来对电池30进行充电或者向电气部件提供电力的模式。如图1所示,本实施方式中的混合动力车辆I的控制系统具备整合控制器部件60、发动机控制器部件70、马达控制器部件80以及变速器控制器部件90。这些控制器部件60、70、80、90例如通过CAN(Control Area Network:控制器局域网)通信相互连接。发动机控制器部件70控制电控节气门的开度,以获得由整合控制器部件60运算出的目标发动机扭矩。与节气门开度相应的吸入空气量流入发动机10,利用设置于电控节气门的上游的空气流量表(未图示)来测量吸入空气流量。发动机控制器部件70基于吸入空气流量和由曲轴位置传感器(未图示)检测出的发动机10的转速,利用燃料喷油来控制燃料的喷射,利用火花塞控制点火的时期。此外,发动机转速Ne、发动机扭矩Te的信息经由CAN通信线向整合控制器60输出。马达控制器部件80输入来自设置于马达发电机20的旋转角传感器21的信息,将对马达发电机20的动作点(马达转速Mn、马达扭矩Tm)进行控制的指令输出到逆变器35来控制逆变器35的驱动频率,以获得由整合控制器部件60运算出的目标转速和目标扭矩。另外,马达控制器部件80基于由电流和电压传感器31检测出的电流值和电压值来运算并管理电池30的SOC。该电池SOC信息被用作马达发电机20的控制信息,并且通过CAN通信被发送到整合控制器部件60。并且,马达控制器部件80基于在马达发电机20中流动的电流值(根据电流值的正负来区分动力运转控制扭矩和再生控制扭矩)来估计马达发电机扭矩Tm。该马达发电机扭矩Tm的信息通过CAN通信被发送到整合控制器部件60。并且马达控制器部件80将由温度传感器32检测出的电池温度发送到整合控制器部件60。 变速器控制器部件90输入来自抑制开关94的传感器信息,与来自整合控制器部件60的第二离合器控制指令相应地将用于控制第二离合器25的接合和分离的指令输出到油压部件26,上述抑制开关94输出与加速踏板开度传感器91、车速传感器92、第二离合器油压传感器93以及驱动器进行操作时的档位杆的位置相应的信号。此外,加速踏板开度AP0、车速VSP以及抑制开关的信息通过CAN通信被发送到整合控制器部件60。整合控制器部件60通过管理整个混合动力车辆I的消耗能量,承担着用于使混合动力车辆I高效地行驶的功能。整合控制器部件60获取来自以下传感器的传感器信息:用于检测第二离合器25的输出转速N2OTt的第二离合器输出转速传感器61、用于检测第二离合器25的传递扭矩容量Ta2的第二离合器扭矩传感器62、制动油压传感器63、用于检测第二离合器25的温度的温度传感器64以及用于检测车辆的前后加速度和横加速度的G传感器65。另外,整合控制器部件60除了这些信息以外,还获取通过CAN通信获得的传感器信肩、O然后,整合控制器部件60基于这些信息执行以下控制:通过向发动机控制器部件70输出控制指令来执行发动机10的动作控制;通过向马达控制器部件80输出控制指令来执行马达发电机20的动作控制;通过向变速器控制器部件90输出控制指令来执行自动变速机40的动作控制;通过向第一离合器15的油压部件16输出控制指令来执行第一离合器15的接合和分离控制;以及通过向第二离合器25的油压部件26输出控制指令来执行第二离合器25的接合和分离控制。另外,向整合控制器单元60传递驾驶员接通点火开关或者怠速停止解除条件成立的信号。并且,在停车时、低负荷运转时,以规定的发动机自动停止条件(车速为规定车速以下、加速踏板踏入量为规定量以下等)成立为条件使发动机10自动停止,实现燃料消耗量和排放物的进一步减少。接着,说明由整合控制器部件60执行的控制。图4是表示整合控制器部件60的细节的控制框图。如图4所示,整合控制器部件60具备电压控制部601、电力控制部602、内燃机启动部603以及转速设定部604。电压控制部601与由电压传感器31检测出的电池30的检测电压、电池温度以及劣化状态相应地控制从电池30输出的电力。在电压控制部601中设定电池30的上限电压和下限电压,并进行控制以使电池30的电压收敛于以下限电压至上限电压的范围内示出的安全的电压范围。上限电压或者下限电压表示能够安全地使用电池30的限制电压。如上所述,马达单元控制器部件80与从整合控制器部件60向马达发电机20请求的目标扭矩请求相应地设定逆变器35的驱动频率。而且,为了使逆变器35以该驱动频率进行动作,使电池30的放电电流从电池30流向逆变器35。在电池30的检测电压高于下限电压的情况下,从电池30放出与所设定的驱动频率相应的电流。即,电压控制部601在限制电压的范围内不对电池30的电力施加限制,而从电池30向逆变器35提供电力。另一方面,在电池30的检测电压下降而达到下限电压的情况下,电压控制部601进行控制,使得不从电池30放出与驱动频率相应的电流,而限制电池30的放电电流,由此将电池30的检测电压控制为不低于下限电压。而且,在电池30的检测电压进一步下降而低于下限电压的情况下,电压控制部601进一步限制电池30的放电电流。即,在电池30的检测电压高于下限电压的情况下,电压控制部601对电池30的能够输出电力不施加限制,使电池30输出与逆变器的驱动频率对应的电力。另一方面,在电池30的检测电压为下限电压以下的情况下,对电池30的电力施加限制,使电池30输出低于电池30的能够输出电力的电力。由此,电压控制部601将电池30的检测电压与作为限制电压的下限电压进行比较,根据比较结果来控制电池30的输出。在通过马达发电机20的再生来对电池30充电时,电压控制部601根据电池30的检测电压与上限电压的比较结果来控制向电池30的输入电压。即,在电池30的检测电压低于上限电压的情况下,电压控制部601对由马达发电机20的再生产生的电力不施加限制而将该电力提供给电池30。而且,在电池30的检测电压达到上限电压的情况下,电压控制部601通过进行降低电池30的充电电压的控制,对由马达发电机20的再生产生的电力施加限制,来对电池30充电。由此,电压控制部601控制向电池30的输入电力,以避免电池30的电压超过上限电压。电力控制部602根据电池30的状态,参照预先保存的对应表来运算电池30的输出,控制电池30的输出使得从电池30向逆变器35输出与逆变器的驱动频率相应的输出。电力控制部602使用电池30的充电状态(SOC =State of Charge)、电池30的温度以及电池30的劣化度等来作为电池30的状态。根据由电流和电压传感器31检测出的电流和电压来计算电池30的S0C,利用温度传感器32来检测电池30的温度。在保存于电力控制部602的对应表中,电池30的SOC和温度、劣化以及电池30的输出电力相关联。而且,电力控制部602基于运算出的SOC和检测温度,通过参照该对应表来运算电池30的输出电力。在此,由电力控制部602利用对应表运算出的输出电力表示规定时间(例如2秒)内从电池30能够输出的电力(例如2秒值)。因此,在电池30请求的电力超出由电力控制部602运算出的电力的情况下,电力控制单元602进行控制,使得从电池30输出的电力不超出所运算出的电力。另外,电力控制部602利用用于运算规定时间内能够输出的电力的对应表,不运算长于规定时间的时间、从电池30能够输出的电力。因此,存在以下情况:当请求以长于该规定时间的时间从电池30输出所运算出电力时,电力控制部602不会以长于规定时间的时间从电池30输出所运算出的电力。内燃机启动部603基于使发动机10启动的启动信号,经由马达控制器部件80驱动马达发电机20,从而使发动机10驱动。当接通点火开关(未图示)时,从该开关发送使发动机10启动的启动信号,由马达控制器部件80接收该启动信号。另外,在从EV行驶模式转换为JEV行驶模式时以及从EV行驶模式转换为仅利用发动机的行驶模式时,内燃机开始单元603使发动机10启动。此外,由整合控制器部件60与加速踏板开度和车速相应地管理行驶模式的切换。转速设定部604对为了使发动机10启动而进行推转时的马达发电机20的转速进行设定。另外,在由电压控制部601运算出的电力值(瞬时值)低于使发动机10启动所需的电力的情况下,转速设定部604降低马达发电机20的转速,降低使发动机10启动所需的电力。接着,利用图1和图4对使发动机10启动时的控制进行说明。首先,整合控制器部件60在从电池30的SOC低且车辆停止的状态起接收到使发动机10启动的启动信号时,利用电压控制部601控制电池30的电力。另外,整合控制器部件60利用温度传感器32检测电池30的温度。对整合控制器部件60设定用于切换下限电压的阈值温度。而且,在电池30的温度高于该下限温度的情况下,电压控制部601不降低预先设定的下限电压地控制电池30,在电池30的温度低于用于切换该下限电压的阈值温度的情况下,电压控制部601降低预先设定的下限电压来控制电池30。在此,作为电池30的特性,在电池30的温度低于用于切换下限电压的阈值温度的情况下,IV特性(电流电压特性)示出向下凸的特性,因此当电池30的输出电压降低时,电池30的放电电流变得更高,使得相当于电压与电流的积的电池30的功率比电压降低前的功率高。另一方面,在电池30的温度高于阈值温度的情况下(例如常温的状态),通过降低电池30的输出电压使电池30的电力变高,但与电池30的温度低于阈值温度的情况相t匕,功率的增加量少。另外,即使是能够确保电池30的安全的电压范围,当以电池30的电压低的状态来使电池30放电时,电池的劣化加速。因此,对于阈值温度,与电池30的特性相应地预先设定温度,以估计因电压降低而增加的电力。由此,在电池30的温度高于阈值温度的情况下,电压控制部601不降低下限电压,因此能够防止电池30的寿命的缩短,并且在电池30的温度低于阈值温度的情况下,电压控制部601通过降低下限电压能够提高电池30的电力。另外,电压控制部601根据电压传感器31的检测电压和能够从电池32放出的电流来运算从电池30瞬间能够输出的电力值(瞬时值),将通过该运算而计算出的电力值(瞬时值)与使发动机10启动所需的电力进行比较。而且,在所运算出的电力值(瞬时值)高于使发动机10启动所需的电力的情况下,电压控制部601将电池30的电力提供给马达发电机20,内燃机启动部603使离合器15接合,从而使发动机10启动。另一方面,在所运算出的电力低于使发动机10启动所需的电力的情况下,转速设定部604降低马达的转速以使电力值(瞬时值)高于使发动机10启动所需的电力,之后内燃机启动单兀601使离合器15接合,从而使发动机10启动。马达控制器部件80对使发动机10启动的驱动频率进行设定,来控制逆变器35。而且,在电池30的检测电压高于下限电压的情况下,电压控制部601对电池30的电力不施加限制,因此与所设定的驱动频率相应地从电池30输出电力。在电池30的电压达到下限电压之前发动机10完全燃烧的情况下,能够通过利用发动机10的动力的马达发电机20的再生来对电池30充电,因此能够使电池30的电压维持高于下限电压的状态。另一方面,在对发动机10进行推转时电池30的电压下降而达到下限电压的情况下,电压控制部601对来自电池30的输出电力施加限制,进行控制使得电池30的电压不低于下限电压。此时,发动机10已进行推转,因此即使利用低于使发动机10启动所需的电力的电力,也能够继续使发动机10推转。另外,在通过利用了对应表的电力控制使发动机10启动的情况下,如上所述,电力控制部602运算在规定时间内从电池30能够输出的电力(几秒值)。因此,尽管瞬间能够输出的电力值(瞬时值)超出所需电力,但由于电力值(几秒值)低于所需电力,因此可能不得已而过度降低马达目标转速。马达目标转速越降低,从发动机10进行推转到完全燃烧为止的时间越长,发动机启动的可靠性降低,到发动机启动完成为止的时间也变长。当然,如果到发动机启动完成为止的时间变长,则由电力控制部602运算出的电力值(几秒值)有时不能继续输出到发动机10完全燃烧。另外,在利用转速设定部604将用于使发动机10启动的转速设定为低转速的情况下,到完全燃烧为止的燃料喷射的次数变多,使发动机10启动的可靠性降低,因此自身难以掌握到完全燃烧为止的时间。因此,存在使发动机10启动所需的电力的精度劣化的情况。另外,利用在电力控制部602的电力控制中使用的用于车辆控制的传感器、整合控制器部件60等的CPU未必能够准确地估计电池30的状态,因此所运算出的电力可能与电池30实际能够输出的电力不同、或者电池30的实际能够输出的期间可能比所运算出的电力值的规定期间长。因此,相对于电池30的实际输出电力,所运算出的电力的精度变差。S卩,在通过电力控制使发动机10启动的情况下,可能不必要地将马达的转速设定为低转速,或者即使在运算上认为发动机10能够启动的情况下而实际上发动机10可能没有启动。在本例中,如上所述,通过由电压控制部601控制的电池30的输出使发动机10启动,因此能够在电池30的电压达到下限电压之前将电池30的实际能够输出的电力提供给马达发电机20,来使发动机10启动。在本例中,例如在通过驾驶员接通点火开关使发动机10启动时,禁止利用电力控制部602对电池30进行电力控制,而仅利用电压控制部601进行电压控制,由此能够控制电池的输出来使发动机10启动。另外,通过电压控制使转速设定部604基于电力值(瞬时值)与所需电力的比较来执行转速设定,由此抑制用于使发动机10启动的马达发电机20的转速被设定得过低。这样,能够利用电力值(瞬时值)进行转速设定,并且通过在上下限电压的范围内控制输出,能够明显提高发动机启动的可靠性。接着,利用图5a和图5b说明本例的混合动力车辆的控制装置的控制过程。图5a和图5b是表示本例的混合动力车辆的控制装置的控制过程的流程图。当本例的控制装置的系统开始时,在步骤SI中由驾驶员接通点火开关,整合控制器部件60接收使发动机10启动的启动信号。在步骤S2中,整合控制器部件60利用电压控制部601控制电池30的输出。在步骤S3中,电压控制部601利用电压传感器31检测电池30的开路电压,并与规定的阈值电压(Vx)相比较。该规定的阈值电压(Vx)是为了保护电池30而预先设定的电压。在电池30的开路电压高于阈值电压(Vx)的情况下,转移到步骤S4。另一方面,在电池10的开路电压低于阈值电压(Vx)的情况下,在步骤S31中电压控制部601不使发动机10启动而点亮未图示的警告灯,来向乘员通知警告。在步骤S4中,整合控制器部件60将由温度传感器32检测出的电池30的检测温度⑴与预先设定的阈值温度(TJ进行比较。在检测温度⑴为阈值温度OY)以上的情况下,转移到图5b所示的步骤S41。另一方面,在检测温度(T)低于阈值温度(TJ的情况下,转移到步骤S5。首先,说明步骤S5之后的控制过程。在步骤S5中,整合控制器部件60将预先设定的下限电压(\)设定为低于该下限电压(yL)的下限电压(Vu)。此外,下限电压(yL)表示能够在电池30的温度高于阈值温度OY)的普通温度状态下安全地使用电池30的下限的电压值。另外,下限电压(Vu)表示能够在电池30的温度低于下限电压OY)的低温状态下安全地使用电池30的下限的电压值。在步骤S6中,电压控制部601进行控制使得从电池30提供使发动机10启动所需的电力,内燃机启动部603执行对发动机10推转。在步骤S7中,整合控制器部件60根据从发动机控制器部件70发送来的信号判断表示完全燃烧的完全燃烧标识是否为“开(ON) ”。发动机控制器部件70根据发动机10的转速来管理发动机10的状态。在发动机10的转速高于判断为已完全燃烧时的规定的阈值转速的情况下,发动机控制器部件70将完全燃烧标识设为“开”,在发动机10的转速低于判断为已完全燃烧时的规定的阈值转速的情况下,发动机控制器部件70将完全燃烧标识设为“关(OFF) ”。在完全燃烧标识为“关”状态的情况下,在步骤S71中整合控制器部件60判断从接收启动信号起的经过时间是否经过了规定时间。在经过了规定时间(超时)的情况下,结束本例的控制。由此,在利用电池30的输出不能使发动机完全燃烧的情况下,禁止从电池30放电。另一方面,在没有经过规定期间的情况下,转移到步骤S72。在步骤S72中,电压控制部601将电池30的检测电压与下限电压(Vu)进行比较。在检测电压为下限电压(Vli)以上的情况下,电压控制部601通过继续向马达发电机20提供当前的输出电力来继续使发动机10推转。然后返回到步骤S6。另一方面,在检测电压低于下限电压(Vu)或者检测电压下降并达到下限电压(Vu)的情况下,电压控制部601控制电池30以降低电池30的电力,使得电池30的电压高于下限电压(Vu)。然后返回到步骤S7。当在步骤S7中完全燃烧标识为“开”时,在步骤S8中整合控制器部件60利用电力控制部602控制电池30的电力。由此,在车辆行驶过程中利用电力控制部602进行控制,因此能够使车辆运行状态稳定。在步骤S9中,整合控制器部件60将电池30的检测电压与下限电压(VJ进行比较。即,判断电池30的检测电压是否高于通过步骤S5设定为下限电压(Vu)之前的下限电压(\)。在步骤S91中电池30的检测电压低于下限电压的情况下,对电池30进行充电,返回到步骤S8。如果在电池30的电压低的状态下继续长时间使用电池30,则劣化加速。因此,在发动机10完全燃烧之后利用发动机10的动力对电池30进行充电,使电池30的电压升高。此外,有时通过消除对电池30施加的放电负荷使电池30的电压高于下限电压(VJ,因此未必需要进行步骤S91的控制处理,也可以进行对电池30不施加放电负荷那样的控制。在电池30的检测电压高于下限电压(\)的情况下,整合控制器部件60使下限电压(Vu)恢复为下限电压(')(步骤S10),结束本例的控制。接着,在步骤S4中,在检测温度⑴为阈值温度(TJ以上的情况下,利用图5b说明步骤S41之后的控制过程。在步骤S41中,电压控制部601将使发动机10启动所需的电力与电池30的输出电力(瞬时值)进行比较。在电池30的输出电力(瞬时值)为该所需电力以上的情况下,转移到步骤S43。另一方面,在电池30的输出电力(瞬时值)低于该所需电力的情况下,在步骤S42中旋转设定单元604降低用于使发动机10启动的马达发电机20的转速。由此,使发动机10启动所需的电力降低。此外,旋转设定单元604既可以阶段性地降低该转速,也可以将该转速降低至使该所需电力成为输出电力时的转速。在步骤S43中,电压控制部601进行控制使得从电池30提供使发动机10启动所需的电力,内燃机启动部603执行对发动机10推转。在步骤S44中,整合控制器部件60判断完全燃烧标识是否为“开”。在完全燃烧标识为“关”状态的情况下,在步骤S441中整合控制器部件60判断是否超时。在超时的情况下,结束本例的控制。由此,在利用电池30的输出不能使发动机完全燃烧的情况下,禁止从电池30放电。在没有超时的情况下,在步骤S442中电压控制部601将电池30的检测电压与下限电压(')进行比较。在检测电压为下限电压以上的情况下,电压控制部601通过继续向马达发电机20提供当前的输出电力,继续使发动机10推转。然后返回到步骤S44。另一方面,在检测电压低于下限电压(\)或者检测电压下降并达到下限电压的情况下,电压控制部601控制电池30以降低电池30的电力(步骤S443),使得电池30的电压高于下限电压。然后返回到步骤S44。在步骤S44中完全燃烧标识为“开”时,在步骤S45中整合控制器部件60利用电力控制部602控制电池30的电力,结束本例的控制。如上所述,在本例中,利用电压控制部601根据电压传感器31的检测电压与电池30的限制电压的比较结果来控制电池30的输出,与由电压控制部601控制的电池30的输出相应地控制逆变器35以使发动机10启动。由此,将电池30控制在安全的电压范围内来启动发动机10,由此能够有效地使电力输出到电池30的电压的限制值为止,其结果是能够拓宽用于启动发动机10的、电池30的使用条件的范围。另外,在本例中,除了电力控制以夕卜,通过设为电压控制,能够利用电池30所具有的全部能量进行发动机10的推转,从而能够拓宽发动机10的能够启动的条件。另外,在本例中,当使发动机10启动时,利用电压控制部601控制电池30的输出,禁止由电力控制部602控制电池30的输出,不进行利用电力控制部602的电力控制。由此,当使发动机10启动时,能够利用电池30瞬间能够输出的电力值(瞬时值)来进行转速设定,能够提高使发动机10完全燃烧的可靠性。另外,即使在从使发动机10推转到完全燃烧为止的时间长的情况下,只要在上下限的范围内电池30就能够继续提供实际能够输出的电力,直到发动机10完全燃烧为止。另外,在本例中,在电池30的检测电压低于下限电压('或Vu)的情况下,对电池30的输出施加限制。由此,电池30的检测电压进一步下降,能够防止电池30过放电。另外,在本例中,在从电池30输出的电力低于使发动机10启动所需的电力低的情况下,将用于使发动机10启动的马达发电机20的转速降低。由此,能够降低使发动机10启动所需的电力,从而能够使发动机10推转。另外,在本例中,在由温度传感器32检测出的电池30的检测温度低于阈值温度(Tl)的情况下,利用电压控制部601将下限电压(')设定为下限电压(Vu)。由此,在电池30为低温状态的情况下,通过降低下限电压(')能够提高电池30的输出。作为其结果,能够拓宽电池30的使用条件的范围。另外,在本例中,在将下限电压降低至下限电压(Vu)之后电池30的电压高于下限电压的情况下,将下限电压(Vu)恢复为下限电压(\)。由此,能够防止在低电压的区域长时间使用电池30,从而能够保护电池30。另外,在本例中,在接收到使发动机10启动的启动信号的情况下,利用电压控制部601控制电池30,在接收到表示发动机10完全燃烧的信号的情况下,利用电力控制部602控制电池30。由此,能够在使发动机10启动时将电力引导至电池30的下限电压,因此能够拓宽电池30的使用条件的范围。另外,在发动机10完全燃烧之后,能够利用发动机10的动力使电池30的电压升高,因此即使在电力控制下也能够将电池30的电压收敛在安全电压范围,能够一边保护电池30 —边实现电池30的寿命的延长。另外能够使车辆的驱动稳定化。另外,在本例中,在利用电池30的输出不能使发动机完全燃烧的情况下,禁止从电池30放电。由此,能够防止电池30的过放电。此外,在本例中,在发动机10完全燃烧之后,利用电力控制部602控制电池30,但也可以同时利用电压控制部601进行控制。另外,在本例中,在驾驶员接通点火开关、接收到使发动机10启动的启动信号的情况下,利用电压控制部601进行电压控制,但也可以在使车辆行驶中从EV行驶模式转换为HEV行驶模式时、或者从EV行驶模式转换为仅利用发动机的行驶模式时使发动机10启动的情况下,利用电压控制部601进行电压控制。另外,例如也可以在从由于等待信号等而使车辆停止的状态起使发动机10启动的情况下利用电压控制部601进行电压控制。并且还可以仅在驾驶员接通点火开关、接收到使发动机10启动的启动信号的情况下利用电压控制部601进行电压控制。另外,在本例中,在接收使发动机10启动的启动信号之前利用电力控制部602进行了电力控制的情况下,在接收到使发动机10启动的启动信号时从该电力控制切换为电压控制部601的电压控制即可。另外,关于利用电压传感器32进行的电压检测,在电池30中装载有多个单元电池的情况下,马达控制器部件80分别监视每个单元的电压和包括该多个单元电池的电池包的电压即可。此时,将限制电压分别设定为各单元电池的电压和电池包的电压即可。另外,在管理多个单元电池的电压和电池包的电压的情况下,在步骤S4中既可以分别降低各个下限电压,另外也可以将电压变低的单元电压的下限电压降低。另外,关于本例的控制装置的控制过程,未必需要为图5所示的过程,既可以调换各步骤,另外也可以省略一部分步骤。此外,在步骤S71和步骤S441中,在以超时而结束之后多次进行发动机10的启动时,电池30有可能过放电,因此例如也可以在尝试将发动机启动规定次数却无法启动发动机的情况下,进行不进行再启动的控制。另外,在电池30的电压低于规定电压的情况下,进行不进行再启动的控制。对于该规定的电压,只要设定为如下电压即可:表示通过使发动机10再启动来对电池30施加负荷会使电池30过放电的情况。上述发动机10相当于本发明所涉及的内燃机,上述马达发电机20相当于本发明所涉及的电动机,上述第一离合器CLl相当于本发明所涉及的离合器,上述电压传感器31相当于本发明所涉及的电压检测单元,上述电压控制部601相当于本发明所涉及的电压检测单元,上述电力控制部602相当于本发明所涉及的电力控制单元,上述内燃机启动部603相当于本发明所涉及的内燃机启动单元,上述转速设定部604相当于本发明所涉及的转速设定单元,上述温度传感器32相当于本发明所涉及的温度检测单元,下限电压(')相当于本发明所涉及的第一下限电压,下限电压(Vu)相当于本发明所涉及的第二下限电压。附图标记说明1:混合动力车辆;10:发动机;15:第一离合器;20:马达发电机;25:第二离合器;30:电池;35:逆变器;40:自动变速机;60:整合控制器部件;601:电压控制部;602:电力控制部;603:内燃机启动部;604:转速设定部;70:发动机控制器部件;80:马达控制器部件;90:变速器控制器部件。
权利要求
1.一种混合动力车辆的控制装置,其控制混合动力车辆,该混合动力车辆具备:内燃机、启动上述内燃机的电动机、控制上述电动机的逆变器、将上述内燃机与上述电动机之间的动力传递连接和切断的离合器以及对上述电动机提供电力的电池,该控制装置的特征在于,具备: 电压检测单元,其检测上述电池的电压; 电压控制单元,其在上述电池的限制电压的范围内,与当前时刻能够输出的第一电力值相应地控制上述电池的输出;以及 内燃机启动单元,其使上述离合器接合,利用由上述电压控制单元控制的上述电池的输出来控制上述逆变器,从而使上述内燃机启动。
2.根据权利要求1所述的混合动力车辆的控制装置,其特征在于, 还具备电力控制单元,该电力控制单元根据上述电池的状态运算在从当前时刻起的规定时间内能够稳定输出的上述电池的第二电力值,与该运算结果相应地控制上述电池的输出, 在启动上述内燃机时,上述电压控制单元与上述第一电力值相应地控制上述电池的输出, 在启动上述内燃机时,上述电力控制单元禁止与上述第二电力值相应地对上述电池的输出进行控制。
3.根据权利要求1或2所述的混合动力车辆的控制装置,其特征在于, 还具备转速设定单元,该转速设定`单元对使上述内燃机启动的上述电动机的转速进行设定, 在上述第一电力值低于使上述内燃机启动所需的必要电力值的情况下,上述转速设定单元将上述转速降低。
4.根据权利要求1至3中的任一项所述的混合动力车辆的控制装置,其特征在于, 在上述电压检测单元的检测电压低于作为上述限制电压的下限电压的情况下,上述电压控制单元对上述电池的输出施加限制。
5.根据权利要求1、3以及4中的任一项所述的混合动力车辆的控制装置,其特征在于, 还具备电力控制单元,该电力控制单元根据上述电池的状态运算上述电池的输出,与该运算结果相应地控制上述电池的输出, 上述电压控制单元在接收到使上述内燃机启动的启动信号的情况下,控制上述电池, 上述电力控制单元在接收到表示上述内燃机完全燃烧的信号的情况下,控制上述电池。
6.根据权利要求1至5中的任一项所述的混合动力车辆的控制装置,其特征在于, 还具备温度检测单元,该温度检测单元检测上述电池的温度, 在由上述温度检测单元检测出的上述电池的温度低于规定温度的情况下,上述电压控制单元从作为上述限制电压的第一下限电压设定为低于上述第一下限电压的第二下限电压。
7.根据权利要求6所述的混合动力车辆的控制装置,其特征在于, 在设定为上述第二下限电压之后,上述电压检测单元的检测电压高于上述第一下限电压的情况下,上述电压控制单元从上述第二下限电压设定为上述第一下限电压。
8.根据权利要求1至7中的任一项所述的混合动力车辆的控制装置,其特征在于,在利用上述电池的输出不能使上述内燃机完全燃烧的情况下,上述电压控制单元禁止从上 述电池放电。
全文摘要
一种控制混合动力车辆的控制装置,该混合动力车辆具备内燃机、启动内燃机的电动机、控制电动机的逆变器(35)、将内燃机与电动机之间的动力传递连接和切断的离合器以及对电动机提供电力的电池(30),该控制装置具备电压检测单元,其检测电池(30)的电压;电压控制单元,其在电池(30)的限制电压的范围内,与当前时刻能够输出的第一电力值相应地控制电池(30)的输出;以及内燃机启动单元,其使离合器接合,利用由电压控制单元控制的电池(30)的输出来控制逆变器(35),从而使内燃机启动。
文档编号B60W10/08GK103189257SQ20118005251
公开日2013年7月3日 申请日期2011年10月12日 优先权日2010年10月28日
发明者土岐吉正 申请人:日产自动车株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1