催化剂载体,由其制备的催化剂以及处理烟道气的方法

文档序号:5048133阅读:141来源:国知局
专利名称:催化剂载体,由其制备的催化剂以及处理烟道气的方法
技术领域
本发明涉及烟道气的催化处理。更具体地说涉及一种改进的催化剂载体,由其制得的催化剂以及使用所述催化剂载体的方法。
现有技术的描述来自各种来源例如发电厂的锅炉、化工工艺单元、蒸气重整炉的加热段、燃气或燃油发动机、或水泥窑的烟道气含有许多对环境造成问题的或甚至有毒的化合物。这些化合物包含氮的氧化物(NOx)、硫的氧化物(SOx)、二氧芑、碳氟化合物和汞化合物。
烟道气的催化清洁降低了这些化合物中一些的量,因此总的来说对环境是有利的。在有些地区,立法要求降低烟道气中的这些化合物。
在NOx的选择性催化还原(SCR)中,氮的氧化物通过与还原剂如氨在催化剂上的反应,选择性还原成无害的氮气和水
在燃煤发电厂中,SCR催化剂通常安装在燃料节约装置段的下游和空气预热器和滤尘器如静电沉降器的上游。在其它应用中的安装取决于最佳操作温度和特定的工艺布置。SCR催化剂的操作温度通常在200℃~500℃的范围内。
已知SCR催化剂也能降低来自如垃圾焚烧炉的烟道气中的二氧芑的量。美国专利No.5512259,引入此处作为参考文献,披露了一种使用熟知的Denox催化剂,在氧化条件下降低废气中二氧芑排放量的方法。Denox反应中具有催化活性的金属也适于降解二氧芑。其中提及了钨基、钒基、钛基和钼基催化剂。美国专利No.5387734和No.5276250,两者都引入此处作为参考文献,披露了适于二氧芑降解的催化剂。
某些类型的烟道气含有大份额的悬浮固体,即灰尘或烟灰。这些悬浮颗粒通常来自燃煤锅炉、生物物料燃烧锅炉、共燃锅炉或水泥窑。高灰烟道气中的载固量通常为2至100g/Nm3。
这些固体是灰或飞尘颗粒,源自燃料中未燃尽的无机物,例如锅炉中的煤。飞尘的量在燃煤锅炉中燃烧的煤的5%至30%范围内(US 6571420 B1)。其中飞尘的组成除其它外取决于燃料如煤的类型。通常它主要是Si、Al、Fe、Ca、Mg和碱金属的氧化物和硫化物的混合物。
飞尘颗粒可以具有较宽的粒径分布。数量分布可以由小颗粒(<10μm)决定,尽管以质量计,它们仅占到1%~5%[David H Scott燃烧和气化期间的灰尘行为,CCC/24,IEA Coal Research,1999,ISBN 92-9029-334-9]。中值粒径可以是十到数百微米,进入催化反应器如SCR反应器中的颗粒的粒径,直径可以是0.01~3mm[US 6571420 B1]。
这种固体颗粒可以在设置在上述烟道气流中的催化剂表面上收集。因此,对于烟道气中含有大量的悬浮固体的应用即高灰尘的应用,使用整体式的催化剂(蜂窝状、波纹状或平板型)相对于填充床催化剂更有利。整体式的催化剂具有许多基本上直通的通道,构成蜂窝体或波纹状结构中的孔或平板型催化剂的缝[如US6571420 B1]。对于处理具有高流速的烟道气和催化床不能承受大的压降的方法中,上述催化剂的设计是有用的。
当飞尘在催化剂的正面和通道中收集时,反应器中的压降增加。因此,灰尘和尘埃需要以频繁的间隔去除,如使用借助于热蒸气或热空气使沉积在催化剂近端的灰尘旋流的吹灰器或吹尘器[US 5215953 A]。
飞尘颗粒流过催化剂通道并导致侵蚀,由此催化剂退化[US6616905和US5391530]。侵蚀速率取决于飞尘的组成、粒径分布和气速。例如飞尘中的高含量的石英SiO2引起高的侵蚀倾向[Sverdrup等,燃煤发电厂的风扇侵蚀的控制Phase 1,Westinghouse research laboratories,1981]。此外,较大的颗粒通常具有较大的侵蚀倾向[E.Raask,煤利用中的侵蚀磨损,Hemisphere Publishingcorporation,1988]。
材料的孔隙率的降低,增加了其强度,也由此增强了其抗侵蚀性能[W.D.Kingery,Introduction to Ceramics,Wiley-Interscience,1976]。
在如V2O5基催化剂上的NOx的催化还原是扩散限制的。因此,催化剂材料催化剂载体材料的孔隙率的降低将降低催化体的NOx催化还原性能。
US5391530 A披露了将挤出的TiO2/V2O5/WO3SCR蜂窝体的前沿浸入磷酸铝溶液中,随后进行热处理以增强抗侵蚀性能。
或者,硬的无机填料可用作催化剂载体材料的一部分,以增强抗侵蚀性能。例如US5420085披露了在氮化铝陶瓷复合物中加入硬的SiC颗粒以改善其抗侵蚀性能。这些添加剂或填料可称为催化剂载体的“结构助剂”。
US4929586披露了一种含有合成二氧化硅的NOxSCR催化剂,其中二氧化硅为凝胶状或为其上沉淀有TiO2的沉积体。没有提及有关抗侵蚀性能的特性。
US5198403披露了一种含有锐钛矿型的TiO2以及玻璃纤维(TiO2重量的10%,1-8mm长)和无碱的粘土(TiO2重量的4%)的挤出的SCR催化剂载体。没有提及强度或抗侵蚀特性,但众所周知,纤维可以改善多孔陶瓷结构的强度和硬度。
发现硅藻土用作涂料的填料(填充剂)以及作为催化剂的多孔材料。例如US4284530 A披露了一种含有至少85重量%量硅藻土的SO2氧化催化剂。
硅藻土可具有多种形状,但由于其含有少量的已知吸入后能导致健康问题的石英晶体,以及少量的对催化剂有毒的杂质如铁的氧化物或碱的化合物,因此优选某些形状。
本发明的目的是确定一种得到具有改善的抗磨损或侵蚀性能的催化剂载体的方法以及由此制得的具有高催化活性的催化剂。从而所述催化剂在暴露于烟道气的过程中,由于其提高的寿命而表现更佳。

发明内容
本发明涉及关于抗侵蚀性能的催化剂寿命的提高。
已经发现在TiO2(锐钛矿)基催化剂载体中加入硅藻土,改善了抗侵蚀性能。而且,通过加入硅藻土改进了的催化剂仍保持了优良的催化性能,这在NH3选择性还原成NO的实施例中得以证实。
这种催化剂载体非常适用于烟道气的处理,尤其是具有高的悬浮固体颗粒含量的烟道气。
具体实施例方式
总而言之,本发明涉及对催化剂载体抗侵蚀性能的改善,更具体地说,是通过在所述催化剂载体成型之前,将部分高比表面积的载体替换为作为结构助剂的填料。
用于改善抗侵蚀性能的普通填料除其它外包含磨碎了的玻璃纤维、磨碎的无机物,如石英(SiO2)、金红石(TiO2)、方解石(CaCO3)、刚玉(Al2O3)和高岭土Al2O3.SiO2(OH)4。
用于替代SCR催化剂载体中的锐钛矿型TiO2的选自普通填料的五种材料以及硅藻土,作为示例实施例进行了测试。混合催化剂载体组分以形成浆液,将其涂覆在玻璃纤维席上以在干燥和焙烧后形成平板型催化剂载体。
TiO2优选结晶状的锐钛矿型,比表面积应在40m2/g以上。所述浆液的溶剂可以是水或有机溶剂的混合物(醇,脂肪族或芳香族溶剂),取决于粘结剂的溶解度。粘结剂可溶于水(如PVA,PEG)或有机溶剂(如PVP,树脂),并用作流变改性剂,以及在溶剂蒸发后作为粘结剂。低粘度的浆液可以通过浸涂预成型的结构如洗涂层,成型为催化剂载体。浓缩的浆液或浆糊可以通过挤出或压延为金属丝网或玻璃纤维纸成型为催化剂载体。
关于改善抗侵蚀性能,已表明替代TiO2的最佳材料为硅藻土。硅藻土的量应至少为2重%,并小于80重%,以催化剂载体的重量计。硅藻土的量太多,会使催化剂明显丧失一部分催化活性。
在一个优选实施方式中,所述催化剂载体成型为整体式蜂窝体,波纹状蜂窝体或平板型催化剂载体。
尽管以下实施例阐明了优选实施方式的特性,但本发明并不局限于此,这对本领域的技术人员是显而易见的。例如,整体式催化剂可以通过各种方法成型,例如通过挤出来洗涂波纹状纤维结构,或将可塑性的浆糊涂覆在金属丝网上。此外,待成型的材料混合物中还可含有实际的催化成分或其前体。
在一个优选实施方式中,催化剂由所述催化剂载体来制备,并含有选自V、W、Mn、Nb、Mo、Ni、Fe和Cu的基底金属的氧化物或硫酸盐。上述催化剂适于氮氧化物与,例如氨的选择性还原,或者CO或烃的氧化。在其它实施方式中,含有贵金属如Pt和Pd的催化剂也通过所述的催化剂载体来制备。这种催化剂适于烟道气中的SO2、CO或烃的氧化。
具有这些组成中任意一种的催化剂都很适合于烟道气的处理。在一个优选实施方式中,所述催化剂载体成型为具有多个通道的整体式结构,并用于具有高的气体流速(>0.5Nm/s,温度高于250℃)和大量颗粒物质(>2g/Nm3)的应用中。
在另一个优选实施方式中,所述催化剂载体用于氮氧化物的选择性催化还原。
另一个实施方式涉及烟道气中二氧芑浓度的降低。
实施例实施例1-优选实施例将900g的锐钛矿型TiO2悬浮在1100g含有4重量%的Ti和4重量%水的四异丙基钛酸酯的丁醇溶液中。该浆液在实验室的溶解器中彻底混合,以确保各组分充分混合并将任何团聚物破碎至小于400目。Erichsen Grindometer用于控制该过程。将厚度约为1mm的玻璃纤维席切割成尺寸约为18×5mm。这些席子浸入上述浆液中,以得到湿透的纤维席。干燥后,将该材料在600℃下焙烧2小时。
焙烧之后,催化剂载体用由NH4VO3和(NH4)6H2W12O40制成的溶液浸渍,在空气中400℃下处理,以得到含有1重量%V2O5和7重量%WO3的最终催化剂。
实施例2为改善催化剂载体的磨损强度测试了几种成分。所测试的结构助剂包括金红石型TiO2200目(M.O.Knudsen’s Eftf.,Denmark),石英SiO2G型140目(M.O.Knudsen’s Eftf.,Denmark),1型玻璃纤维Milled FG400/030(Schwartzwalder Textile Werke,Germany),2型玻璃纤维Milled Microglass 3082(Fibertech,USA),高岭土Supreme(ECC International,UK),硅藻土Celite 221M(Celite Corporation,U.S.A.)。
制备步骤如实施例1中所述,但部分的锐钛矿型TiO2粉末用不同的添加剂来替换。锐钛矿型TiO2用结构助剂的替换量在表1中给出。
表1


焙烧之后,催化剂载体样品用由NH4VO3和(NH4)6H2W12O40制成的溶液浸渍,在空气中400℃下处理,以得到含有1重量%V2O5和7重量%WO3的最终催化剂。
实施例3-侵蚀测试术语样品是指按照实施例1和2制备的浸渍和焙烧后的催化剂片。测试样品先在加热炉中,150℃下干燥30分钟至恒重,随后在密封容器中冷却。冷却后,对样品和样品容器进行称重,精度至少为1mg。
样品和容器随后放入含有钢粉分布器的钢管内。测试样品的角度与垂直方向呈22°。钢粉(SS230,平均粒径约为0.5mm)倒至分布板上,从那里滴在样品上。测试后,对用于测试的钢沙的量以及样品进行称重。上述步骤对催化剂组合物重复三次。
磨损量由每千克钢粉的催化剂材料的平均重量损耗来给出。结果在表2中给出。可见最有效的用于替代TiO2以降低磨损量的添加剂是硅藻土。
表2


实施例4-催化性能的测试少量的试样从按照实施例1和2所述方法制备的样品中切下。将这些试样中的四个放入管式反应器中进行催化性能测试。每个测试中,测试的总暴露面积约为30cm2。催化性能的测试在350℃并具有如表3中给出的反应器入口气体组成下进行,面积使所有情形下的空速(space velocity)NHAV标准化为约70Nm3/m2/hr。
表3

将反应器中除去NO的活性定义为活性=-NHAV×ln(1-XNO),其中XNO为反应器中NO的转化率。
如实施例1所述制备的参照样品的除去NO的活性为53.5Nm/hr。按照实施例2所制备的样品的除去NO的活性在表4中给出。在浸渍后,所有增强的催化剂载体对于催化还原NO还是有效的,尽管在增强催化活性方面有所恶化。
对于显示了较低磨损量的催化剂,硅藻土作为结构助剂导致催化活性的降低量最少,由此成为上述催化剂中对TiO2最有效的替代物。
表4

权利要求
1.一种催化剂载体,组成为—主要为锐钛矿形式的TiO2,含量至少为20重量%—硅藻土,含量至少为2重量%,且小于80重量%。
2.如权利要求1所述的载体,其特征在于将其成型为具有多个直通通道的整体式结构。
3.一种由如权利要求1或2所述的载体制得的催化剂,其特征在于含有Pt或Pd,或至少一种选自V、W、Mn、Nb、Mo、Ni、Fe和Cu的基底金属的氧化物或硫酸盐。
4.一种处理烟道气的方法,其特征在于将烟道气与如权利要求3所述的催化剂在催化反应器中在转化条件下进行接触。
5.如权利要求4所述的方法,其特征在于将催化剂与含有固体颗粒的烟道气接触。
6.如权利要求5所述的方法,其特征在于将催化剂与固体颗粒的含量高于2g/Nm3烟道气的烟道气接触。
7.如权利要求6所述的方法,其特征在于与烟道气在温度范围为200℃~500℃,进入催化反应器中的空塔气体速度(superficial gas velocity)范围为0.5~5Nm/s的转化条件下接触。
8.如权利要求4-7中任一项所述的方法,其特征在于是氮氧化物和/或二氧芑的催化选择性还原。
全文摘要
本发明涉及一种催化剂载体以及由此制得的具有改善的抗侵蚀性能的催化剂。催化剂载体含有至少20重量%的主要以锐钛矿型存在的TiO
文档编号B01J21/16GK1628906SQ20041009214
公开日2005年6月22日 申请日期2004年10月15日 优先权日2003年10月15日
发明者J·W·霍, C·S·乔根森 申请人:赫多特普索化工设备公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1