车辆控制装置及车辆的控制方法与流程

文档序号:12070058阅读:267来源:国知局
车辆控制装置及车辆的控制方法与流程

本发明涉及车辆控制装置及车辆的控制方法。



背景技术:

JP2011-131634A中公开有如下的车辆的控制装置,其设置可单独控制车轮上的制动力的防侧滑装置和在车轮打滑的情况下降低发动机扭矩的牵引力控制装置,并可执行通过控制这些装置而使车辆姿势稳定的车辆姿势控制。

另外,在车辆中,已知有为了在车轮打滑的情况下保护变速器,进行根据变速器的状态而使发动机扭矩下降的扭矩控制。

对于可执行上述车辆姿势控制和扭矩控制的车辆,例如在上坡路等需要大的驱动力的情形下,如果除了车辆姿势控制之外还进行上述扭矩控制,则车辆的驱动力的下降量变大,为了在上坡路上行驶所必需的驱动力有可能不足。在这样不恰当地执行扭矩控制的情况下,驾驶性有可能恶化。



技术实现要素:

本发明是为了解决这种问题点而设立的,其目的在于,通过恰当地执行扭矩控制来保护变速器,并防止驱动力不足及驾驶性的恶化。

本发明一方面的车辆控制装置单独控制向左右的车轮分配的驱动力,并可执行根据来自车辆侧的请求降低从驱动源向车轮传递的驱动力的车辆姿势控制,其中,具备:打滑检测机构,其检测车轮的打滑的发生;扭矩控制机构,其在车辆姿势控制动作后,根据打滑发生的检测结果和变速器的状态,判定是否进行根据来自变速器侧的请求控制向变速器输入的扭矩的扭矩控制,并基于判定结果执行所述扭矩控制。

本发明另一方面的车辆的控制方法单独控制向左右的车轮分配的驱动力,并可执行根据来自车辆侧的请求降低从驱动源向车轮传递的驱动力的车辆姿势控制,其中,检测车轮的打滑的发生,在车辆姿势控制动作后,根据打滑发生的检测结果和变速器的状态,判定是否进行根据来自变速器侧的请求控制向变速器输入的扭矩的扭矩控制,并基于判定结果执行扭矩控制。

根据这些方面,在执行了车辆姿势控制的情况下,根据打滑的发生状态、变速器的状态判定是否进行扭矩控制,并根据判定结果进行扭矩控制,故而能够保护变速器,并且防止驱动力不足及驾驶性的恶化。

附图说明

图1是本实施方式的车辆的概略构成图;

图2是本实施方式的控制器的概略构成图;

图3是在存储装置中存储的变速映像图之一例;

图4是对本实施方式的扭矩降低控制的主程序内容进行表示的流程图;

图5是对本实施方式的扭矩降低控制的子程序内容进行表示的流程图。

具体实施方式

以下,参照附图对本发明的实施方式进行说明。需要说明的是,在以下的说明中,某变速机构的“变速比(变速级)”是将该变速机构的输入转速除以该变速机构的输出转速而得到的值,将变速比(变速级)大的情况称作“低档”,将变速比(变速级)小的情况称作“高档”。

图1是本发明实施方式的车辆的概略构成图。该车辆作为驱动源而具有发动机1,发动机1的输出旋转被向带锁止离合器2c的液力变矩器2的泵轮2a输入,从涡轮2b经由第一齿轮组3、无级变速器(以下简称为“变速器4”)、第2齿轮组5、动作装置6而向车轮7传递。

在变速器4设有被输入发动机1的旋转且利用发动机1的一部分动力被驱动的机械油泵10m、从蓄电池13接受电力供给而被驱动的电动油泵10e。另外,在变速器4设有对来自机械油泵10m或者电动油泵10e的油压进行调压并向变速器4的各部位供给的油压控制回路11。

变速器4具有作为摩擦传递机构的带式无级变速机构(以下称为“变速机构20”)、在变速机构20串联设置的副变速机构30。“串联地设置”是指,在从发动机1到驱动轮7的动力传递路径上将变速机构20和副变速机构30串联地设置。副变速机构30既可以如该例那样地与变速机构20的输出轴直接连接,也可以经由其他的变速乃至动力传递机构(例如齿轮组)而连接。或者,副变速机构30也可以与变速机构20的前段(输入轴侧)连接。

变速机构20具有初级带轮21、次级带轮22、卷挂在带轮21、22之间的V形带23。变速机构20根据初级带轮压Ppri及次级带轮压Psec使V形槽的宽度变化而使V形带23和各带轮21、22的接触半径变化,使变速机构20的变速比无级地变化。

变速机构20是基于次级带轮压Psec设定管路压PL,通过将管路压PL减压、调压而生成初级带轮压Ppri的单调压型的变速器。

副变速机构30是前进2级、后退1级的变速机构。副变速机构30具有将两个行星齿轮的行星架连接的拉维略型行星齿轮机构31、与构成拉维略型行星齿轮机构31的多个旋转元件连接并变更其连系状态的多个摩擦联接元件(低档制动器32、高档离合器33、后退制动器34)。对向各摩擦联接元件32~34的供给油压进行调节,变更各摩擦联接元件32~34的联接和释放状态,则变更副变速机构30的变速级。

当低档制动器32被联接、高档离合器33及后退制动器34被释放时,副变速机构30的变速级为1速(第一变速级)。当高档离合器33被联接、低档制动器32及后退制动器34被释放时,副变速机构30的变速级为2速(第二变速级)。另外,当后退制动器34被联接、低档制动器32及高档离合器33被释放时,副变速机构30的变速级为后退。

在各车轮7分别设有制动装置8,各制动装置8可与驾驶员对制动踏板的操作量无关地单独控制制动力。

控制器12是综合地控制发动机1及变速器4等的控制器,如图2所示,包括:CPU121、由RAM和ROM构成的存储装置122、输入接口123、输出接口124、将其相互连接的母线125。需要说明的是,控制器12也可以由多个控制器构成。

向输入接口123输入检测油门踏板的操作量即油门开度APO的油门开度传感器41的输出信号、检测初级带轮21的初级转速Npri的初级转速传感器42的输出信号、检测次级带轮22的次级转速Nsec的次级转速传感器43的输出信号、检测车速VSP的车速传感器44的输出信号、设于各车轮7并检测车轮7的转速Nf的车轮转速传感器45的输出信号、来自检测制动液压的制动液压传感器46和检测发动机转速Ne的发动机转速传感器47的信号、检测转向操作量θ的转向角传感器48的输出信号等。

在存储装置122中存储有发动机1的控制程序、变速器4的变速控制程序、这些程序使用的各种映像图、图表。CPU121读取在存储装置122中存储的程序并执行,相对于经由输入接口123输入的各种信号实施各种运算处理,生成燃料喷射量信号、点火时期信号、节气门开度信号、变速控制信号(扭矩指示信号)、制动力信号,将生成的信号经由输出接口124向发动机1、油压控制回路11、制动装置8输出。CPU121在运算处理中使用的各种值、其运算结果被适当存储在存储装置122中。

油压控制回路11由多个流路、多个油压控制阀构成。油压控制回路11基于来自控制器12的变速控制信号控制多个油压控制阀并对油压的供给路径进行切换,并且由在机械油泵10m或电动油泵10e产生的油压调制必要的油压,将其向变速器4的各部位供给。由此,变更变速机构20的变速比、副变速机构30的变速级并进行变速器4的变速。

图3是存储装置122中存储的变速映像图的一例。控制器12基于该变速映像图,根据车辆的运转状态(该实施方式中为车速VSP、初级转速Npri、油门开度APO等),控制变速机构20、副变速机构30。为了便于说明,在图3中表示两个油门开度APO(APO=4/8、8/8)。

在该变速映像图上,变速器4的动作点由车速VSP和初级转速Npri定义。将变速器4的动作点和变速映像图左下角的零点连结的线的斜率对应于变速器4的变速比(变速机构20的变速比乘以副变速机构30的变速比所得的整体的变速比,下称“贯通变速比it”)。

在变速器4中,副变速机构30为1速的情况下可实现的变速区域(图3中的A区域和B区域)和副变速机构30为2速的情况下可实现的变速区域(图3中的B区域和C区域)部分(B区域)重合。即,作为变速区域,设定了副变速机构30在1速、2速下均可实现的共通变速区域。变速器4将副变速机构30的低档制动器32、高档离合器33的任一个联接,均可实现B区域的贯通变速比it。

控制器12通过与驾驶员的制动踏板操作无关地分别控制各制动装置8的制动力,能够分别控制向左右车轮7分配的驱动力,执行具有防止车辆侧滑、甩尾的防侧滑功能和降低向车轮7传递的发动机扭矩Te的牵引力控制功能的车辆姿势控制(下称VDC(:Vehicle Dynamics Control))。

另外,控制器12能够根据车轮7上的打滑发生状态和变速器4的运转状态例如副变速机构30的变速级等,执行与上述牵引力控制功能相同地扭矩降低控制。即,控制器12能够独立于车辆姿势控制而根据打滑的发生状态和变速器4的状态降低发动机扭矩Te。

接着,利用图4的流程图说明本实施方式的扭矩降低控制。

在步骤S100中,控制器12判定VDC是否正在动作。在VDC正在动作的情况下处理进至步骤S101,在VDC不动作的情况下本次处理结束。

在步骤S101中,控制器12通过执行VDC而控制各制动装置8的制动力,并降低发动机扭矩Te。

在步骤S102中,控制器12判定车轮7是否打滑,即与是否正在执行VDC无关地判定是否发生了车轮滑转。控制器12基于来自各车轮7上设置的车轮转速传感器45的信号,在前后轮的转速差在规定速度差以上的情况下判定为正在发生车轮滑转。规定速度差是事先设定的值。在正在发生车轮滑转的情况下处理进至步骤S104,在没有发生车轮滑转的情况下处理进至步骤S103。

在步骤S103中,控制器12不执行扭矩降低控制。由于VDC被执行且车轮滑转没有发生,故而控制器12不过度降低发动机扭矩Te。

在步骤S104中,控制器12判定当前副变速机构30的变速级是否为1速。在当前的副变速机构30的变速级为1速的情况下处理进至步骤S105,在当前的副变速机构30的变速级为2速的情况下处理进至步骤S107。

在步骤S105中,控制器12判定贯通变速比it是否处于A区域。在贯通变速比it处于A区域的情况下处理进至步骤S106,在贯通变速比it处于B区域的情况下处理进至步骤S107。

在步骤S106中,控制器12执行第一带保护控制。在第一带保护控制下,执行管路压PL的增加和第一扭矩降低。在第一带保护控制中,以变速机构20的次级带轮压Psec成为V形带23的额定油压的方式增加管路压PL,使变速机构20的带容量大于低档制动器32的扭矩容量。因此,在车轮7的抓地力变大,从车轮7侧输入的扭矩变大的情况下,低档制动器32通过滑动而起到熔断(fuse)的功能,能够抑制变速机构20的带打滑。另外,在第一带保护控制下,以在变速机构20不发生带打滑为条件算出发动机扭矩Te的下降量,并基于下降量降低发动机扭矩Te。通过降低发动机扭矩Te,能够抑制变速机构20的带打滑。这样,能够防止变速机构20的带打滑。

在步骤S107中,控制器12执行扭矩降低控制。

利用图5的流程图说明扭矩降低控制。

在步骤S200中,控制器12判定当前副变速机构30的变速级是否为2速。在当前副变速机构30的变速级为2速的情况下处理进至步骤S202,在当前副变速机构30的变速级为1速的情况下(变速级为1速且贯通变速比it处于B区域的情况下),处理进至步骤S201。

在步骤S201中,控制器12执行第二扭矩降低。在第二扭矩降低中,为了防止发动机转速Ne的超速,使发动机扭矩Te下降。

在步骤S202中,控制器12判定贯通变速比it是否处于C区域。在贯通变速比it处于C区域的情况下处理进至步骤S203,在贯通变速比it处于B区域的情况下(变速级为2速且贯通变速比it处于B区域的情况下)处理进至步骤S204。

在步骤S203中,控制器12执行第二带保护控制。在第二带保护控制中,降低高档离合器33的油压,降低离合器容量。由此,在车轮7的抓地力变大,从车轮7侧输入的扭矩变大的情况下,高档离合器33通过滑动而起到熔断的功能,能够防止变速机构20的带打滑。在第二带保护控制中,由于从发动机1向变速机构20输入的输入扭矩小,故而不进行发动机扭矩Te的下降。

在步骤S204中,控制器12执行第三扭矩降低。在第三扭矩降低中,为了抑制在高档离合器33起到熔断功能时的高档离合器33的发热量,降低发动机扭矩Te。

对本发明的实施方式的效果进行说明。

在VDC动作后,根据车轮7的车轮滑转的发生状态和变速器4的状态,判定是否执行扭矩降低控制,并基于判定结果而执行扭矩降低控制。由此,能够防止因变速机构20的带打滑、副变速机构30的发热量增加等引起的变速器4的劣化,并且防止发动机扭矩Te过度下降,防止驾驶性的恶化。

在VDC动作后,未发生车轮滑转的情况下,不执行扭矩降低控制。由此,能够防止发动机扭矩Te过度下降,并防止驾驶性恶化。

在VDC动作后,发生车轮滑转且贯通变速比it处于B区域的情况下,通过扭矩降低控制降低发动机扭矩Te。由此,从发动机1侧向变速器4输入的扭矩下降,能够防止变速器4的劣化。

在VDC动作后,发生车轮滑转且贯通变速比it处于A区域的情况下,增加带容量,并且降低发动机扭矩Te。由此,能够防止在变速机构20发生带打滑。

在VDC动作后,发生车轮滑转且贯通变速比it处于C区域的情况下,降低离合器容量。由此,能够防止在变速机构20产生带打滑。

以上说明了本发明的实施方式,但上述实施方式只不过表示了本发明适用例的一部分,其不旨在将本发明的技术范围限定成上述实施方式的具体构成。

本申请基于2014年9月18日向日本特许厅申请的特愿2014-189907主张优先权,该申请的全部内容通过参照并入本说明书。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1