一种微纳结构多功能复合材料及其制备方法

文档序号:4824426阅读:238来源:国知局
专利名称:一种微纳结构多功能复合材料及其制备方法
技术领域
本发明涉及一种磷酸银立方体/P25/氧化石墨烯微纳结构多功能复合材料及其制备方法和应用,特别是指一种基于电荷自组装的溶液体系离子交换法制备形貌规则、结构可控的氧化石墨烯/磷酸银/P25微纳结构多功能复合材料的方法,属于复合材料、光催化材料、环保材料和污染治理等领域。
背景技术
随着工业的发展,人类本已有限的水资源受到日益严重的污染,清除水体中的有毒有害化学物质如农药、有机染料等成为环保领域的重要工作,但目前水污染的处理方法大多是针对排放量大、浓度较高的污染物,对于水体中浓度低、难以转化的优先污染物的净化还无能为力,而80年代发展起来的光催化降解技术却为这一问题的解决提供了良好的途径。二氧化钛作为半导体光催化材料获得广泛关注,但是,二氧化钛光吸收范围较窄(仅限于紫外光区)、量子效率较低,特别是其可见光响应程度低导致其在可见光照射下光催化活性有限,磷酸银作为一种新型的光催化材料,在可见光激发下,由于具有分散的能带结构,禁带宽度相对较窄,使得光生载流子的复合速率大大降低,量子效率得到很大提高,从而表现出优异的可见光光催化活性;此外,氧化石墨烯是一种二维片状纳米材料,具有比表面积大、吸附能力强等优点,同时,氧化石墨烯表面具有较多的亲水功能团,将氧化石墨烯应用于复合材料的制备中,其表面所带的负电荷不仅能够为带正电荷的银离子提供更多的反应点,从而能够将磷酸银的成核和生长控制在氧化石墨烯的表面,从而达到有效控制磷酸银尺寸和形貌的作用,另一方面由于石墨烯良好的溶解分散性,其和磷酸银的有效复合能够显著改善复合材料的分散溶解性能,随着制备氧化石墨烯工艺的改进和成本的降低,将氧化石墨烯用于复合体系,还可以大大降低成本。我们的发明专利[201210380447.7]通过将微米级的球形磷酸银颗粒和P25纳米颗粒有效复合到氧化石墨烯表面,构建出了磷酸银/P25/氧化石墨烯三体系异质结构,虽然该氧化石墨烯/磷酸银/P25三体系复合材料具有较好的可见光光催化活性以及抑制杀灭细菌的能力,但是复合材料中磷酸银的颗粒尺寸较大,且所得到的磷酸银形貌为不规则的球形颗粒,其形貌和结构缺乏有效的调控,在一定程度上影响复合材料的应用性能。目前以商业化P25、硝酸银、磷酸盐和氧化石墨烯为原料,利用氨水进行形貌调控,在溶液体系中通过离子交换法快速制备磷酸银立方体/P25/氧化石墨烯微纳结构多功能复合材料,并将其应用于光催化降解有机污染物和抑制杀灭细菌和微生物未见报道。

发明内容
本发明的目的在于发展一种成本低廉、方法简单、绿色环保的制备磷酸银立方体/P25/氧化石墨烯多功能微纳结构复合材料的制备技术,所制备的材料具有规则的形貌结构、高效的可见光光催化性能、更好的降解有机污染物的能力以及较强的光谱杀菌性能。
实现本发明所采用的技术方案为:以氧化石墨烯为前驱体,将微米结构的磷酸银立方体和P25纳米颗粒有效组装到氧化石墨烯片层上,并用氨水对其形貌结构进行调控,其具体步骤为:
(1)将氧化石墨烯溶于去离子水中超声得到氧化石墨烯分散液;
(2)将硝酸银溶解到去离子水中,得到硝酸银溶液;在磁力搅拌器搅拌的条件下将硝酸银溶液加入到上述氧化石墨烯分散液中,缓慢搅拌均匀,得到混合前驱体溶液A ;
(3)将氨水缓慢滴加到混合前驱体溶液A中,继续缓慢搅拌均匀,得到混合前驱体溶液B,混合前驱体溶液B中硝酸银溶液的浓度为0.48 wt%,氧化石墨烯的浓度为0.01-0.15wt%,氨水的浓度为0.056 mol/L ;
(4)将磷酸氢二钠溶于去离子水中,得到浓度为0.15 mol/L的磷酸氢二钠溶液;
(5)在磁力搅拌条件下,将步骤(4)制备的磷酸氢二钠溶液逐滴缓慢加入步骤(3)所制备的混合前驱体溶液B中,直至反应体系中出现棕黄色浑浊停止滴加,继续缓慢搅拌,得到棕黄色体系C ;
(6)将P25溶于去离子水中超声分散,得到浓度为0.1-0.3 wt%的P25分散液;在磁力搅拌器搅拌的条件下缓慢滴加到上述棕黄色体系C中;滴加完毕后得到的混合溶液中P25与氧化石墨烯的质量比为0.15-4.5:1,混合溶液继续搅拌30-60 min,所得产物抽滤后用无水乙醇和去离子水反复洗涤多次后真空干燥。与现有技术相比,本发明具有如下优点:
a)由于将氧化石墨烯用于制备过程,所制得的氧化石墨烯/磷酸银/P25复合材料不仅拥有较大的比表面积和较高的热稳定性,而且其在溶液中具有较好的分散性,对有机污染物还具有较好的吸附效果;
b)通过不同配比的氨水对磷酸银/P25微纳米异质结构的调控,减缓了生成磷酸银的速度,使所制备的磷酸银材料具有比较规则的立方体结构和均匀的尺寸;
c)通过此方法制备的氧化石墨烯/磷酸银立方体/P25立方体异质结构更有利于光生电子和空穴的有效分离及可见光的吸收,从而增强了光催化活性,而且具有更高的可见光降解有机污染物和较强的光谱杀菌效果;
d)所采用的工艺路线简单易行、原料易得、成本低廉、无二次污染、经济高效。


图1为磷酸银立方体/P25/氧化石墨烯微纳结构多功能复合材料的扫描电子显微镜 图2为磷酸银立方体/P25/氧化石墨烯微纳结构多功能复合材料的X射线衍射 图3为磷酸银立方体/P25/氧化石墨烯微纳结构多功能复合材料的紫外可见漫反射光谱 图4为磷酸银立方体/P25/氧化石墨烯微纳结构多功能复合材料在可见光条件下对罗丹明B的光催化降解曲线图。
具体实施例方式下面将结合具体实施例进一步阐明本发明的内容,但这些实施例并不限制本发明的保护范围。
实施例1
将20 mg氧化石墨烯分散于50 ml去离子水中超声3小时得到氧化石墨烯分散液;称取0.765 g硝酸银溶于20 ml去离子水中,得到硝酸银溶液,将上述硝酸银溶液在磁力搅拌的条件下逐滴加入到氧化石墨烯分散液中,缓慢搅拌均匀,形成混合液A,配制90 mL浓度为0.1 mol/L的氨水,在磁力搅拌下滴加到混合液A中,继续缓慢搅拌均匀,得到混合前驱体溶液B M0.15 mol/L的磷酸氢二钠溶液逐滴加入到混合溶液B中,直至反应体系中出现棕黄色浑浊停止滴加,继续缓慢搅拌40分钟,得到棕黄色体系C ;将30 mg P25溶于30 mL去离子水中超声分散30分钟,得到P25分散液;在磁力搅拌器搅拌的条件下缓慢滴加到上述棕黄色体系C中;滴加完毕后得到的混合溶液继续搅拌60 min,所得产物抽滤后用无水乙醇和去离子水反复洗涤多次后真空干燥。实施例2
将20 mg氧化石墨烯分散于50 ml去离子水中超声3小时得到氧化石墨烯分散液;称取0.765 g硝酸银溶于20 ml去离子水中,得到硝酸银溶液,将上述硝酸银溶液在磁力搅拌的条件下逐滴加入到氧化石墨烯分散液中,缓慢搅拌均匀,形成混合液A,配制90 mL浓度为0.1 mol/L的氨水,在磁力搅拌下滴加到混合液A中,继续缓慢搅拌均匀,得到混合前驱体溶液B M0.15 mol/L的磷酸氢二钠溶液逐滴加入到混合溶液B中,直至反应体系中出现棕黄色浑浊停止滴加,继续缓慢搅拌40分钟,得到棕黄色体系C ;将60 mg P25溶于30 mL去离子水中超声分散30分钟,得到P25分散液;在磁力搅拌器搅拌的条件下缓慢滴加到上述棕黄色体系C中;滴加完毕后得到的混合溶液继续搅拌30 min,所得产物抽滤后用无水乙醇和去离子水反复洗涤多次后真空干燥。实施例3
将20 mg氧化石墨烯分散于50 ml去离子水中超声3小时得到氧化石墨烯分散液;称取0.765 g硝酸银溶于20 ml去离子水中,得到硝酸银溶液,将上述硝酸银溶液在磁力搅拌的条件下逐滴加入到氧化石墨烯分散液中,缓慢搅拌均匀,形成混合液A,配制90 mL浓度为0.1 mol/L的氨水,在磁力搅拌下滴加到混合液A中,继续缓慢搅拌均匀,得到混合前驱体溶液B M0.15 mol/L的磷酸氢二钠溶液逐滴加入到混合溶液B中,直至反应体系中出现棕黄色浑浊停止滴加,继续缓慢搅拌40分钟,得到棕黄色体系C ;将90 mg P25溶于30 mL去离子水中超声分散30分钟,得到P25分散液;在磁力搅拌器搅拌的条件下缓慢滴加到上述棕黄色体系C中;滴加完毕后得到的混合溶液继续搅拌40 min,所得产物抽滤后用无水乙醇和去离子水反复洗涤多次后真空干燥。实施例4
将50 mg氧化石墨烯分散于50 ml去离子水中超声4小时得到氧化石墨烯分散液;称取0.765 g硝酸银溶于20 ml去离子水中,得到硝酸银溶液,将上述硝酸银溶液在磁力搅拌的条件下逐滴加入到氧化石墨烯分散液中,缓慢搅拌均匀,形成混合液A,配制90 mL浓度为0.1 mol/L的氨水,在磁力搅拌下滴加到混合液A中,继续缓慢搅拌均匀,得到混合前驱体溶液B M0.15 mol/L的磷酸氢二钠溶液逐滴加入到混合溶液B中,直至反应体系中出现棕黄色浑浊停止滴加,继续缓慢搅拌40分钟,得到棕黄色体系C ;将30 mg P25溶于30 mL去离子水中超声分散30分钟,得到P25分散液;在磁力搅拌器搅拌的条件下缓慢滴加到上述棕黄色体系C中;滴加完毕后得到的混合溶液继续搅拌50min,所得产物抽滤后用无水乙醇和去离子水反复洗涤多次后真空干燥。实施例5
将50 mg氧化石墨烯分散于50 ml去离子水中超声4小时得到氧化石墨烯分散液;称取0.765 g硝酸银溶于20 ml去离子水中,得到硝酸银溶液,将上述硝酸银溶液在磁力搅拌的条件下逐滴加入到氧化石墨烯分散液中,缓慢搅拌均匀,形成混合液A,配制90 mL浓度为0.1 mol/L的氨水,在磁力搅拌下滴加到混合液A中,继续缓慢搅拌均匀,得到混合前驱体溶液B M0.15 mol/L的磷酸氢二钠溶液逐滴加入到混合溶液B中,直至反应体系中出现棕黄色浑浊停止滴加,继续缓慢搅拌40分钟,得到棕黄色体系C ;将60 mg P25溶于30 mL去离子水中超声分散30分钟,得到P25分散液;在磁力搅拌器搅拌的条件下缓慢滴加到上述棕黄色体系C中;滴加完毕后得到的混合溶液继续搅拌60 min,所得产物抽滤后用无水乙醇和去离子水反复洗涤多次后真空干燥。实施例6
将50 mg氧化石墨烯分散于50 ml去离子水中超声4小时得到氧化石墨烯分散液;称取0.765 g硝酸银溶于20 ml去离子水中,得到硝酸银溶液,将上述硝酸银溶液在磁力搅拌的条件下逐滴加入到氧化石墨烯分散液中,缓慢搅拌均匀,形成混合液A,配制90 mL浓度为0.1 mol/L的氨水,在磁力搅拌下滴加到混合液A中,继续缓慢搅拌均匀,得到混合前驱体溶液B M0.15 mol/L的磷酸氢二钠溶液逐滴加入到混合溶液B中,直至反应体系中出现棕黄色浑浊停止滴加,继续缓慢搅拌40分钟,得到棕黄色体系C ;将90 mg P25溶于30 mL去离子水中超声分散30分钟,得到P25分散液;在磁力搅拌器搅拌的条件下缓慢滴加到上述棕黄色体系C中;滴加完毕后得到的混合溶液继续搅拌60 min,所得产物抽滤后用无水乙醇和去离子水反复洗涤多次后真空干燥。实施例7
将100 mg氧化石墨烯分散于50 ml去离子水中超声5小时得到氧化石墨烯分散液;称取0.765 g硝酸银溶于20 ml去离子水中,得到硝酸银溶液,将上述硝酸银溶液在磁力搅拌的条件下逐滴加入到氧化石墨烯分散液中,缓慢搅拌均匀,形成混合液A,配制90 mL浓度为0.1 mol/L的氨水,在磁力搅拌下滴加到混合液A中,继续缓慢搅拌均匀,得到混合前驱体溶液B M0.15 mol/L的磷酸氢二钠溶液逐滴加入到混合溶液B中,直至反应体系中出现棕黄色浑浊停止滴加,继续缓慢搅拌40分钟,得到棕黄色体系C ;将30 mg P25溶于30 mL去离子水中超声分散30分钟,得到P25分散液;在磁力搅拌器搅拌的条件下缓慢滴加到上述棕黄色体系C中;滴加完毕后得到的混合溶液继续搅拌60 min,所得产物抽滤后用无水乙醇和去离子水反复洗涤多次后真空干燥。实施例8
将100 mg氧化石墨烯分散于50 ml去离子水中超声5小时得到氧化石墨烯分散液;称取0.765 g硝酸银溶于20 ml去离子水中,得到硝酸银溶液,将上述硝酸银溶液在磁力搅拌的条件下逐滴加入到氧化石墨烯分散液中,缓慢搅拌均匀,形成混合液A,配制90 mL浓度为0.1 mol/L的氨水,在磁力搅拌下滴加到混合液A中,继续缓慢搅拌均匀,得到混合前驱体溶液B M0.15 mol/L的磷酸氢二钠溶液逐滴加入到混合溶液B中,直至反应体系中出现棕黄色浑浊停止滴加,继续缓慢搅拌40分钟,得到棕黄色体系C ;将60 mg P25溶于30 mL去离子水中超声分散30分钟,得到P25分散液;在磁力搅拌器搅拌的条件下缓慢滴加到上述棕黄色体系C中;滴加完毕后得到的混合溶液继续搅拌60 min,所得产物抽滤后用无水乙醇和去离子水反复洗涤多次后真空干燥。实施例9
将100 mg氧化石墨烯分散于50 ml去离子水中超声5小时得到氧化石墨烯分散液;称取0.765 g硝酸银溶于20 ml去离子水中,得到硝酸银溶液,将上述硝酸银溶液在磁力搅拌的条件下逐滴加入到氧化石墨烯分散液中,缓慢搅拌均匀,形成混合液A,配制90 mL浓度为0.1 mol/L的氨水,在磁力搅拌下滴加到混合液A中,继续缓慢搅拌均匀,得到混合前驱体溶液B M0.15 mol/L的磷酸氢二钠溶液逐滴加入到混合溶液B中,直至反应体系中出现棕黄色浑浊停止滴加,继续缓慢搅拌40分钟,得到棕黄色体系C ;将90 mg P25溶于30 mL去离子水中超声分散30分钟,得到P25分散液;在磁力搅拌器搅拌的条件下缓慢滴加到上述棕黄色体系C中;滴加完毕后得到的混合溶液继续搅拌60 min,所得产物抽滤后用无水乙醇和去离子水反复洗涤多次后真空干燥。实施例10
将200 mg氧化石墨烯分散于50 ml去离子水中超声5小时得到氧化石墨烯分散液;称取0.765 g硝酸银溶于20 ml去离子水中,得到硝酸银溶液,将上述硝酸银溶液在磁力搅拌的条件下逐滴加入到氧化石墨烯分散液中,缓慢搅拌均匀,形成混合液A,配制90 mL浓度为0.1 mol/L的氨水,在磁力搅拌下滴加到混合液A中,继续缓慢搅拌均匀,得到混合前驱体溶液B M0.15 mol/L的磷酸氢二钠溶液逐滴加入到混合溶液B中,直至反应体系中出现棕黄色浑浊停止滴加,继续缓慢搅拌40分钟,得到棕黄色体系C ;将30 mg P25溶于30 mL去离子水中超声分散30分钟,得到P25分散液;在磁力搅拌器搅拌的条件下缓慢滴加到上述棕黄色体系C中;滴加完毕后得到的混合溶液继续搅拌60 min,所得产物抽滤后用无水乙醇和去离子水反复洗涤多次后真空干燥。实施例11
将200 mg氧化石墨烯分散于50 ml去离子水中超声5小时得到氧化石墨烯分散液;称取0.765 g硝酸银溶于20 ml去离子水中,得到硝酸银溶液,将上述硝酸银溶液在磁力搅拌的条件下逐滴加入到氧化石墨烯分散液中,缓慢搅拌均匀,形成混合液A,配制90 mL浓度为0.1 mol/L的氨水,在磁力搅拌下滴加到混合液A中,继续缓慢搅拌均匀,得到混合前驱体溶液B M0.15 mol/L的磷酸氢二钠溶液逐滴加入到混合溶液B中,直至反应体系中出现棕黄色浑浊停止滴加,继续缓慢搅拌40分钟,得到棕黄色体系C ;将60 mg P25溶于30 mL去离子水中超声分散30分钟,得到P25分散液;在磁力搅拌器搅拌的条件下缓慢滴加到上述棕黄色体系C中;滴加完毕后得到的混合溶液继续搅拌60 min,所得产物抽滤后用无水乙醇和去离子水反复洗涤多次后真空干燥。实施例12
将200 mg氧化石墨烯分散于50 ml去离子水中超声5小时得到氧化石墨烯分散液;称取0.765 g硝酸银溶于20 ml去离子水中,得到硝酸银溶液,将上述硝酸银溶液在磁力搅拌的条件下逐滴加入到氧化石墨烯分散液中,缓慢搅拌均匀,形成混合液A,配制90 mL浓度为0.1 mol/L的氨水,在磁力搅拌下滴加到混合液A中,继续缓慢搅拌40分钟,得到混合前驱体溶液B ;将0.15 mol/L的磷酸氢二钠溶液逐滴加入到混合溶液B中,直至反应体系中出现棕黄色浑浊停止滴加,继续缓慢搅拌均匀,得到棕黄色体系C ;将90 mg P25溶于30 mL去离子水中超声分散30分钟,得到P25分散液;在磁力搅拌器搅拌的条件下缓慢滴加到上述棕黄色体系C中;滴加完毕后得到的混合溶液继续搅拌60 min,所得产物抽滤后用无水乙醇和去离子水反复洗涤多次后真空干燥。图1为所制备的磷酸银立方体/P25/氧化石墨烯多功能微纳结构复合材料的扫描电镜图,从图中我们可以看出,P25纳米颗粒包裹在微米级的磷酸银立方块上,同时也有部分P25颗粒沉积在薄的氧化石墨烯片层上,图2为所制备的磷酸银立方体/P25/氧化石墨烯多功能微纳结构复合材料的X射线衍射图,衍射图中所有的衍射峰均很好的对应于磷酸银和P25,氧化石墨烯掺杂量较少且衍射峰强度相对弱,所以在X射线衍射图谱中未观察到来源于氧化石墨烯的衍射峰,图3为所制备的磷酸银立方体/P25/氧化石墨烯复合材料的紫外可见漫反射光谱图,从图中我们可以看出,该复合材料在整个紫外可见光区(200-800nm)都具有较好的吸收,吸光度超过0.4。实施例13
将实施例1-12所制备出的复合材料分别与大肠杆菌、金黄色葡萄球菌、短小芽孢杆菌以及绿脓杆菌共同培养,进行平板法、最小抑菌浓度和最小杀菌浓度试验,试验方法按照中华人民共和国卫生部《消毒技术规范》操作,所用菌种由江苏大学药学院提供。平板法抑菌圈试验结果如表I所示,中华人民共和国行业标准规定:化合物抑菌圈直径小于7毫升时可认定为无抗菌作用;抑菌圈之间在7-10_之间时为弱抗菌活性;抑菌圈直径在10-20mm之间时为较好抗菌活性;抑菌圈直径超过20mm表示具有很强的抗菌活性。抑菌圈直径越大,表明该材料的抗菌活性越好;从表I中可以看出:所有实施例对于所有的测试细菌的抑菌圈直径都在10-20 mm之间,表明复合材料对不同菌种具有广谱的抗菌性能,且抗菌活性较好。表I
权利要求
1.一种微纳结构多功能复合材料,其特征在于:所述微纳结构复合材料由氧化石墨烯、磷酸银以及P25三种材料复合而成,其中平均尺寸为20-30nm的P25纳米颗粒沉积在粒径为200-400nm的磷酸银立方体表面,磷酸银、P25颗粒均沉积在氧化石墨烯片层表面;所述微纳结构多功能复合材料在200-800 nm的紫外可见光区都具有较好的吸收,吸光度超过0.4 ;所述复合材料对有机污染物具有很好的吸附效果,在可见光激发下对有机染料罗丹明B具有高效的光催化降解效果:对5 ppm的罗丹明B溶液2分钟降解率超过80%,8分钟后对罗丹明B的降解率接近100% ;对大肠杆菌、金黄色葡萄球菌、短小芽孢杆菌以及绿脓杆菌具有广谱的抑制和杀灭效果,抑菌圈直径都在10-20 mm之间,最小抑菌浓度都不超过200ppm,最小杀菌浓度都不超过400 ppm ο
2.如权利要求1所述的一种微纳结构多功能复合材料的制备方法,其特征在于包括如下步骤: (1)将氧化石墨烯溶于去离子水中超声得到氧化石墨烯分散液; (2)将硝酸银溶解到去离子水中,得到硝酸银溶液;在磁力搅拌器搅拌的条件下将硝酸银溶液加入到上述氧化石墨烯分散液中,缓慢搅拌均匀,得到混合前驱体溶液A ; (3)将氨水缓慢滴加到混合前驱体溶液A中,继续缓慢搅拌均匀,得到混合前驱体溶液B,混合前驱体溶液B中硝酸银溶液的浓度为0.48 wt%,氧化石墨烯的浓度为0.01-0.15wt%,氨水的浓度为0.056 mol/L ; (4)将磷酸氢二钠溶于去离子水中,得到浓度为0.15 mol/L的磷酸氢二钠溶液; (5)在磁力搅拌条件下,将步骤(4)制备的磷酸氢二钠溶液逐滴缓慢加入步骤(3)所制备的混合前驱体溶液B中,直至反应体系中出现棕黄色浑浊停止滴加,继续缓慢搅拌,得到棕黄色体系C ; (6)将P25溶于去离子水中超声分散,得到浓度为0.1-0.3 wt%的P25分散液;在磁力搅拌器搅拌的条件下缓慢滴加到上述棕黄色体系C中;滴加完毕后得到的混合溶液中P25与氧化石墨烯的质量比为0.15-4.5:1,混合溶液继续搅拌30-60 min,所得产物抽滤后用无水乙醇和去离子水反复洗涤多次后真空干燥。
全文摘要
一种微纳结构多功能复合材料及其制备方法,属于光催化材料领域。步骤如下将氧化石墨烯溶于水中,超声处理得到氧化石墨烯分散液;将硝酸银溶液搅拌滴加到氧化石墨烯分散液中,得到混合前驱体溶液A;将氨水缓慢滴加到混合前驱体溶液A中,得到混合前驱体溶液B;搅拌后将配制好的磷酸氢二钠溶液缓慢滴加到混合前驱体溶液B中,得到混合前驱体C;然后将配置好的P25溶液缓慢滴加到混合前驱体C中,继续搅拌后,将反应所得到的产物离心分离、洗涤后真空干燥,得到所述复合材料。所制备出的氧化石墨烯/磷酸银/P25微纳结构多功能复合材料在可见光激发下对有机染料罗丹明B具有高效的光催化降解效果,同时对常见的各种细菌具有良好的抑制和杀灭效果。
文档编号C02F1/28GK103120930SQ201210491350
公开日2013年5月29日 申请日期2012年11月28日 优先权日2012年11月28日
发明者李扬, 杨小飞, 崔海英, 秦洁玲, 刘瑞娜, 包杰 申请人:江苏大学
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1