一种磁性印迹材料及其制备方法与应用与流程

文档序号:12077759阅读:367来源:国知局
一种磁性印迹材料及其制备方法与应用与流程

本发明涉及一种用于天然黄酮类或者含有苯环的天然产物富集分离的磁性印迹材料及其制备方法与应用,所述的磁性印迹材料为磁性壳聚糖颗粒枝接大黄酸材料。

(二)

背景技术:

大多数中药和天然药物含有丰富的黄酮类成分,这些成分具有抗脂质过氧化、清除羟自由基和调节血脂功能及抗过敏、抗炎、抗菌、抗突变、抗肿瘤、抗溃疡、抗病毒、保护心血管疾病及保肝等生理活性,被广泛应用于食品、保健品、医药、化妆品等领域。如何分离富集这些成分是新药和保健品开发的重要步骤。

目前一般采用水或酒精提取后,直接用不同有机溶剂反复萃取的方法分离富集黄酮;也有一些用无机碱调节pH值后,再进行有机溶剂反复萃取的方式。获得萃取浸膏后再用聚酰胺或大孔吸附树脂吸附其有效成分的方法纯化分离黄酮类物质,但所得产物黄酮含量均不够高,无法进行更深入的分析及药效药理研究。天然活性成分存在含量低,难于富集,成分复杂,化合物结构相近等特点。现有的天然产物分离纯化方法和技术存在一定的不足,制约了我国天然药物与功能食品研究的发展,研究高效、高选择、简捷地分离纯化方法非常必要。

(三)

技术实现要素:

磁印迹分离是一种应用比较多的印迹分离方式,是将印迹分子洗脱后,留下印迹空穴来俘获混合物印迹分子。但是本发明设计将大黄酸(Rhein)作为印迹分子,以共价键链接到磁性颗粒上,印迹分子不洗脱,利用大黄酸强共轭效果,从复杂干扰体系中分离富集黄酮类或者含有苯环的一些化合物,其应用范围更加广阔。且该方法较传统的印迹分子洗脱的方法简单,易行。

因此,本发明的目的是提供一种磁性印迹材料及其制备方法与应用,所述的磁性印迹材料制备简单、处理量大,生产成本较传统印迹方法大大降低;应用该材料,可以较简单的从天然产物中分离富集黄酮类或者含有苯环的化合物,如黄酮、蒽醌、香豆素等。

为实现上述目的,本发明采用如下技术方案:

一种磁性印迹材料,其制备方法为:

(1)制备Fe3O4磁性纳米颗粒

将FeCl3·6H2O溶解于超纯水中,再加入水合肼、十二烷基磺酸钠、FeSO4·7H2O,待物料完全溶解后,加入氨水(20wt%~30wt%)至pH≥9(优选pH=9~10),接着先于30~50℃下反应0.3~1.0h,再于70~90℃下反应30~90min,之后利用磁铁从反应液中分离出黑色沉淀物,用去离子水、无水乙醇清洗,得到Fe3O4磁性纳米颗粒,置于真空干燥箱(40~60℃)中干燥备用;

步骤(1)中,所述FeCl3·6H2O与水合肼、十二烷基磺酸钠、FeSO4·7H2O的质量比为1∶0.1~2∶0.1~2:0.1~2,优选1∶0.1~1∶0.1~1:0.1~1;所述超纯水的体积用量以FeCl3·6H2O的质量计为10~15mL/g。

(2)制备磁性壳聚糖载体(记作Fe3O4@CTS)

将壳聚糖溶解于体积分数为1%~2%的乙酸水溶液中,得到壳聚糖溶液;将所得壳聚糖溶液滴加入步骤(1)准备好的Fe3O4磁性纳米颗粒中,搅拌均匀,得到磁性壳聚糖溶液;将所得磁性壳聚糖溶液与液体石蜡、乳化剂斯潘80混合,于25~40℃下搅拌15~45min,接着调节pH(用5wt%NaOH水溶液)为8.5~9.5,再加入戊二醛,升温至50~70℃搅拌1~2h,之后利用磁铁从反应液中分离出磁性微球,用石油醚、超纯水洗涤至中性,得到磁性壳聚糖载体,置于真空干燥箱(40~60℃)中干燥备用;

步骤(2)中,所述壳聚糖溶液中,壳聚糖的浓度为0.5wt%~2wt%;所述壳聚糖溶液的体积用量以Fe3O4磁性纳米颗粒的质量计为50~150mL/g;所述磁性壳聚糖溶液与液体石蜡、乳化剂斯潘80、戊二醛的体积比为1∶0.5~1.5∶0.01~0.1∶0.02~0.05。

(3)磁性壳聚糖颗粒枝接大黄酸材料制备(记作MCTS)

将印迹分子大黄酸、羧基活化剂N-羟基丁二酰亚胺(NHS)、吗啉乙磺酸(MES)缓冲液混合,置于20~40℃下活化10~40min,活化后加入1-乙基-(3-二甲基氨基丙基)碳酰二亚胺盐酸盐(EDC)、步骤(2)准备好的磁性壳聚糖载体,在常温(20~30℃)下搅拌反应6~18h,大黄酸通过共价键结合在磁性壳聚糖载体颗粒之上后,利用磁铁从反应液中分离出负载大黄酸的磁性固体颗粒,用碳酸氢钠水溶液(5wt%~20wt%)、乙醇、超纯水洗涤至洗脱液中无游离的大黄酸为止,置于真空干燥箱(40~60℃)中干燥后,得到所述的磁性壳聚糖颗粒枝接大黄酸材料,即磁性印迹材料;

步骤(3)中,所述大黄酸与N-羟基丁二酰亚胺、1-乙基-(3-二甲基氨基丙基)碳酰二亚胺盐酸盐的物质的量之比为1:0.3~0.6:1.0~1.5;所述吗啉乙磺酸缓冲液的浓度为25~75mmol/L,pH为6~7;所述吗啉乙磺酸缓冲液的体积用量以大黄酸的质量计为300~500mL/g;所述大黄酸与磁性壳聚糖载体的质量比为1:0.5~2。

本发明制得的磁性印迹材料可应用于天然黄酮类或者含有苯环的天然产物的富集分离,如黄酮、蒽醌、香豆素等。

本发明的有益效果在于:

本发明目的是提供一种磁性印迹材料及其制备方法与应用,本发明设计将大黄酸(Rhein)作为印迹分子,以共价键链接到磁性颗粒上,印迹分子不洗脱,利用大黄酸强共轭效果,从复杂干扰体系中分离富集黄酮类或者含有苯环的一些化合物,其应用范围更加广阔。且该方法较传统的印迹分子洗脱的方法简单,易行。所述磁性印迹材料制备简单、处理量大,生产成本较传统印迹方法大大降低;应用该材料,可以较简单的从天然产物中分离富集黄酮类或者含有苯环的化合物,如黄酮、蒽醌、香豆素等。

(四)附图说明

图1:本发明磁性印迹材料的合成路线;

图2:实施例1中制备的磁性印迹材料MCTS的扫描电子显微镜图;

图3:磁性粒子的IR图,A.Fe3O4、B.Fe3O4@SiO2、C.Fe3O4@SiO2-CH=CH2

图4:实施例2固相萃取过程中豆奶HPLC图,A:染料木苷标准液、B:大豆苷标准液、C:洗脱液,1-大豆苷、2-染料木苷);

图5:实施例3固相萃取过程中样品HPLC图,A:洗脱液、B:知母提取液,1-新芒果苷、2-芒果苷、3-知母皂苷BII、4-知母皂苷BIII。

(五)具体实施方式

下面通过具体实施例对本发明作进一步的说明,但本发明的保护范围并不仅限于此。

实施例1磁性印迹材料的制备与表征

(1)制备Fe3O4磁性纳米颗粒

采用改良的共沉淀法,将2.5g FeCl3·6H2O溶于30mL超纯水中,待完全溶解后,加入1mL水合肼以及1%(w/w)十二烷基磺酸钠,接着再加入1.0g FeSO4·7H2O,等其完全溶解后,将10mL质量分数为26.5%的氨水(AR)迅速倒入其中并进行剧烈搅拌。然后再滴加氨水使混合溶液的pH=9。在40℃的条件下反应0.5h,继而在80℃条件下反应60min。反应结束后,利用磁铁把黑色沉淀物从中分离出来,反应液弃去,然后交替用去离子水、无水乙醇各清洗3遍,得到Fe3O4磁性纳米颗粒置于真空干燥箱中干燥备用。

(2)制备磁性壳聚糖载体(Fe3O4@CTS)

首先称取1g壳聚糖分散溶解于100mL2%(V/V)的HAc水溶液中,配制成浓度为1%(W/V)的壳聚糖溶液。把配制好的壳聚糖溶液用恒压滴液漏斗滴加进1g步骤(1)制备好的Fe3O4磁性纳米颗粒中,机械搅拌2h,得到磁性壳聚糖溶液。

取50mL磁性壳聚糖溶液加入40mL液体石蜡中,再加入乳化剂斯潘80 0.5mL(约10滴),30℃条件下搅拌30min,调pH=9,再加入2mL戊二醛,升温至60℃,机械搅拌1.5h,用磁铁分离得磁性微球,用石油醚、超纯水各洗涤数遍至中性,放入40℃真空干燥箱中干燥备用。

(3)磁性壳聚糖颗粒枝接大黄酸材料制备

精密称取印迹分子大黄酸(0.3g,1mmol)、羧基活化剂N-羟基丁二酰亚胺(0.06g,0.5mmol)、量取100mL吗啉乙磺酸(MES)缓冲液(50mmol/L,pH 6.5),将三者混合加入到1L洁净的三口烧瓶中;再将其置于30℃下反应活化20min。活化后取出三口烧瓶,在常温条件下机械搅拌,向里加入(0.25g,1.25mmol)1-乙基-(3-二甲基氨基丙基)碳酰二亚胺盐酸盐及步骤(2)制备好的磁性壳聚糖载体Fe3O4@CTS 300mg,反应12h,大黄酸通过共价键结合在磁性壳聚糖颗粒之上后,用磁铁进行分离,所得磁性固体颗粒用10wt%碳酸氢钠水溶液、乙醇及超纯水交替洗涤,直至洗脱液中无游离的大黄酸为止。将其放入真空干燥箱中干燥备用。此磁性印迹固体记作MCTS。

以上磁性印迹材料的合成路线如图1所示。

(4)磁性印迹材料的表征

采用傅里叶变换红外光谱仪(FTIR)、X-射线衍射仪(XRD)以及扫描电子显微镜(SEM)对磁性粒子(包括Fe3O4、Fe3O4@NH2、Fe3O4@CTS、MCTS)进行表征,观察颗粒的形貌、粒径及化学结构特征的变化情况。

实施例2磁性印迹材料应用于豆奶中异黄酮的富集

原料豆奶购自祖名豆制品有限公司。

向50mL具塞锥形瓶中加入精密称取的MCTS固体50mg,再向里加入5mL豆奶,在30℃条件下放入恒温培养振荡器中进行吸附10min,转速200rpm。利用磁铁吸附沉淀,迅速分离,弃去上层吸附液。剩下的磁性印迹固体MCTS分别用预热过的40℃40%甲醇振荡洗脱5min,恒温空气摇床转速200rmp。然后用磁铁进行固液分离,收集合并洗脱液,将其进行高效液相色谱-紫外检测,分析MCTS固体在吸附后洗脱下来的异黄酮类物质含量的变化。

MCTS对豆奶原液的固相萃取结果如图4所示。MCTS对大豆苷、染料木苷的选择吸附作用较强,说明了MCTS对豆奶中的异黄酮类物质具有明显的富集效果,可以达到分析其异黄酮含量的作用。相比于一般分析方法,此方法具有操作要求低,装置简单,分析时间短,选择性高的优点。

色谱条件:色谱柱为Extend-C18(5μm,4.6×250mm);流动相混合溶剂分别是A(甲醇)和溶剂B(0.5%乙酸·水,v/v);梯度洗脱条件:20%A(3min),20-40%A(3-7min),40-60%A(8-12min),60-20%A(12-15min);紫外检测器,检测波长260nm;流动相流速0.8mL/min;柱温40℃;进样量10μL;大豆苷、染料木苷购自上海同田生物公司

实施例3磁性印迹材料在知母提取液中富集知母中的□山酮类化合物

知母是一味清热解毒的中药,其主要化学成分有知母皂苷、山酮类成分、生物碱、有机酸及知母多糖等。为了验证MCTS能够用于黄酮等含苯环化合物的富集分析,实验对中药知母热水提取物中成分进行富集分离。精密称取之前步骤制备的MCTS固体50mg放入50mL具塞锥形瓶中。再向里加入5mL知母提取液(中药材知母粉碎后,按药材:水固液比1g:8mL的比例,热水回流6小时,按比例补足损失水量制得知母提取液),在30℃条件下放入恒温培养振荡器中吸附10min,转速200rpm。利用磁铁吸附沉淀,迅速分离,收集上层吸附液。剩下的磁性印迹固体MCTS-A分别用2.5mL超纯水、预热过40℃的甲醇振荡洗脱5min,恒温空气摇床转速200rmp。然后用磁铁分离,收集合并洗脱液,将其进行高效液相色谱-紫外检测,比较MCTS-A固体在吸附前后知母萃取液中芒果苷类的含量的变化。得到的吸附液、洗脱液进行监测分析,色谱图如图5所示。由图5可知,MCTS对知母提取液吸附后再洗脱,获得的山酮类物质(主要是新芒果苷与芒果苷)的含量从7.94%上升到84.2%。它说明MCTS-A对目标异黄酮类化合物有良好的吸附解吸附能力,可以对中草药中含量较低下的目标化合物进行富集,对今后要进行的有效分析检测做准备。

色谱条件:Eclipse SB-Aq色谱柱(4.6mm×250mm,5μm);流动相为溶剂C(乙腈)和溶剂D(0.2%乙酸水,v/v);梯度洗脱条件:100%D(6min),0~15%C(6-8min),15~35%C(9-14min),35~65%C(15-20min),65~0%C(21-25min);蒸发光散射检测器(ELSD)参数:载气流速为1.5L/min-1;流速0.8mL/min;漂移管温度为85.0℃,柱温30℃;进样量10μL。新芒果苷、芒果苷、知母皂苷BII、知母皂苷BIII购自上海同田公司。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1