树脂薄膜接合体的制造方法

文档序号:4416258阅读:170来源:国知局
专利名称:树脂薄膜接合体的制造方法
技术领域
本发明涉及树脂薄膜接合体的制造方法,例如涉及将带状的树脂薄膜构件彼此接合来制作树脂薄膜接合体的树脂薄膜接合体的制造方法。
背景技术
以往,在将带状的树脂薄膜构件连续地向加工机供给来实施加工这样的情况下,为了接着前面的树脂薄膜构件而向加工机供给新的树脂薄膜构件,将新的树脂薄膜构件的顶端部分接合在前面的树脂薄膜构件的末端部分(所谓的拼接)。另外,不限于这样的情况,广泛地实施将树脂薄膜构件彼此在端部接合来制作树脂薄膜接合体的树脂薄膜接合体的制造方法(参照专利文献I)。作为这种树脂薄膜接合体的制造方法,提出有如下方法如图4的(a)所示,隔着光吸收剂104将对于激光100R具有透射性的树脂薄膜构件101、102彼此叠合、向该叠合而成的部分照射激光100R,使该树脂薄膜构件101、102彼此热熔接来进行接合。另外,作为其他方法,也公知有如下等方法如图4的(b)所示,将对于激光100R具有透射性的树脂薄膜构件101、102的端部彼此相对,用涂敷有光吸收剂104的接合构件105以光吸收剂104位于树脂薄膜构件101、102与接合构件之间的界面的方式覆盖树脂薄膜构件101、102的端部之间的该相对的部分,向被该接合构件105覆盖的部位照射激光100R,使树脂薄膜构件101、102与接合构件105热熔接来进行接合。现有技术文献专利文献专利文献I :日本国专利特许第3682620号但是,在上述方法中,将树脂薄膜构件彼此叠合、或使树脂薄膜构件彼此与粘合构件热熔融,因此有时在所制作的树脂薄膜接合体的接合部分产生台阶。在该情况下,例如,利用将树脂薄膜接合体卷成卷状而成的树脂薄膜接合体卷从外侧抽出而卷绕成另一个卷的所谓卷对卷(roll to roll)来输送该树脂薄膜接合体时,接合部分(接缝、接合构件等)的台阶(边缘)通过输送用辊时,有可能损伤该辊。另外,在将该树脂薄膜接合体卷成卷状时,能在该台阶的周边部分产生因该台阶而形成的擦伤,因此也存在产品的取出效率变差这样的担心。因此,想到如下制作方法如图5所示,向发热介质106涂敷光吸收剂104,将树脂薄膜构件101、102相对,以光吸收剂位于树脂薄膜构件101、102和发热介质106之间的界面的方式用发热介质106覆盖上述相对的部分,向被该发热介质106覆盖的部位照射激光100R,仅将树脂薄膜构件101、102彼此热熔接来进行接合,将上述相对的部分自发热介质106剥离,从而制作树脂薄膜接合体107。但是,在该方法中,在热熔接后,涂敷在发热介质106上的光吸收剂104附着在树脂薄膜接合体107上而自发热介质106消失,因此,存在如下问题每次热熔接都需要将光吸收剂104涂敷于发热介质106的工序,准备时间变长。另外,需要用于涂敷光吸收剂104的涂敷装置,因此,初期成本增加,另外,也存在如下问题与上述相应地使制造树脂薄膜接合体的装置自身变大。另外,在应该涂敷光吸收剂的部分以外也无意中作为异物而附着有光吸收剂104的情况下,产品成品率也有可能降低。因此,为了解决上述问题点,例如,也考虑到替代如上所述那样涂敷有光吸收剂的发热介质而使用将具有光吸收性的材料成形为例如膜状等的光吸收构件的方法。该方法如下所述例如,使上述光吸收构件与上述那样的两个树脂薄膜构件相对的部分抵接,向该光吸收构件照射激光而仅使树脂薄膜构件彼此热熔接来进行接合,将上述相对的部分自上述光吸收构件剥离,从而来制作树脂薄膜接合体。但是,在该方法中,存在光吸收构件的光吸收率因所照射的激光而变化的情况。在该情况下,反复进行激光熔接时,为了防止接合部分的品质存在偏差,每次进行激光熔接时,必须使激光的照射条件等变化,因此效率变差。另一方面,只要采用相同的激光的照射
条件等来反复进行激光熔接,就需要在每次进行激光熔接时更换光吸收构件,因此效率与上述同样地变差。

发明内容
本发明是鉴于上述问题点而做成的,目的在于提供树脂薄膜接合体的制造方法,能够缩小接合部分的台阶,不需要涂敷光吸收剂的工序,进一步抑制光吸收剂作为异物附着的情况,并且,高效地将树脂薄膜构件彼此接合来制作树脂薄膜接合体。本发明人对上述课题进行了深入研究,判断出上述光吸收率的变化与光吸收构件的表面的由于激光的照射而产生的热的影响所导致的氧化、即该表面的稳定性有关。并且,通过使光吸收构件在300°C的温度环境下具有稳定性,发现能够抑制因激光的照射所导致的光吸收构件的光吸收率的变化,从而完成了本发明。即、本发明的树脂薄膜接合体的制造方法,其通过将树脂薄膜构件的端面彼此相对来进行接合,从而形成树脂薄膜接合体,其特征在于,使用光吸收构件,该光吸收构件对所使用的激光的波长的光吸收率高于上述树脂薄膜构件对所使用的激光的波长的光吸收率,该光吸收构件包括在300°C的温度环境下具有稳定性的表面;使上述端面彼此相对的部分与上述表面抵接,向上述光吸收构件照射激光而使上述光吸收构件发热,从而使上述树脂薄膜构件的端面彼此热熔接;自上述光吸收构件剥离上述相对的部分,形成树脂薄膜接合体。在此,在本发明中,“在300°C的温度环境下具有稳定性”是指“在300°C的温度环境下不氧化”。采用该树脂薄膜接合体的制造方法,光吸收构件吸收激光而发热,使树脂薄膜构件的端面彼此热熔接,从而起到以下的作用效果。S卩、成为树脂薄膜构件彼此仅相互借助端面接合起来的状态,因此,能够制造在接合部分产生较少的台阶的树脂薄膜接合体。并且,能够这样使接合部分的台阶变少,因此在使用输送用辊输送树脂薄膜接合体的情况下,能够防止该输送用辊的损伤等。另外,在卷绕树脂薄膜接合体的情况下,难以产生擦伤,能够提高产品的取出效率。另外,不需要涂敷光吸收剂的工序就能够制作树脂薄膜接合体。因而,能够与涂敷光吸收剂的工序的时间相应地缩短准备时间。另外,能够抑制涂敷设备成本、昂贵的光吸收剂的材料成本。并且,不会产生因光吸收剂形成的异物,因此能够提高产品成品率。并且,上述表面在300°C的温度环境下具有稳定性,从而能够防止因激光的照射而产生的热的影响所导致的光吸收构件的表面上的光吸收率的变化,因此每次进行激光熔接时不使激光的照射条件等变化就能够进行激光熔接。另外,即使不更换光吸收构件也能够采用相同的激光的照射条件等来反复进行激光熔接。由此,高效地制造树脂薄膜接合体。因而,采用该树脂薄膜接合体的制造方法,能够缩小接合部分的台阶,不需要涂敷光吸收剂的工序,进一步抑制光吸收剂作为异物附着的情况,并且高效地将树脂薄膜构件彼此接合来制造树脂薄膜接合体。在上述制造方法中,优选上述光吸收构件对上述激光的波长具有10%以上的光吸收率。这样,光吸收构件具有上述10%以上的光吸收率,从而能够更可靠地且更高效地使树脂薄膜构件彼此热熔接。在上述制造方法中,优选上述光吸收构件含有类金刚石、玻碳或者碳石墨。这样,光吸收构件含有类金刚石、玻碳或者碳石墨,从而能够更高效地吸收激光而发热。另外,上述表面易于在300°C的环境下具有稳定性。在上述制造方法中,优选上述激光具有800nm 2000nm的波长。这样,激光的波长处于近红外线区域,转换成热的能量转换效率良好,另外,易于获得稳定的激光。在上述制造方法中,上述树脂薄膜构件优选具有150μπι以下的厚度。这样,通过使树脂薄膜构件具有150 μ m以下的厚度,因激光照射而产生的热更易于向树脂薄膜构件的厚度方向上的整个区域传递,因此易于使树脂薄膜构件更充分地热熔融。在上述制造方法中,上述树脂薄膜构件优选含有热塑性树脂,该热塑性树脂具有3000C以下的熔点或者玻化温度。这样,通过使上述树脂薄膜构件含有热塑性树脂,该热塑性树脂具有300°C以下的熔点或者玻化温度,易于使树脂薄膜构件热熔融。在上述制造方法中,上述树脂薄膜构件优选含有三醋酸纤维素树脂、聚对苯二甲酸乙二醇酯树脂、聚碳酸酯树脂、聚甲基丙烯酸甲酯树脂、环烯烃聚合物、降冰片烯树脂或者聚乙烯醇树脂中的一种以上的树脂。上述树脂均具有300°C以下的熔点或者玻化温度,因此,如上所述,易于使树脂薄膜构件热熔融。如上所述,采用本发明,能够缩小接合部分的台阶,不需要涂敷光吸收剂的工序,进一步抑制光吸收剂作为异物附着的情况,并且能够高效地制造树脂薄膜接合体。


图I是表示一实施方式的树脂薄膜接合体的制造方法中的端面形成工序和相对工序的概略工序图。图2是表示一实施方式的树脂薄膜接合体的制造方法中的接合工序的图。
图3是表示将本实施方式的树脂薄膜接合体卷成卷状的工序的图。图4是表示作为现有技术的使用了激光的树脂薄膜接合体的制造方法的图。图5是表示能够想到的、使用了激光的树脂薄膜接合体的制造方法的图。
具体实施例方式下面参照附图对本发明的一实施方式进行说明。本实施方式的树脂薄膜接合体的制造方法是将树脂薄膜构件的端面彼此相对来进行接合而形成树脂薄膜接合体的树脂薄膜接合体的制造方法,该方法如下所述使用光吸收构件,该光吸收构件对所使用的激光的波长的光吸收率高于上述树脂薄膜构件对所使用的激光的波长的光吸收率,该光吸收构件包括在300°C的温度环境下具有稳定性的表面,
该方法中,使上述端面彼此相对的部分与上述表面抵接,向上述光吸收构件照射激光而使上述光吸收构件发热,从而使上述树脂薄膜构件的端面彼此热熔接,自上述光吸收构件剥离上述相对的部分,形成树脂薄膜接合体。具体而言,在本实施方式的树脂薄膜接合体的制造方法中,实施如下工序端面形成工序,将第I树脂薄膜构件的端部和第2树脂薄膜构件的端部重叠,将该重叠的端部双方同时切断,从而在上述端部间形成作为相互吻合的端面的断面;相对工序,使在该端面形成工序形成的一个端面与另一个端面相对,使相对的部分与光吸收构件的表面抵接;将该相对的部分与光吸收构件一起固定的工序;接合工序,向该光吸收构件照射激光而使该光吸收构件发热,从而使树脂薄膜构件的端面彼此热熔接,自上述光吸收构件剥离上述相对的部分,形成树脂薄膜接合体。作为上述的第I树脂薄膜构件和第2树脂薄膜构件,通常含有同种热塑性树脂,但不限于是同种树脂的情况,只要是彼此能够热熔接的材料,也可以是不同种类的树脂,例如,也能够使用具有相溶性的不同种类的热塑性树脂。另外,优选这样的热塑性树脂具有300°C以下的熔点,更优选具有250°C以下的熔点。通过使上述热塑性树脂具有300°C以下的熔点,易于使树脂薄膜构件热熔融。另外,在上述那样的热塑性树脂是不具有熔点的非结晶性的热塑性树脂的情况下,上述热塑性树脂优选具有300°C以下的玻化温度,更优选具有250°C以下的玻化温度。通过使上述热塑性树脂具有300°C以下的玻化温度,易于使树脂薄膜构件热熔融。这样,通过使上述热塑性树脂具有300°C以下的熔点或者玻化温度,易于使树脂薄膜构件热熔融。作为这样的热塑性树脂,例如能够列举出聚碳酸酯树脂、聚乙烯醇树脂、聚乙烯树月旨、聚丙烯树脂、聚对苯二甲酸乙二醇酯树脂、聚氯乙烯树脂、热塑性聚酰亚胺树脂、三醋酸纤维素树脂、聚甲基丙烯酸甲酯树脂、环烯烃聚合物、降冰片烯树脂、聚甲醛树脂、聚醚醚酮树脂、聚醚酰亚胺树脂、聚酰胺酰亚胺树脂、聚丁二烯树脂、聚氨酯树脂、聚苯乙烯树脂、聚甲基戊烯树脂、聚酰胺树脂、聚缩醛树脂、聚对苯二甲酸丁二醇酯树脂、乙烯醋酸乙烯酯树脂等。另外,作为上述热塑性树脂,既可以使用上述树脂中的任意一种,也可以混合两种以上来使用。另外,上述热塑性树脂优选为上述树脂中的三醋酸纤维素树脂、聚对苯二甲酸乙二醇酯树脂、聚碳酸酯树脂、聚甲基丙烯酸甲酯树脂、环烯烃聚合物、降冰片烯树脂或者聚乙烯醇树脂中的至少一个以上。上述树脂均具有300°C以下的熔点或者玻化温度,因此如上所述那样易于使树脂薄膜构件热熔融。另外,上述树脂薄膜构件既可以是单层的构件,也可以是层叠多层而成的构件,只要是至少I层由热塑性树脂构成,就没有特别限定。作为层叠多层而成的树脂薄膜构件,例如能够列举出将基材层、带粘接剂的保护薄膜层层压而成的构件。另外,在使这样层叠多层而成的树脂薄膜构件热熔接的情况下,也可以临时地剥离各层,针对各层,对每层都进行热熔接,也可以保持层叠了多层的状态直接进行热熔接。例如,基材层与保护薄膜层之间的相溶性较差而即使将两层热熔融也不形成混合层的情况下,即使将层叠有两层的树脂薄膜构件彼此热熔接,在热熔接后也能够剥离基材层和保护
薄膜层。并且,上述树脂薄膜构件的厚度优选为150 μ m以下,更优选为100 μ m以下。通过使该厚度为150 μ m以下,光吸收构件因激光的照射产生的热能更易于在树脂薄膜构件的厚度方向(深度方向)上的整个区域传递,易于使树脂薄膜构件彼此更充分地热熔接。另一方面,树脂薄膜构件的厚度优选为5μπι以上,更优选为20 μ m以上。通过使该厚度为5 μ m以上,能够与厚度相应地更充分地提高树脂薄膜接合体的接合强度。另外,优选上述树脂薄膜构件对上述激光的光透射率为30%以上,更优选为50%以上。另外,“光透射率”是由{100%— “光吸收率(%)”}表示的值,是由下式(I)求出的值。透射光强度+入射光强度X 100%…(I)(其中,“入射光强度”由“照射光强度一表面反射光强度”求出。)在上述端面形成工序中,如图I的(a)所示,在将第I树脂薄膜构件10的端部和第2树脂薄膜构件20的端部重叠的状态下将树脂薄膜构件10、20这两者固定配置,通过使用了刀具40等的通常的树脂薄膜构件10、20的切断方法,将该重叠的端部双方一次性切断,从而在上述端部中形成作为相互吻合的端面的断面。作为树脂薄膜构件10、20的固定方法,能够采用通常的固定方法,例如使用了利用吸附来固定树脂薄膜构件10、20的吸附装置30等来固定的方法等。并且,在上述端面形成工序中,如图I的(b)所示,将第I树脂薄膜构件的残边IOa和第2树脂薄膜构件的残边20a移送到残边回收部(未图示)。本实施方式的树脂薄膜接合体的制造方法通过实施上述端面形成工序,能够在上述相对工序中使相对的端面处于彼此大致平行的状态而使一个端面与另一个端面相对。在上述相对工序中,如图I的(C)所示,用吸附装置30将树脂薄膜构件10、20分别固定,并使它们移动到供树脂薄膜构件10、20载置的载置台50 (图2中记载有载置台50)之上,进一步根据需要对该吸附装置30进行微调整,以便形成所期望的间距,使在该端面形成工序中形成的一个端面和另一个端面相对。另外,在上述相对工序中,优选树脂薄膜构件10、20之间的间距的尺寸(在树脂薄膜构件10、20之间形成的间隙中与端面垂直的方向上的间隙尺寸中最大的间隙尺寸)小于树脂薄膜构件的厚度,更优选小于树脂薄膜构件的厚度的一半值,特别优选小于树脂薄膜构件的厚度的I / 3。本实施方式的树脂薄膜接合体的制造方法通过使上述间距的尺寸小于树脂薄膜构件的厚度,树脂薄膜构件的树脂在光吸收构件因激光的照射而产生的热能作用下进行热熔融,从而使树脂流动化,由此,能够填补间距而获得良好的接合状态和强度。并且,在上述相对工序中,使用具有摄像机(未图示)等的间距监视器(未图示)来测量上述间距的尺寸,因不规则的原因(例如,地震等)而使该间距的尺寸为规定值以上的情况下,也可以使固定树脂薄膜构件10、20的吸附装置30中的至少任一吸附装置30移动而进行微调整,从而使该间距的尺寸小于规定值。在上述接合工序中,如图2所示,在以相对的部分与光吸收构件50a抵接的方式配置的载置台50上,用透明玻璃即加压构件60按压该相对的部分并对该相对的部分进行加压固定,并且使上述相对的部分与光吸收构件50a抵接。然后,在这样加压固定的状态下,向光吸收构件50a照射激光R而使光吸收构件50a发热,从而使树脂薄膜构件10、20的端面彼此热熔接来进行接合,自光吸收构件50a剥离上述相对的部分,制作树脂薄膜接合体80。另外,作为使上述相对的部分与光吸收构件50a抵接的方法,除了使上述相对的部分载置在光吸收构件50a的上表面来进行抵接的方法(图2)之外,可列举出使上述相对的部分压靠于光吸收构件50a的下表面来进行抵接的方法(不图示)等。在照射激光R的部分即相对的部分中,上述加压固定时的加压强度优选为O. 5kgf / cm2 IOOkgf / cm2,更优选为 IOkgf / cm2 70kgf / cm2。加压构件60的形状只要对相对的部分施加负载,就没有特别限定,作为该形状,能够使用例如,平板、圆筒、球状等形状。加压构件60的厚度优选为3mm以上且小于30mm,更优选为5mm以上且小于20mm。在上述接合工序中,通过使用厚度3mm以上的加压构件60,加压构件60自身在加压固定时不易产生变形,因此能够进行良好的加压固定。另外,在上述接合工序中,通过使用厚度小于30mm的加压构件60,在激光R透射加压构件60时,激光R不易损失,因此,能够易于使树脂薄膜构件10、20彼此高效地热熔接。对构成加压构件60的透明玻璃进行例示时,可列举出以用“” I ”的商品名在市场上销售的硬质硅硼玻璃、用“ Py的商品名在市场上销售的硅硼玻璃、用“ /SM ZI 一;P’的商品名在市场上销售的96 %石英玻璃、作为“D263”在市场上销售的钡硼硅酸盐玻璃、作为”0A10”在市场上销售的无碱玻璃、用”AF45”的商品名在市场上销售的铝硼硅酸盐玻璃为首的熔融石英、无碱玻璃、铅碱玻璃、碱石灰玻璃、石英玻璃等。从激光R透射加压构件60时激光R不易损失并易于使上述树脂薄膜构件10、20彼此高效地热熔接这样的观点出发,优选加压构件60对激光R的波长具有高于50%的光透射率,更优选具有高于70%的光透射率。在上述接合工序中,从用加压构件60对相对的部分的大面积均匀地进行加压而在整个区域上进行良好的接合这样的观点出发,也可以使对激光R具有透射性且缓冲性优于加压构件60的间隔构件70介于相对的部分与加压构件60之间。作为间隔构件70的材料,可列举出橡胶材料(例如,硅橡胶、聚氨酯橡胶等)、树脂材料(例如,聚乙烯等)等。另外,间隔构件70既可以是单层构件,也可以是层叠多层而成的构件。另外,优选间隔构件70对所使用的激光R的波长具有高于50%的光透射率,更优选具有高于70%的光透射率。并且,优选间隔构件70的厚度为50 μ m以上且小于5mm,更优选为Imm以上且小于3mm。在上述接合工序中,通过使用厚度50 μ m以上的间隔构件70,能够将因加压而产生的力更充分地分散。由此,能够用加压构件60对相对的部分的大面积进行均匀地加压而在整个区域进行更加良好的接合。另外,通过使用厚度小于5mm的间隔构件70,在激光R透射间隔构件70时激光R不易损失,易于使树脂薄膜构件10、20彼此高效地热熔接。在上述接合工序中所使用的激光R担负起使光吸收构件50a发热的作用,只要在无损本发明的效果的范围内,激光器的种类就没有特别限定。从具有作为转换成热的能量转换效率较好的波长的可见光区域或者红外线区域的光这样的观点出发,优选该激光器为
半导体激光器、光纤激光器(fiber laser)、飞秒激光器、YAG激光器等固体激光器、CO2激光器等气体激光器。其中,从廉价且在空间上能够容易获得面内均匀的强度的激光光束这样的观点出发,更优选半导体激光器、光纤激光器。在由飞秒激光器、皮秒激光器进行工艺这样的经由多光子吸收过程的工艺中,与树脂薄膜构件10、20对激光波长的透射性无关,通过使激光的焦点位置和投入能量最优化,就能够达成接合。另外,从避免树脂薄膜构件10、20的分解并促进热熔融这样的观点出发,与瞬间投入较高的能量的脉冲激光器相比,连续波的CW激光器较好。对于上述激光器,输出(功率)、功率密度、光束形状、照射次数、扫描速度、照射时间和累计照射量等,根据树脂薄膜构件10、20、光吸收构件50a的光吸收率这样的光学特性、熔点、玻化温度(Tg)这样的热特性等的不同进行适当设定即可。另外,作为照射的激光的功率密度,从借助光吸收构件并利用激光R使树脂薄膜构件10、20的相对的部分热熔融、流动化而获得牢固的接合这样的观点出发,优选为50W /cm2 3000W / cm2,进一步优选为 200W / cm2 1500W / cm2,特别优选为 250W / cm2 IOOOff / cm2。另外,作为累计照射量,从同样的观点出发,优选为IOJ / cm2 300J / cm2,进一步优选为20J / cm2 150J / cm2,特别优选为30J / cm2 100J / cm2。在上述接合工序中,通过沿着树脂薄膜构件10、20彼此相对的部分照射激光R,透射了树脂薄膜构件10、20的激光R向光吸收构件50a照射。另外,在上述接合工序中,能够将利用聚光透镜聚光成所期望的光束尺寸的点光束一边扫描相对的部分一边照射相对的部分。另外,也能够利用圆筒形透镜、衍射光学元件等光学构件产生线状的激光光束,向相对的部分照射。并且,也能够沿着相对的部分配置多个激光源,无需扫描而一并照射。另外,激光的波长更优选为800nm 2000nm。这样,激光的波长是近红外线区域,从而转换成热的能量转换效率较好,另外,易于获得稳定的激光。光吸收构件50a对所使用的激光的波长的光吸收率高于树脂薄膜构件对所使用的激光的波长的光吸收率,包括在300°C的温度环境下具有稳定性的表面。通过使该光吸收构件50a对所使用的激光的波长的光吸收率高于树脂薄膜构件对所使用的激光的波长的光吸收率,该光吸收构件50a吸收所照射的激光R而发热,担负起将热向作为对象的树脂薄膜构件10、20传递而使树脂薄膜构件10、20彼此热熔接的作用。另外,光吸收构件50a优选对所使用的激光具有10%以上的光吸收率,进一步优选具有20%以上的光吸收率,特别优选具有30%以上的光吸收率。通过使光吸收构件50a具有上述10%以上的光吸收率,能够更可靠地使树脂薄膜构件热熔融。另外,即使激光的激光功率比较低,也能够充分地使树脂薄膜构件热熔融,使能量效率变得更高。该光吸收率能够利用分光光度计(JAS C O社制、V — 670、使用积分球)测量。另外,上述光吸收率能够利用光吸收构件50a的厚度、成分比率等进行调整。另外,上述光吸收构件50a包括在300°C的温度环境下具有稳定性的表面,从而能够抑制光吸收构件50a的表面的光吸收率因激光的照射产生的热的影响而变化。由此,每次进行激光熔接时,不使激光的照射条件等变化就能够进行激光熔接。另外 ,即使不更换光吸收构件也能够采用相同的激光的照射条件等来反复进行激光熔接。因而,能够高效地制造树脂薄膜接合体。如上所述,从抑制光吸收构件50a表面的光吸收性的降低这样的观点出发,更优选光吸收构件50a包括在350°C的温度环境下具有稳定性的表面。在此,在本发明中,“在300°C的温度环境下具有稳定性”是指“在300°C的温度环境下不氧化”。另夕卜,上述表面在上述温度环境下是否氧化能够利用纳米压痕(nanoindentation)法测量。具体而言,在常温(20°C )和300°C的温度环境下分别配置光吸收构件50a,利用纳米压痕法测量表面硬度,对所获得的常温时的表面硬度和300°C时的表面硬度进行比较,从而能够判定光吸收构件50a的表面在300°C是否氧化。在该测量方法中,300°C时的表面硬度为常温时的表面硬度的80%以下,从而能够确认光吸收构件50a的表面已发生氧化。另一方面,使用上述测量方法,使环境温度从常温开始上升,对表面硬度为常温时的表面硬度的80%的温度进行测量,从而能够获得光吸收构件50a的氧化温度。在超过这样获得的光吸收构件50a的氧化温度即300°C的情况下,该光吸收构件50a在300°C的温度环境下不氧化、即在30(TC的温度环境下具有稳定性。另外,为了使光吸收构件50a在激光照射下在树脂薄膜构件10、20熔融时不与树脂薄膜构件10、20 —起熔融,优选光吸收构件50a的耐热性优于树脂薄膜构件10、20的耐热性。具体而言,优选光吸收构件50a的熔点高于树脂薄膜构件10、20的熔点,优选该光吸收构件50a的熔点为300°C以上。另外,从光吸收构件50a能够将由于激光照射而产生的热高效地传递到树脂薄膜构件10、20这样的观点出发,优选光吸收构件50a的导热系数较低,具体而言,导热系数优选低于100W / m / K,更优选导热系数低于50W / m / K,进一步优选导热系数低于20W /m / K。优选这样的光吸收构件50a含有类金刚石(DLC)、玻碳或者碳石墨。由此,能够高效地吸收激光R而发热。另外,能够在300°C以上的温度环境下更高效地吸收激光而发热。另外,光吸收构件的表面易于在300°C的环境下具有稳定性。另外,类金刚石是指石墨构造和金刚石构造混合的非晶质碳。光吸收构件50a的形状只要具有与上述相对的部分的下表面或者上表面抵接的表面,就没有特别限定。在本实施方式中,光吸收构件50a形成为膜状,配置在基座部50b的表面上,与该基座部50b —起设置于载置台50。具体而言,利用PVD法(例如真空蒸镀法、离子电镀法、溅射法、激光烧蚀法、离子光束沉积法和离子注入法等)和CVD法(例如热CVD法、等离子体CVD法)等方法将膜状的光吸收构件50a设在上述基座部50b上。这样,光吸收构件50a是膜状,从而易于将因照射激光R而产生的热只停留在光吸收构件50a的表层、即不易向基座部50b侧逸出,因此,能高效地向树脂薄膜构件传递热而将树脂薄膜构件彼此接合。另外,上述光吸收构件50a的表面与水IyL的接触角优选为60°以上,更优选为70°以上。通过使上述接触角为60°以上,上述表面的疏水性优异,因此,热熔融的树脂薄膜构件10、20难以附着于光吸收构件50a。由此,能够易于自光吸收构件50a剥离热熔接后的树脂薄膜构件。另外,能够防止热熔接后的树脂薄膜构件附着并固定在光吸收构件50a上,能够更可靠地反复使用光吸收构件50a。因而,更高效地进行树脂薄膜构件的接合。 优选光吸收构件50a的表面的维氏硬度为500Hv以上,进一步优选为IOOOHv以上,特别优选为3000HV以上。该表面的维氏硬度小于500Hv时,该表面有可能经不住吸收激光而产生的热所导致的应力而变形,有可能使制作的树脂薄膜接合体的品质降低。相对于此,通过使维氏硬度为IOOOHv以上,上述表面能够充分经得住因上述热而产生的应力,能够抑制所制作的树脂薄膜接合体的品质的降低。另外,优选光吸收构件50a的表面的算术平均偏差(Ra)小于lOOnm,更优选小于70nm,进一步优选小于50nm、。该表面的算术平均偏差为IOOnm以上时,热熔融的树脂薄膜构件易于利用固定效果而附着在光吸收构件50a的表面,因此,附着的树脂薄膜构件有可能固定而难以进行光吸收构件50a的再利用、或者有可能难以自光吸收构件50a剥离热熔接后的树脂薄膜构件。相对于此,通过使上述表面的算术平均偏差小于lOOnm,抑制上述固定效果的产生,热熔融的树脂薄膜构件更不易附着在光吸收构件50a上,因此,在使树脂薄膜构件彼此热熔接后,能够提高自光吸收构件50a剥离时的分离性。另外,从能够防止污溃复制这样的观点、疏水性优异这样的观点出发,光吸收构件50a的表面也可以进行表面处理。作为这样的表面处理,可列举出例如氟处理等。光吸收构件50a的厚度优选为0. I μ m 5. O μ m,更优选为0. 3 μ m 2. O μ m,特别优选为0. 5 μ m I. 5 μ m。通过使该厚度为0. I μ m以上,光吸收构件50a易于吸收激光R,能够易于使树脂薄膜构件10、20高效地热熔接。另外,通过使该厚度为5. O μ m以下,如本实施方式那样将光吸收构件50a配置在基座部50b的表面上的情况下,能够抑制在光吸收构件50a的温度变化时,光吸收构件50a因基座部50b和光吸收构件50a的线膨胀系数的不同而自基座部50b剥离的情况。并且,出于提高上述光吸收构件50a的疏水性的目的,也可以含有氟元素,另外,也可以根据要求的规格适当含有最佳的元素。另外,如上所述,本实施方式的载置台50包括基座部50b、配置在该基座部50b的表面上的光吸收构件50a。基座部50b的材质只要是在不有损本发明的效果的范围内就没有特别限定,作为该基座部50b的材质,可列举出金属、玻璃、树脂、橡胶、陶瓷等。其中特别优选为玻璃。通过使基座部50b的材质是玻璃,玻璃的导热系数比较低,因此,光吸收构件50a因激光R的照射所产生的热不易向基座部50b侧移动,能够将该热高效地向树脂薄膜构件10、20传递。另外,玻璃的耐热性较高,因此,提高基座部50b的耐久性。另外,载置台50也可以是在光吸收构件50a和基座部50b之间具有底层(未图示)。作为底层的材质,可列举出例如有机硅系材料等。这样,通过具有底层,能够提高基座部50b与光吸收构件50a的密合性,使光吸收构件50a不易自基座部50b剥离。如上所述,采用本实施方式的树脂薄膜接合体的制造方法,能够缩小接合部分80a的台阶,不需要涂敷光吸收剂的工序,能够进一步抑制光吸收剂作为异物附着的情况,并且能够高效地制造树脂薄膜接合体80。
·
另外,在本实施方式的树脂薄膜接合体的制造方法中,也可以不涂敷光吸收剂,另一方面,也可以使用比以往少的量的光吸收剂。另外,对于本实施方式的树脂薄膜接合体的制造方法,特别是在包含所谓卷对卷输送工序(抽出被卷成卷状的原材料薄膜,对被抽出的的原材料薄膜进行卷绕)的原材料薄膜的制造方法是适于所谓拼接的方法,所谓拼接是指通过在前面的原材料薄膜的终端侧接合下一个原材料薄膜的顶端侧,从而依次连续地形成带状的长条薄膜。另外,利用本实施方式的树脂薄膜接合体的制造方法制作的树脂薄膜接合体中的、接合部分(即、受到因照射激光而产生的热的影响的部分)的厚度、未接合的部分(即、未受到因照射激光而产生的热的影响的部分)的厚度之差优选为20μπι以下,更优选为ΙΟμπι以下。通过使该厚度之差为20 μ m以下,在将树脂薄膜接合体卷成卷状时,更加能够抑制因该厚度差产生的擦伤等。另外,从更加抑制擦伤这样的观点出发,上述接合部分与上述未接合的部分的比率(比率=上述接合部分/上述未接合的部分)优选为1.5以下,更优选为I. 2以下。另外,该厚度之差例如能够通过适当设定激光照射条件、加压条件、加压构件的硬度等来进行调整。另外,利用本实施方式的树脂薄膜接合体的制造方法制作的树脂薄膜接合体如图3所示,也能够形成通过将树脂薄膜接合体80卷成卷状而获得的卷体90。另外,上述的树脂薄膜接合体、卷体能够应用于例如具备树脂薄膜接合体、卷体的光学薄膜。作为该光学用薄膜,可列举出例如将液晶显示装置等所用的偏振片用保护薄膜(例如,三醋酸纤维素、环烯烃聚合物等)的两个以上的端头用作本实施方式的树脂薄膜接合体的制造方法的树脂薄膜构件来进行接合而得到的长条原材料。并且,该光学用薄膜例如也能够适用于具有该光学用薄膜的偏振薄膜。作为该偏振薄膜,可列举出例如借助粘接剂将偏光膜粘合而获得的偏振片,该偏光膜是将上述长条原材料、聚乙烯醇薄膜染色、然后使它们拉伸而所获得的。<其他实施方式的树脂薄膜接合体的制造方法>本发明的树脂薄膜接合体的制造方法不限于上述实施方式的树脂薄膜接合体的制造方法,能够适当地进行设计变更。例如,上述实施方式的树脂薄膜接合体的制造方法使第2树脂薄膜构件20的端面与第I树脂薄膜构件10的端面相对,除此之外,本发明的树脂薄膜接合体的制造方法也可以使一树脂薄膜构件10的一端面与该树脂薄膜构件10的另一端面相对。具体而言,本发明的树脂薄膜接合体的制造方法也可以实施如下工序端面形成工序,使一个树脂薄膜构件10的一端部与该树脂薄膜构件10的另一端部重叠,一次切断该重叠的端部双方,在上述端部中形成成为相互吻合的端面的断面;使在该端面形成工序中形成的一个端面与另一个端面相对的相对工序;上述接合工序。另外,在本发明的树脂薄膜接合体的制造方法中,也可以将原材料的终端部即所谓端头回收两个以上,将它们用作树脂薄膜构件。以往具有端头再利用不充分而废弃这样的问题,但如该树脂薄膜接合体的制造方法那样,优选将端头再利用为树脂薄膜构件,并且从抑制材料损耗、削减废品的观点出发,也优选制造即使卷绕也不易产生擦伤的树脂薄膜接合体。本发明的树脂薄膜接合体的制造方法不限于上述实施方式的构成。另外,本发明的树脂薄膜接合体的制造方法的作用效果不限于上述的作用效果。本发明的树脂薄膜接合体的制造方法只要在不脱离本发明的主旨的范围内能够进行各种变更。实施例接着,列举实施例和比较例来进一步具体地说明本发明。(实施例I)使用了下述的树脂薄膜构件、激光器、加压构件、载置台。树脂薄膜构件I三醋酸纤维素(TAC)薄膜(富士薄膜社制)
厚度80 μ m
宽度30mm
熔点280 C
Tg170。。
光吸收率I %以下树脂薄膜构件2与该树脂薄膜构件I相同相对的间距20 μ m
激光器种类半导体激光器
光束平顶(tophat)光束
波长9 4 Onm
光斑径Φ 2mm
激光功率 20W 功率密度61OW / cm2
扫描速度15mm / s
累计照射量25J/cm2加压构件石英玻璃板(厚度10mm)加压构件和树脂薄膜构件之间插入有作为间隔构件的硅橡胶(厚度为 lmm)载荷以15kgf / cm2进行按压载置台光吸收构件 DLC构件(厚度1 μ m、对波长940nm的光吸收率25%、表面与水IyL的接触角70°、氧化温度400°C)基座部熔融石英玻璃(厚度5mm)通过将DLC蒸镀在熔融石英玻璃的一个面上,制作作为蒸镀膜的DLC构件将树脂薄膜构件I的端面和树脂薄膜构件2的端面在DLC构件上相对,用加压构件将相对的部分按压在载置台上的DLC构件的表面,并且将上述激光向该DLC构件单线扫描照射而使该DLC构件发热,从而使树脂薄膜构件的端面彼此热熔接,自相对的部分剥离DLC构件,制作了树脂薄膜接合体。结果,不使用光吸收剂就能够制作没有台阶的树脂薄膜接合体。另外,所获得的树脂薄膜接合体表现出抗拉强度为IlON /宽度30mm和良好的接合性。并且,剥离了树脂薄膜结合体后,使用分光光度计(JASC0社制、V — 670、使用积分球)并使测量波长为940nm来测量DLC构件表面的光吸收率,结果未发现上述表面的光吸收率的变化。结果可知,在每次进行激光熔接时,不使激光的照射条件等变化就能够进行激光熔接,另外,即使不更换光吸收构件也能够采用相同的激光的照射条件等来反复进行激光熔接。因而,可知高效地制造树脂薄膜接合体。(实施例2)作为树脂薄膜构件,除了使用聚乙烯醇薄膜(KURARAYC0.,LTD制、厚度75 μ m、宽度30mm、熔点230°C、光吸收率1%以下)以外,与实施例I同样地制作了树脂薄膜接合体。结果,不使用光吸收剂就能够制造没有台阶的树脂薄膜接合体。另外,所获得的接合体表现出抗拉强度为90N / 30mm和良好的接合性。并且,剥离了树脂薄膜结合体后,与实施例I同样地对DLC构件的表面测量光吸收率,结果未发现DLC构件表面的光吸收率的变化。结果可知,与实施例I同样高效地制造了树脂薄膜接合体。(实施例3)作为载置台的光吸收构件,使用玻碳构件(揖斐电制、厚度1mm、光吸收率82%、与水I μ L的接触角66. 8°、氧化温度500°C ),不设有基座部而将片状的玻碳构件用作载置台,除此之外,与实施例I同样地制作了树脂薄膜接合体。结果,不使用光吸收剂就能够制作没有台阶的树脂薄膜接合体。另外,所获得的接合体表现出抗拉强度为100N / 30mm和良好的接合性。并且,剥离了树脂薄膜结合体后,与实施例I同样地对玻碳构件的表面测量了光吸收率,结果未发现玻碳构件表面的光吸收率的变化。结果可知,与实施例I同样高效地制造树脂薄膜接合体。(实施例4)使用了下述的树脂薄膜构件、激光器、加压构件、载置台。树脂薄膜构件I环烯烃聚合物薄膜(日本Zeon Corporation制)厚度80 μ m
宽度30 mm
Tg150°C
光吸收率I %以下树脂薄膜构件2与该树脂薄膜构件I相同相对的间距20 μ m
激光器种类半导体激光器
光束平顶(tophat)光束
波长940nm
·光斑径φ 2mm
激光功率 80 W功率密度2546W/ cm2
扫描速度25mm/ s
累计照射量203J / cm2加压构件石英玻璃板(厚度10mm)在加压构件和树脂薄膜构件之间插入作为间隔构件的硅橡胶(厚度为Imm)载荷以15kgf / cm2按压载置台光吸收构件碳石墨构件(厚度1mm、对波长940nm的光吸收率88.5%、与水IyL的接触角:115. 6。、氧化温度500°C)未设有基座部而将片状的碳石墨构件用作载置台使用该条件以外,与实施例I同样地接合了树脂薄膜构件I和树脂薄膜构件2。结果,不使用光吸收剂就能够制作没有台阶的树脂薄膜接合体。另外,所获得的接合体表现出抗拉强度为120N / 30_和良好的接合性。并且,在剥离成树脂薄膜接合体后,与实施例I同样地对碳石墨构件的表面测量了光吸收率,结果未发现碳石墨构件表面的光吸收率的变化。结果可知,与实施例I同样高效地制造树脂薄膜接合体。(比较例I)在聚酰亚胺薄膜(DuPontKabushiki Kaisha 制、Kapton V、厚度75 μ m)的上表面涂敷光吸收剂(Gentex社制Clearweld (注册商标)LD120C、IOnL / mm2),制作由聚酰亚胺薄膜层和上述光吸收剂层构成的层叠体,将上述光吸收剂的对波长940nm的光吸收率设定为30%。另外,作为载置台,使用未设有光吸收构件而仅有基座部的载置台,以上述光吸收剂层配置在上侧的方式将上述层叠体载置在基座部的上表面之后,在光吸收剂层上使树脂薄膜构件I的端面和树脂薄膜构件2的端面相对。然后,将激光功率设为50W,将扫描速度设为40mm / sec。除此之外,与实施例I同样地获得了树脂薄膜接合体。结果,所获得的接合体表现出抗拉强度为90N / 30mm和良好的接合性。但是,用碎布(布)简单地擦拭所获得的树脂薄膜接合体的接合部分周边时,确认存在因光吸收剂所产生的污溃。因而可知,该光吸收剂在以所谓卷对卷方式输送树脂薄膜接合体的情况下,能够产生光吸收剂成为作为污溃附着于夹紧辊等上的原因等不良情况。(参考例)除了光吸收构件的厚度为O. 2μπι、氧化温度为400°C、对波长940nm的光吸收率为8%以外,与实施例I同样地制作了树脂薄膜接合体。结果,将激光向光吸收构件照射而产生的热能不充分,因此树脂薄膜接合体的抗拉强度低到ION / 30mm,接合不充分。(实施例5)除了光吸收构件的厚度为O. 2 μ m、氧化温度为400°C、对波长940nm的光吸收率为8%、激光功率为80W以外,与实施例I同样地制作了树脂薄膜接合体。结果,所获得的接合体表现出抗拉强度为90N / 30mm和良好的接合性。但是,接合所需的能量变多,无法实现节能。(比较例2)除了作为载置台使用未设有光吸收构件而仅有基座部以外,与实施例I同样地制作了树脂薄膜接合体。此时,作为基座部的石英玻璃板的对波长940nm的光吸收率为1%以下,氧化温度为1600°C。结果,石英玻璃板的光吸收性不充分,因此,无法产生充分使树脂薄膜构件I和2热熔融的热能,因此无法接合树脂薄膜构件I和树脂薄膜构件2。(实施例6)通过将DLC蒸镀到作为基座部的熔融石英玻璃的一面,制作作为蒸镀膜的DLC构件(厚度1μπκ对波长940nm的光吸收率10%、表面与水IyL的接触角72°、氧化温度400°C),将该DLC构件用作光吸收构件,将激光功率设为35W,除此之外与实施例I同样地制作了树脂薄膜接合体。结果,不使用光吸收剂就能够制作没有台阶的树脂薄膜接合体。另外,所获得的接合体表现出抗拉强度为160N / 30mm和良好的接合性。并且,对D LC构件的表面测量了光吸收率,结果未发现DLC构件表面的光吸收率的变化。从该结果可知,与实施例I同样高效地制造树脂薄膜接合体。附图标记说明10、第I树脂薄膜构件;10a、残边;20、第2树脂薄膜构件;20a、残边;30、吸附装置;40、刀具;50、载置台;50a、光吸收构件;50b、基座部;60、加压构件;70、间隔构件;80、树脂薄膜接合体;80a、接合部分;90、卷体;R、激光;101、树脂薄膜构件;102、树脂薄膜构件;104、光吸收剂;105、接合构件;106、发热介质;107、树脂薄膜接合体;100R、激光。
权利要求
1.一种树脂薄膜接合体的制造方法,其通过将树脂薄膜构件的端面彼此相对而进行接合,从而形成树脂薄膜接合体,其特征在于, 使用光吸收构件,该光吸收构件对所使用的激光的波长的光吸收率高于上述树脂薄膜构件对所使用的激光的波长的光吸收率,该光吸收构件包括在300°c的温度环境下具有稳定性的表面; 使上述端面彼此相对的部分与上述表面抵接,向上述光吸收构件照射激光而使上述光吸收构件发热,从而使上述树脂薄膜构件的端面彼此热熔接; 自上述光吸收构件剥离上述相对的部分,形成树脂薄膜接合体。
2.根据权利要求I所述的树脂薄膜接合体的制造方法,其特征在于, 上述光吸收构件对上述激光的波长具有10%以上的光吸收率。
3.根据权利要求I或2所述的树脂薄膜接合体的制造方法,其特征在于, 上述光吸收构件含有类金刚石、玻碳或者碳石墨。
4.根据权利要求I或2所述的树脂薄膜接合体的制造方法,其特征在于, 上述激光具有800nm 2000nm的波长。
5.根据权利要求I或2所述的树脂薄膜接合体的制造方法,其特征在于, 上述树脂薄膜构件具有150 μ m以下的厚度。
6.根据权利要求I或2所述的树脂薄膜接合体的制造方法,其特征在于, 上述树脂薄膜构件含有热塑性树脂,该热塑性树脂具有300°C以下的熔点或者玻化温度。
7.根据权利要求I或2所述的树脂薄膜接合体的制造方法,其特征在于, 上述树脂薄膜构件含有三醋酸纤维素树脂、聚对苯二甲酸乙二醇酯树脂、聚碳酸酯树月旨、聚甲基丙烯酸甲酯树脂、环烯烃聚合物、降冰片烯树脂或者聚乙烯醇树脂中的一种以上的树脂。
全文摘要
本发明提供一种树脂薄膜接合体的制造方法,在该树脂薄膜接合体的制造方法中,将树脂薄膜构件的端面彼此相对,使用光吸收构件,该光吸收构件对所使用的激光的波长的光吸收率高于上述树脂薄膜构件对所使用的激光的波长的光吸收率,该光吸收构件包括在300℃的温度环境下具有稳定性的表面;使上述端面彼此相对的部分与上述表面抵接,向上述光吸收构件照射激光而使上述光吸收构件发热,从而使上述树脂薄膜构件的端面彼此热熔接;自上述光吸收构件剥离上述相对的部分,形成树脂薄膜接合体。
文档编号B29C65/16GK102873869SQ201210240670
公开日2013年1月16日 申请日期2012年7月11日 优先权日2011年7月12日
发明者松尾直之, 下田麻由, 高见伸行 申请人:日东电工株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1