分离方法及装置的制作方法

文档序号:4767404阅读:99来源:国知局

专利名称::分离方法及装置的制作方法
技术领域
:本发明涉及一种用于在低温精馏设备中分离气态混合物的方法和装置,在该低温精馏设备中,供给透平膨胀机用于向该设备提供制冷的气态混合物压缩流的温度是通过从设备主热交换器中移走压缩流的两个流、控制这两个流的流量、然后在将这两个流引入透平膨胀机前合并它们进行控制的。
背景技术
:很久前人们就已知道用低温精馏分离各种气态混合物,例如预处理空气和天然气。在这些工艺中,先加压、净化要分离的气态混合物,然后将其冷却至适于精馏的温度。该气态混合物的精馏发生在一个或更多蒸馏塔中。每个塔都具有像托盘或填料这样的传质构件,例如规整填料,其使气态混合物的液相和气相相互接触,并完成液相和气相之间的传质。从而在该一个或多个蒸馏塔中蒸馏引入的供料,以形成富含气态混合物的组分的组分流。这些组分流可以作为液态产品和气态产品,用于将已被压缩和净化的气态混合物冷却到适合该气态混合物在一个或多个蒸馏塔进行分离的温度。该冷却通过在设备主热交换器内进行的间接热交换而发生。为了最小化主热交换器中的热端损失并生产液体产品,可通过膨胀由气态混合物组成的压缩流并将该压缩流引入到设备的至少一个塔中来产生制冷。用泵机械地增压液体产品也是众所周知的,例如在空气分离中,逆着液化为此目提供的压缩空气流,可以在同一主热交换器中蒸发富氧液态塔底沉淀物流。倘若压缩原料所耗电力的能源成本可随日时间变化,则能够调节设备的产品分布(特别是液体生产速度)的刺激就会增加。例如,经常将高纯度氧气设备设计为产出高达约为空气l0%的量的液化产品。因此存在调节产品流量的需要,使得不时可以使用低于装置最大容量的容量,例如取不到10%的空气作为液体产品的设备操作。为了改变液体的生产速度,常规做法是调整用于生成制冷的涡轮机流体。在美国专利5412953中可找到这样的例子。此专利描述了泵加压液态氧设备,在该设备中通过调整至透平膨胀机的流体调整液体产品生产。这种流量调整是通过使空气从高压塔底部再循环到用于压缩空气的压缩机再到透平膨胀机完成的。这种操作可能会导致如蒸发加压塔液体之类目的所需的空气压缩要求的大幅波动。控制液体生产的另一种可能是通过增加或减少引入透平膨胀机的压缩混合物的压力改变透平膨胀机的膨胀率。这也会导致的控制问题是随着压力增加,要膨胀的混合物可能会在涡轮机排气中液化。极端的情况是约10%到约15%之间的压缩工艺供料会被液化。在这些情形下,可能导致涡轮机效率低下并可能引起其潜在损坏。另一种极端情况是当压力降低时,被膨胀流的温度增加,而涡轮机入口温度通过主热交换器设计是相对固定的。当这种增加高于塔的被膨胀供料的饱和温度时,塔内液体可能会蒸发,其导致高局部蒸气流量、分离性能的损失和潜在的塔溢流。在现有技术中,通过控制空气分离设备的透平膨胀机入口温度来防止透平膨胀机排气的液化是众所周知的。例如在美国专利3355901中,利用串级控制系统来确保用于向空气分离设备供应制冷的透平膨胀机的排气处在饱和温度附近或略有过热。在此专利中,热蒸气分为两个流。一个流在热交换器内逆着空气分离工艺中产生的低温气体受到冷却,另一个流绕过热交换器。这两个流随后合并并被引入透平膨胀机的入口。检测涡轮机的排气温度,并将可对应该温度的信号作为输入供给串级控制系统以控制阀,进而控制在热交换器内冷却的那个流的流量。然而要注意的是,这种安排是用在没有调节膨胀率的设备中,这样就限制了涡轮机排气温度的变化。它不能用于膨胀压力和比率发生实质性变化的设备中。将要描述的本发明提供一种分离气态混合物的方法和设备,它们通过同时调节涡轮机膨胀比和入口温度改变制冷,并因此改变液体生产。与通过单独调节涡轮机膨胀率所产生的其它可能相比,透平膨胀机入口温度的同时调节允许液体生产的更大可变性。
发明内容8本发明提供了一种分离方法,在该方法中,在低温精馏设备内分离压缩气态混合物,方式是净化该压缩气态混合物,净化后通过与混合物组分流的间接热交换冷却该压缩气态混合物,随后在分离单元内精馏该气态混合物。该分离单元具有至少一个蒸馏塔以产生混合物组分流。从分离单元中排出至少一种产品液态流,其富含气态混合物的一种混合物组分。在间接热交换期间,在部分冷却气态混合物之后,将至少部分该气态混合物分为第一支流和第二支流。第一支流和第二支流分别在较高和较低温度下退出间接热交换。在退出间接热交换后,第一支流和第二支流合并产生混合流。在透平膨胀机内膨胀至少部分该混合流,工作性能是向该低温设备提供制冷。将透平膨胀机的至少部分排气流引入分离单元。通过控制第一支流和第二支流的流量控制混合流的温度,使得排气流处在饱和温度附近。这里重要的是要注意,如本文和权利要求中所用的,"流量控制"并不意味着需要独立控制第一支流和第二支流的流量。在将所有混合流导至透平膨胀机的设备设计中,主动控制这些流之一的流量就能控制这些流中的其他流的流量。在不是将所有混合流都导至该透平膨胀机的设备设计中,可独立控制这些流的流量。在任何类型的低温分离设备中以及在要蒸发加压液体产品的设备中,控制混合流的温度都是有好处的。由于不可预见的操作和环境影响,这样的低温分离设备有时需要微调,本发明从其最基本方面讲对这种情况具有更广泛的可适用性。例如,如果至透平膨胀机的流体温度高于预期,则排气温度可能会高于预期以致引起蒸馏塔内的液体的不可预见的过度蒸发。已经说过本发明具有特别的可适用性,在这里是改变所述至少部分压缩气态混合物的压力,进而改变透平膨胀机供应的制冷和液态流的生产速度。在这样的情况下,液体生产的增加是通过提高所述至少部分压缩气态混合物的压力来提高透平膨胀机入口压力。减低所述至少部分压缩气态混合物的压力则降低液体生产。在高液体生产模式期间,控制第一支流和第二支流的流量,使得第一支流的流量大于第二支流的流量。在低液体生产模式中,控制笫一支流和第二支流的流量,使得第一支流的流量小于第二支流的流量。本发明特别应用于空气的分离。在此背景下,压缩气态混合物可9由空气组成。在这种应用中,混合物组分流是富氧和富氮流,分离单元可以是空气分离单元,该单元具有在传热关系上互相操作性连接的高压和低压蒸馏塔,以产生富氧和富氮流。因此,该液态流体富含氧气或氮气。液态流体可富含氧气,用泵加压部分该液态流体以产生加压液态流体。富氧流由加压液态流体形成,作为间接热交换的结果,该加压液态流体被蒸发而产生了加压富氧产品。在这种情形中,压缩气态混合物在间接热交换之前被分为第一压缩空气流和第二压缩空气流。所述至少部分气态混合物是第一压缩空气流。在间接热交换期间,通过与加压液态流体的间接热交换冷凝第二气流,从而形成液态空气流.在空气分离单元内精馏第一压缩空气流和第二空气流中所含的空气。第一支流和笫二支流的流量可由第一和第二对阀控制。每对阀包含一个高流量控制阀(即能计量高流量的阀)和一个低流量控制阀(即能计量极低流量的阀)。在高液体生产模式期间,第一支流和第二支流的流量分别由第一对阀的高流量控制阀和第二对阀的低流量控制阀控制。这是因为在该情况下,第一支流的流量更大。因此,第一对阀的低流量控制阀和第二对阀的高流量控制阀设在关闭位置。相反地,在低液体生产模式期间,第一支流和第二支流的流量分别由第一对阀的低流量控制阀和第二对阀的高流量控制阀控制。第一对阀的高流量控制阀和笫二对阀的低流量控制阀设在关闭位置。可将排气流引入高压塔的底部区域。可将液态空气流分为第一和第二部分,并分别通过阀膨胀进入高压和低压塔。逆着低压塔的富氧塔底沉淀物的蒸发可液化高压塔的富氮塔顶流。这产生了第一和第二氮回流流以回流高压和4氐压塔。在引入4氐压塔之前,氮回流流的笫二氮回流流通过与废氮蒸气流和也取自低压塔的产品氮蒸气流进行热交换可得到过冷。如上所提及的,废氮和产品氮都是参与间接热交换的富氮流。由高压塔的含氧塔底沉淀物形成的粗制液氧流可通过阀膨胀并被引入低压塔进行精馏,该粗制液氧流在经阀膨胀之前没有经受进一步冷却其的间接换热。本发明在另一方面提供了一种分离装置。根据这方面,提供至少一个压缩机压缩气态混合物,由此产生压缩流。提供净化单元来净化10该压缩流。主热交换器连接至净化单元,其设有多个流体通道,这些通道使压缩流与混合物组分流进行间接热交换。提供的分离单元包括至少一个蒸馏塔以精馏该气态混合物。该分离单元生产由该混合物组分组成的产品馏分。该分离单元具有至少一个液体产物出口和至少一个气体产物出口。主热交换器连接至分离单元,使得混合物组分流从主热交换器的冷端流到它的热端。主热交换器构造为分别排放第一支流和第二支流;第一支流和第二支流由气态混合物组成。第一支流和第二支流分别以较高和较低温度从主热交换器排出。透平膨胀机膨胀至少部分混合流,工作性能是供应制冷。混合流由第一支流和第二支流形成,透平膨胀机连接至分离单元,使得透平膨胀机的至少部分排气流被引入所述至少一个蒸馏塔内。流体控制网络构造为混合第一支流和第二支流,从而形成混合流。该流体控制网络具有阀,这些阀控制第一支流和第二支流的流量,从而控制混合流的温度,以确保来自透平膨胀机的排气具有至少约等于饱和温度的出口温度。如上面所指出的,气态混合物可为空气,由此压缩流可为压缩空气流。该混合物组分流在本发明的该应用中为富氧和富氮流,且分离单元可为具有在传热关系上互相操作性连接的高压和低压蒸馏塔的空气分离单元,从而生产富氧和富氮流。透平膨胀机连接至该空气分离单元,使得来自透平膨胀机的至少部分排气被引入高压或低压蒸馏塔内。可提供泵来加压部分所述液态流体以产生加压液态流体。该泵流体连通该分离单元和该主热交换器,使得加压液态流体由于间接热交换而蒸发,以产生加压气态产物。该压缩空气流是第一压缩空气流,所述至少一个压缩才几是部分压缩系统。压缩系统设有基础负荷压缩机。另外提供的涡轮增压压缩机流体连通该基础负荷压缩机,并操作性地连接该透平膨胀机以至少部分由透平膨胀机的工作来驱动。笫一压缩机连接至该涡轮增压压缩机,因此第一压缩空气流由涡轮增压压缩机和笫一压缩机产生。此外,提供的第二压缩机流体连通基础负荷压缩机以产生第二压缩空气流。第二压缩机也流体连通主热交换器,且主热交换器同样流体连通空气分离ii单元,使得第二压缩空气流经受间接热交换,其造成加压液态流的蒸发和第二压缩空气流的液化,从而形成液态空气流,该液态空气流被引入空气分离单元。第一压缩机可设有入口导流叶片,或者压缩系统可设有旁通管线,该旁通管线具有截止阀以在截止阀设为打开位置时旁通第一压缩机。这允许变化第二空气流的压力,进而改变透平膨胀机供应的制冷,从而改变液态流生产。流体控制网络的阀可包括连接至主热交换器的第一和第二对阀,每对阀都含有一个高流量控制阀和一个低流量控制阀。在高液体生产模式期间,第一支流和第二支流的流量分别由第一对阀的高流量控制阀和第二对阀的低流量控制阀控制。在此期间,第一对阀的低流量控制阀和第二对阀的高流量控制阀设在关闭位置。在低液体生产模式期间,第一支流和第二支流的流量由第一对阀的低流量控制阀和第二对阀的高流量控制阀控制。此时,第一对阀的高流量控制阀和第二对阀的低流量控制阀设在关闭位置。此外,流体控制网络设有静态混合器或类似装置,其介于第一和第二对阀与透平膨胀机之间以混合第一支流和第二支流。此外,透平膨胀机可连接至高压塔的底部部分且主热交换器可连接至空气分离单元,使得液态空气流的第一和第二部分被引入高压和低压塔。膨胀阀位于主热交换器与高低压塔之间,使得第一和第二部分通过阀膨胀至高压和低压塔的较高和较低压力。此外,如上面针对方法也讨论过的,冷凝器-蒸发器可以操作性地连接高压和低压塔,使得高压塔的富氮塔顶流可逆着低压塔的富氧塔底沉淀物的蒸发而液化,从而产生第一和第二氮回流流以回流高压和低压塔。可提供过冷器以在氮回流流的第二氮回流流引入低压塔之前对其过冷。该过冷器构造成过冷第二氮回流流和从低压塔退出的产品氮蒸气流。该过冷器连接至主热交换器,因此使得废氮流和产品氮流都是在主热交换器内参加间接热交换的富氮流。管道可将高压塔的底部区域连接至低压塔的中间位置,以将由高压塔的含氧塔底沉淀物形成的粗制液氧流引入低压塔进行精馏。还有一个膨胀阀位于该管道中,以在粗制液氧流被引入时将其膨胀至低压塔可容压力。尽管说明书是以清楚地指出申请人视为他们发明的主题的权利要求书结束的,但仍然相信结合附图将使该发明得到更好的理解,其中图l是实施根据本发明的方法的空气分离设备的示意图2是用在图1所示空气分离设备中的主热交换器的立视图3是图3的替代实施例;图4是图3的替代实施例;图5是图3的替代实施例;图6是沿图5中线6-6的截面图;以及图7是沿图5中线7-7的截面图。具体实施例方式参考图l,图示的空气分离设备l用于示例性目的。如上面所指出的,本发明在其更广泛的方面对于其他分离工艺同样适用,如涉及天然气的分离工艺。空气分离设备1包括压缩系统10,该系统将空气压缩到适合在空气分离单元12内进行精馏的压力,该空气分离单元12具有高压塔H和低压塔16。空气的精馏将空气组分分离为富氧和富氮馏分,其被作为引入主热交换器18的富氧和富氮流,以将热从压缩空气间接交换给富氧和富氮流,由此将该压缩空气冷却至适于其精馏的温度。如本领域技术人员所知,在其他分离工艺中,诸如天然气之类的供料可在压力下获得,从而排除在设备本身内进行压缩的需要。在简要介绍了空气分离装置l后,现在从压缩系统10开始进行更详细地描述。压缩系统10包括基础负荷压缩机20,该压缩机将引入的空气流22压缩至可处在大约5巴到大约15巴绝对压力("bara")之间的范围的压力。压缩机20可为带冷凝物排放的中冷整体齿轮压缩机。结果产生的压缩空气流24随后被导至预净化单元26,该单元包括都是本领域所知的几个单元操作,包括直接水冷却;基于制冷的冷却;直接接触冷水;脱离相包含的相分离操作和/或在吸附剂床内的吸附操作,典型的吸附剂是氧化铝。预净化单元26产生的净化压缩流28具有的高沸点污染物含量极低,这些污染物例如是可在主热交换器18内冻结的水和二氧化碳,以及可聚积在空气分离单元12内带来安全隐患的烃。将已净化的压缩空气流28分为流30和32。使流30在涡轮增压压缩机34内经受进一步的压缩,该压缩机34操作性地连接透平膨胀机36以在增压压缩机34操作中恢复一些膨胀功。通过压缩产生的流38可以具有的压力典型可以处在大约15巴到大约20巴绝对压力之间。随后由压缩机40进一步压缩流38以产生第一压缩气流42,其具有的压力处在大约20巴到大约60巴绝对压力之间。流32可由大约25%到大约35%之间的已净化压缩空气流28构成,并进一步在压缩机44内压缩流32,以产生第二压缩气流46,其具有大约25巴到大约70巴之间的绝对压力。如下面将要讨论的,第一压缩空气流42在受到冷却并经受根据本发明的温度控制之后,被引入透平膨胀机36。透平膨胀机36的排气,即排气流48,被引入高压塔14的底部区域50。如下面将要讨论的,第二压缩空气流46逆着加压产品的蒸发在主热交换器18内冷凝,以产生液态空气流52,该液态空气流在膨胀阀54内通过阀膨胀至适于其进入高压塔14的压力以产生减压液态流体56。在这方面,高压塔14可在大约5巴到大约6巴之间的绝对压力下操作。减压液态流体56的第一部分58被引入高压塔14,减压液态流体52的第二部分60,在膨胀阀62中被膨胀至适于将其引入低压塔16的压力之后,作为流63被引入低压塔16。在这方面,低压塔16可在大约1.1巴到1.4巴之间的绝对压力下操作。如图简示,高压塔14设有可为规整填料的传质构件64和68。经由排气流48引入的蒸气启动了接触下降液相的上升气相,该下降液相在传质构件64和68内下降。此外,减压液态流体56的第一部分58在填料构件64内下降,产生的蒸气将上升穿过填料构件68。当蒸气在高压塔14内上升时,其变得更多地富含空气中的轻质组分,即氮气,而液体在高压精馏塔14内下降时,其则变得更多地富含空气中的重质组分,即氧气,以产生粗制液态氧塔底沉淀物流82,该流82聚积在蒸馏塔14的底部区域50内。富氮塔顶流70被引入位于低压塔16底部中的冷凝器-蒸发器72,在这里它借助发生在低压蒸馏塔16内的蒸馏蒸发聚积在该塔内的富氧液态塔底沉淀物74中的一些。这产生了液态氮气流76,其被分成分别回流高压塔14和低压塔16的第一和第二氮回流流78和80。借助第一氮回流流78,在高压塔14中提供的回流启动下降液相的形成。由高压塔l4内的粗制液氧塔底沉淀物组成的粗制液氧流82在膨胀阀84内通过阀膨胀至低压塔16的压力,并作为流85被引入低压塔16。第二氮回流流80在过冷单元86内被过冷,以形成回流低压塔16的流88。流88的全部或部分可在通过阀87之后作为流89被引入低压塔16。部分流88可作为液态产品102导至适当的储存器(未图示)。低压塔16设有传质接触构件90、92、94和96,它们在低压塔16内接触液相和气相以产生富氧液态塔底沉淀物74,及流入过冷单元86过冷第二氮回流流80的氮产品蒸气流98和废氮蒸气流100。由富氧液态塔底沉淀物74组成的富氧液态流体104可通过泵106加压以产生加压液氧流108。部分加压液氧流108在主热交换器18内蒸发。如图所示,加压液氧产物流109可作为产品。在这种情况下,剩余的流110在主热交换器18内蒸发以产生可作为高压氧气产品的加压氧产物流lll。此外,也可在主热交换器18内加热废氮流100以形成废流112,且产品氮蒸气流98可在主热交换器18内加热以形成富氮产品流113。在主热交换器18内设置的换热通道114、115、116'和117'用于如上面所述概括的目的,而下面将会更加详细讨论的通道118则是用来冷却第一压缩空气流42。根据本发明,通过改变笫一压缩空气流42的压力改变空气分离设备l的液体生产,即加压液氧产品流109和液氮产品流102。这种压力的变化可由具有阀124的旁通管线122完成,该阀可设在打开和关闭位置,用于控制允许流体流过旁通管线122或阻止流体流过旁通管线122。替代地,管线122可构造成用于压缩机40的再循环。此外,取代旁通管线122,压缩机40可设有可变的入口叶片以改变第一压缩空气流42的压力。在高液体生产模式期间,如果提高第一压缩空气流42的压力,将会产生更多的制冷并由此产生更多的液体。相反地,如果降低第一压缩空气流42的压力,透平膨胀机36将会产生更少的制冷并由此带来液体生产的减少。然而在高液体生产模式中,由于高压和在主热交换器18内的冷却的原因,第一压缩空气流42可部分液化。透平膨胀机36的入口流的温度控制实现的方式是将主热交换器构造成排出处于较高和较低温度下的第一支流126和第二支流128,进而控制供至透平膨胀机36入口的流温度。为了控制透平膨胀机36入口处的温度,提供了两对控制阀130和134。第一对控制阀130具有高流量控制阀136和低流量控制阀138。类似地,第二对流量控制阀具有高流量控制阀140和低流量控制阀142。这些阀在比较意义上被称为"高流量"和"低流量,,。例如,"高流量"阀是体积流量是"低流量"阀的大约10到大约100倍的阀。然而,高流量控制阀相对于低流量控制阀的大小取决于本发明的具体应用。从物理上讲,低流量阀因此是比高流量控制阀小得多的单元。在高液体生产模式期间,高流量控制阀136控制包含在第一支流126内的流体的主要部分的流动。低流量控制阀138将处在关闭位置。此外,高流量控制阀140也会关闭,低流量控制阀142则会打开以控制处于密相或液相的第二支流128的流动。在低液体生产模式中,大多数的流体目前跟随第二支流128。因此,高流量控制阀136设在关闭位置,低流量控制阀138则设在打开位置。类似地,高流量控制阀140现在控制第二支流128的流动,低流量控制阀142则设在关闭位置。第一支流126和第二支流128的流体随后在静态混合器144内合并以产生混合流146,该混合流可在受控温度下被引入透平膨胀机36的入O。如上面所指出的,混合流146的温度控制方式是确保涡轮机排气流48基本不液化,或换言之其具有不大于约5%的液态成分。更优选地,该排气流保持处于饱和蒸气温度或接近该饱和蒸气温度。从塔操作角度讲,饱和温度以上的变化现在可有效地限制为小于20。C。因此,本文和权利要求书中涉及饱和蒸气温度时使用的术语"大约",所指的温度是不低于使透平膨胀机的排气液化高于5%的温度,且不高于导致该排气过热超过约20。C的温度。为了实现这个目标,高、低流量控制阀136,138,140和142的控制可设在预定位置处以获得混合流146的受控温度。更优选地,采用闭环控制。在这样的方法中,流146的温度维持方式是检测混合流146的温度,将其值与预定值/设定点比较并相应地调整阀136,138,140和142的位置。这样的控制通常称为PID控制(比例、积分和微分控制),是工艺工程领域所熟知的。替代地,也可监控排气流48和流82之间的温度差。然后作出响应调节目标阀来控制涡轮机的出口温度。在这样做时,将涡轮机过热维持在接近饱和的预定点处。下面的表格代表通过稳态过程模拟方法产生的计算例,该方法说明了在高、低液体生产期间空气分离设备的关键操作特征。在本例中,气态氧气流111在该工艺中是在30巴绝对压力下产生。高压塔14在5.2巴绝对压力下运作。此外,在本例中,流30的所有膨胀流体穿过膨胀机36进入塔14。通过用于固定钎焊铝热交换器设计的严密解法获得第一和第二支流126和128的温度,如图2中所示的固定钎焊铝热交换器将在下面进行详细描述。高液体生产模式一经启动,退出的第二支流128就处于基本液化状态。<table>tableseeoriginaldocumentpage17</column></row><table>在如空气分离设备l一样的设备中的目标工艺的模拟导致涡轮机排气(流48)中呈现约30%的液态比例,其中热交换器是按常规方式(用于低液体生产模式且透平膨胀机入口没有温度控制)设计。从热力学角度看,达到传统方法的流体比率的涡轮机工作将比应用本发明可获得的要低45%。换言之,通过本发明大幅提高了在相同膨胀率下可能获得的制冷。应当理解的是,不必所有混合流146都进入膨胀机36。如果需要,可将部分混合流146导回主热交换器18进行进一步冷却、液化并供给空气分离单元12。类似地,不必将所有的排气流48都导至空气分离单元12。例如,可将部分涡轮机排气48再循环至压缩机20或预净化单元26的出口。此外,可将排气流48引入低压蒸馏塔16。在这样的情况下,部分该流可导至废流或加热后排走。虽然没有图示,本发明同样适应于构造不同于图l所示的空气分离设备。例如,本发明应用于这样的空气分离装置,其内没有产品流的液体加压或所有的富氧液体都作为产品且没有被蒸发的。在没有采用液体加压的设备的情况下,就将没有诸如第二压缩空气流46—样的压缩空气流,以及没有与生产和冷却该流相关的装置。即使在主热交换器内有产品流蒸发,从基础负荷压缩传出的流,如流30和32,可压缩到大约相同的名义压力,被引入透平膨胀机的这些流之一的压力可以变化,以与本文提供的温度控制一起改变液体生产。同样如上面所指出的,本发明可用于其他不涉及空气分离的低温分离设备。参考图2,更详细地图示了热交换器18。本领域技术人员可以理解的是,热交换器18定向在竖直位置并可为板翅式热交换器,该板翅式热交换器具有多层板界定翅片流体通道以限定热交换通道114,115,116和117,从而以本领域熟知方式实现热交换。在这方面,第二压缩气流46被引入入口集管150,液态空气流52从出口集管152排出。这些流的流动贯通热交换器18的整个长度并位于板间的翅片流体通道之间。类似地,废氮流100也流过热交换器18的整个长度并通过入口集管154引入,再作为废流112从出口集管156排出。氮蒸气产品流98被引入入口集管158并作为富氮产品流113从出口集管160排出。泵加压的液态富氧流110被引入入口集管159,并作为加压氧产品流111从集管161排出。第一压缩空气流42经由入口集管162被引入热交换器18并通过分配翅片163改向,以在热交换器18的长度方向上流动并穿过翅片通道164。在部分穿越热交换器18的长度后,该流体随后由分配翅片165改向,并作为流167经出口集管166排出。从出口集管166排出的流167的部分作为流168随后经由入口集管169被重新引入热交换器18,其余部分的流167形成第一支流126。流168随后由分配翅片170改向以经翅片通道171在热交换器18的长度方向上流动。在经翅片通道171部分穿越热交换器18而进一步冷却后,流168随后经分配翅片172再次改向并作为流128通过出口集管173排出。要注意的是,本领域技术人员可以很好的理解到,翅片通道164和171的层因此形成了第一压缩空气流42的换热通道,其由图1中的参考数字118标示,该第一压缩气流42用于形成第一支流126和第二支流128。参考图3,在主热交换器18的替代实施例中,主热交换器18'设有可彼此相对布置的出口集管166和入口集管169。在这种情况下,分配翅片165和170由分配翅片165'和17(K的布置取代,分配翅片165'和170'由对角线分割部分开以分割流体。参考图4,在热交换器18的替代实施例中,热交换器18"设有难路翅片部分165'。难路翅片部分是这样的翅片部分,其布置成产生的平-f亍于流动方向的主要流动阻力大于垂直于该流动方向的流动阻力。当阀136打开时,其作用是分割流体,使得第一支流126以高于在翅片通道164内流动的其余部分流的流量从出口集管167'排出。该其余部分随后流经翅片通道171,然后作为第二支流128通过分配翅片172被改向至出口集管173,该第二支流128由于其继续穿越热交换器18〃而被进一步冷却。参考图5,提出了热交换器18〃'作为热交换器18的替代实施例。附加参考图7和8,设置的分配翅片层165''将流体从翅片通道164改向至出口集管166。流168进入入口集管169,随后流经分配翅片170'以被导至翅片通道171,从而作为第二支流128从排放集管173排出。翅片165〃和170'的高度约为主通道高度的一半。它们被置于彼此的顶部之上,其间有分隔板。这样可在较小体积内获得入口和出口分配,虽然其招致的压降会更高(由于流动面积减半的原因)。尽管已参考优选实施例对本发明进行了描述,但是本领域技术人员在不背离所附权利要求所描述的本发明的精神和范围内仍可做出许多^f奮改和补充。权利要求1.一种分离方法,包括在低温精馏设备中分离压缩气态混合物,方式是净化该压缩气态混合物,净化后利用与混合物组分流的间接热交换冷却该压缩气态混合物,在分离单元内精馏该压缩气态混合物,该分离单元具有至少一个塔以产生该混合物组分流;从分离单元排出至少一种富含所述气态混合物的一种混合物组分的液态流体;在间接热交换期间,在所述压缩气态混合物得到部分冷却之后,将至少部分该压缩气态混合物分成第一支流和第二支流,让第一支流和第二支流分别在较高和较低温度下退出间接热交换;在第一支流和第二支流退出间接热交换之后,使第一支流和第二支流合并以产生混合流;在透平膨胀机内膨胀至少部分所述混合流,工作性能是向低温精馏设备提供制冷,并将所述透平膨胀机的至少部分排气流引入分离单元;以及通过控制第一支流和第二支流的流量控制所述混合流的温度,使得所述排气流至少处于其饱和温度附近。2.根据权利要求1所述的方法,其中改变所述至少部分压缩气态混合物的压力,进而改变透平膨胀机所提供的制冷和液态流体的生产速度,使得在高液体生产模式下提高所述至少部分压缩气态混合物的压力能增加液态流体的生产,且在低液体生产模式下降低所述至少部分压缩气态混合物的压力能减少液态流体的生产;在高液体生产模式期间,控制第一支流和第二支流的流量,使得笫一支流的流量大于笫二支流的流量;以及在低液体生产模式期间,控制第一支流和笫二支流的流量,使得第一支流的流量小于第二支流的流量。3.根据权利要求2所述的方法,其中所述压缩气态混合物由空气组成;所述混合物组分流为富氧流和富氮流;所述分离单元为空气分离单元,其具有在传热关系上相互操作性连接的高压蒸馏塔和低压蒸馏塔,以生产富氧流和富氮流;以及所述液态流体富含氧气和氮气中的一种。4.根据权利要求3所述的方法,其中所述液态流体富含氧气,用泵增压部分该液态流体以产生加压液态流体;所述富氧流由所述加压液态流体形成,作为间接热交换的结果,所述加压液态流体得到蒸发产生了加压富氧产品;在所述间接热交换之前,将所述压缩气态混合物分成第一压缩空气流和第二压缩空气流,所述至少部分气态混合物由第一压缩空气流形成;在所述间接热交换期间,第二压缩空气流引起所述加压液态流体蒸发并导致第二压缩气流液化,从而形成液态空气流;以及在空气分离单元中精馏第一压缩空气流和第二压缩空气流中所含的空气。5.根据权利要求4所述的方法,其中由第一和第二对阀控制第一支流和第二支流的流量,每对阀包含一个高流量控制阀和一个低流量控制阀;在高液体生产模式期间,第一支流和第二支流的流量分别由第一对阀的高流量控制阀和第二对阀的低流量控制阀控制,第一对阀的低流量控制阀和第二对阀的高流量控制阀设定在关闭位置;以及在低液体生产模式期间,第一支流和第二支流的流量分别由第一对阀的低流量控制阀和第二对阀的高流量控制阀控制,第一对阀的高流量控制阀和第二对阀的低流量控制阀设定在关闭位置。6.根据权利要求5所述的方法,其中将排气流引入所述高压塔的底部区域;将液态空气流分成第一和第二部分,并分别通过阀膨胀至所述高压塔和低压塔的较高压力和较低压力;以及将该第一和第二部分分别引入所述的高压塔和低压塔。7.根据权利要求5所述的方法,其中逆着蒸发低压塔的含氧塔底沉淀物液化高压塔的富氮塔顶流,从而产生回流高压塔和低压塔的第一和第二氮回流流;在被引入低压塔之前,所述氮回流流的第二氮回流流通过将热量交换给从低压塔退出的废液氮流和产品氮蒸气流被过冷;所述废液氮流和产品氮蒸气流都是参与所述间接热交换的富氮流;以及通过阀膨胀由高压塔的含氧塔底沉淀物形成的粗制液氧流,并将其引入精馏的低压塔,该粗制液氧流在通过阀膨胀之前没有经受进一步冷却其的间接热交换。8.—种分离装置,包括压缩气态混合物以产生压缩流的至少一个压缩才凡和净4匕该压缩流的净化单元;连接至净化单元的主热交换器,其具有流体通道,这些流体通道迫使所述压缩流与混合物组分流进行间接热交换;分离单元,其具有至少一个精馏塔精馏包含在所述压缩流中的气态混合物,由此产生所述混合物组分流;分离单元具有液体出口以排放富含所述气态混合物中的一种混合物组分的液态流体;主热交换器连接至分离单元,使得所述混合物组分流从主热交换器的冷端流到热端;主热交换器构造成排出分别处于较高和较低温度的第一支流和第二支流;第一支流和第二支流由所述气态混合物组成;透平膨胀机,其膨胀至少部分混合流,工作性能是提供制冷,所述混合物由第一支流和第二支流的合并形成,透平膨胀机连接至分离单元,使得透平膨胀机的至少部分排气流被引入所述至少一个蒸馏塔内;以及流体控制网络,其构造成合并第一支流和第二支流以形成混合流,该流体控制网络具有阀来控制第一支流和笫二支流的流量,由此控制混合流的温度,以确保来自透平膨胀机的排气流的出口温度至少约等于饱和温度。9.根据权利要求8所述的方法,其中所述气态混合物是空气;所述压缩流是压缩空气流;所述混合物组分流是富氧流和富氮流;所述分离单元是空气分离单元,其具有在传热关系上相互操作性连接的高压和低压蒸馏塔,由此生产所述富氧流和富氮流;以及透平膨胀机连接至空气分离单元,使得至少部分来自透平膨胀机的所述排气流被引入高压或低压蒸馏塔内。10.根据权利要求9所述的方法,进一步包括泵,其加压部分所述液态流体以产生加压液态流体;该泵流体连通分离单元和主热交换器,使得加压液态流体由于间接热交换而蒸发,以产生加压产品;所述压缩空气流是第一压缩空气流;所述至少一个压缩机是部分压缩系统,其包括基础负荷压缩机;涡轮增压压缩机,其也流体连通该基础负荷压缩机,且操作性连接透平膨胀机以至少部分由透平膨胀机的工作驱动;以及第一压缩机,其连接至涡轮增压压缩机;涡轮增压压缩才几和第一压缩才几产生所述第一压缩空气流;以及第二压缩机,其流体连通基础负荷压缩机以产生所述第二压缩空气流;该第二压缩机流体连通主热交换器,且主热交换器也流体连通空气分离单元,使得第二压缩空气流经受间接热交换,其造成加压液态流体的蒸发和第二压缩空气流的液化,从而形成液态空气流,该液态空气流被引入空气分离单元。11.根据权利要求IO所述的设备,其中第一压缩机具有入口导流叶片,或压缩系统设有旁通管线,该旁通管线具有截止阀以在截止阀设为打开位置时旁通第一压缩机来改变第一空气流的压力,进而改变透平膨胀机所提供的制冷和液态流体的生产;由此在高液体生产模式下第一压缩空气流的压力的提高增加液体产品的生产,在低液体生产模式下第二压缩空气流的压力的降低则减少液体产品的生产;流体控制网络的阀包括连接至主热交换器的第一和第二对阀,每对阀都含有一个高流量控制阀和一个低流量控制阀;在高流体生产模式期间,第一支流和第二支流的流量分别由第一对阀的高流量控制阀和第二对阀的低流量控制阀控制,第一对阀的低流量控制阀和第二对阀的高流量控制阀则设在关闭位置;在低液体生产模式期间,第一支流和笫二支流的流量分别由第一对阀的低流量控制阀和第二对阀的高流量控制阀,第一对阀的高流量控制阀和第二对阀的低流量控制阀设在关闭位置;以及流体控制网络具有静态混合器,该静态混合器介于第一、第二对阀与透平膨胀机之间以合并第一支流和第二支流。12.根据权利要求9或10或11所述的方法,其中透平膨胀机连接至高压塔的底部部分,使得排气流被引入高压塔的该底部部分;以及主热交换器连接至空气分离单元,使得液态空气流的第一和第二部分被引入高压和低压塔,且膨胀阀定位在主热交换器与高低压塔之间,使得第一和第二部分分别通过阀膨胀至高压和低压塔的较高和较低的压力。13.根据权利要求12所述的方法,其中冷凝器-蒸发器,其与高压和低压塔操作性地连接,使得逆着低压塔的含氧塔底沉淀物的蒸发液化高压塔的富氮塔顶流,由此产生第一和第二氮回流流以回流高压和j氐压塔;过冷器,其构造成在所述氮回流流的第二氮回流流被引入低压塔之前,通过与从低压塔排出的废氮流和产品氮流的热交换过冷该第二氮回流流;该过冷器连接至主热交换器,使得废氮流和产品氮流都是在主热交换器内参加间接热交换的富氮流;以及管道,其将高压塔的底部区域连接至低压塔的中间位置,以将由高压塔的含氧塔底沉淀物形成的粗制液态氧流引入低压塔用于精馏,还有膨胀阀,其位于该管道中,以在该粗制液态氧流引入时将其膨胀至低压塔可容的压力。全文摘要一种分离方法及装置,用于在低温精馏设备(1)中分离气态混合物,例如空气。在该低温精馏设备中,压缩流(42)分为支流(126、128),这两个支流从该设备的主热交换器(18)中提取并分别处于较高和较低温度。然后合并这两个支流并在透平膨胀机(36)中膨胀它们以为该设备提供制冷。调整这两个支流的流量以控制供应设备制冷的该透平膨胀机的入口温度,并使该透平膨胀机排气对饱和蒸气状态的可能偏离最小化。可以实施膨胀率的控制,益处是允许改变精馏设备的液体生产。文档编号F25J3/02GK101553702SQ200780045306公开日2009年10月7日申请日期2007年12月6日优先权日2006年12月6日发明者H·E·霍瓦德,R·J·杰布申请人:普莱克斯技术有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1