一种用于减少氮氧化物的催化剂床和方法与流程

文档序号:15204888发布日期:2018-08-21 07:34阅读:258来源:国知局

本申请要求2015年12月22日提交的美国临时专利申请序列号62/270859的权益。

本发明涉及一种包含陶瓷或金属泡沫体的催化剂床,所述陶瓷或金属泡沫体包含一种或多种nox还原催化剂,以及一种用于降低气流中nox浓度的方法。



背景技术:

氮的氧化物是许多工业过程中常见的副产物和/或期望的中间体,所述工业过程包括化学品(如硝酸)的制造或空气中的燃烧过程。化学式no和no2的氮氧化物通常统称为nox。nox是大规模的污染物,并且已经为在来自产生其的工艺的废气流中减少nox做出了相当大的努力。从气流中除去nox的工艺在本领域中通常被称为denox工艺,并且其中使用的催化剂被称为denox催化剂。

现有技术描述了这样的工艺,其中将待处理的含有nox的气流中的粉尘捕获在催化剂上,并且接着通过清洁或其他手段从催化剂中除去。举例来说,美国专利4044102描述了一种反应器,其有效地减少来自烟气流的氮氧化物和粉尘。催化剂在移动床中通过以使其与气体接触并夹带粉尘。接着使催化剂通过出口,在那里使其再生并除去粉尘。所述专利教导了在除去nox之前,优选从气体中除去粉尘以防止粉尘积聚在催化剂床的表面上和催化剂颗粒之间的空隙中。

作为另一个实例,美国专利5413699描述了一种反应器,其中使含有粉尘和nox的气体以足够的速度通过催化剂床以使催化剂床流化。将沉积在催化剂上的微粒通过流化磨去或淘去以防止nox催化剂结垢。所述专利教导了10-50mg/nm3的粉尘含量太高而不允许市售denox催化剂的使用寿命长。

另外,许多专利和公开申请涉及陶瓷泡沫体用于处理柴油发动机废气的用途。举例来说,美国专利5536477描述了一种泡沫体陶瓷过滤器,其具有捕集存在于废气流中基本全部烟灰的能力。

固定床催化剂系统由于其优异的活性可以在较低的温度下从工艺流中除去nox;然而,它们也倾向于捕集气流中的大部分微粒,并因此经历快速的压降增加。另一方面,虽然蜂窝状催化剂体系允许微粒物质容易通过,但它们的活性低得多,因此需要高得多的操作温度。优选的是提供一种催化剂和一种工艺,所述催化剂和过程允许在低温下有效地从含微粒气流中除去nox,同时允许大部分粉尘通过催化剂床并且不被捕集在催化剂上。



技术实现要素:

本发明提供了一种包含陶瓷或金属泡沫体的催化剂床,所述陶瓷或金属泡沫体包含一种或多种nox还原催化剂。

本发明还提供了一种用于降低含粉尘气流中nox浓度的方法,包含:a)将含有nox的第一气流送入接触区;b)使第一气流与陶瓷或金属泡沫体催化剂床接触,所述陶瓷或金属泡沫体催化剂床具有一个或多个穿过所述催化剂床的流动路径,其中陶瓷或金属泡沫体包含nox还原催化剂以产生nox浓度降低的第二气流;和c)使第二气流离开接触区,其中第一气流具有至少5mg/nm3的粉尘浓度,并且在于相同条件下测量的情况下,由于粉尘积聚,泡沫体催化剂床的压降相对于泡沫体催化剂床的初始压降增加300%或更少。

附图说明

图1显示了实例1的结果

图2显示了实例2的结果

具体实施方式

本发明的陶瓷或金属泡沫体催化剂床允许气流中的粉尘通过,同时处理气体以减少nox。此催化剂适用于处理来自工业综合体的废气。已经描述的用于汽车发动机排放控制的陶瓷泡沫体具有高的每英寸孔隙以捕集烟灰和微粒。本发明的泡沫体具有较低的每英寸孔隙。如本文所用的术语“粉尘”包含在气流通过时可能会留在催化剂床上的任何小微粒。

本发明的泡沫体允许粉尘通过而不堵塞催化剂床,同时处理废气以除去nox。本发明的催化剂床特别适用于处理来自工业过程和静止涡轮机的废气。

催化剂床被设计成使得气流中的相当一部分粉尘通过催化剂床并与第二气流一起离开。现有技术教导在催化剂上捕获粉尘并提供多种用于从催化剂中除去粉尘的方法。在本发明中,相当一部分粉尘未被捕集在催化剂上,因此给予了催化剂床更长的使用寿命,并且消除了频繁除尘、催化剂流化或其他复杂操作的需要。

陶瓷泡沫体可以包含任何能够提供足够的强度并且为nox还原催化剂提供合适载体(carrier)的陶瓷材料。陶瓷泡沫体优选包含堇青石、氧化钛、氧化铝或其混合物。

金属泡沫体同样可以包含任何能够提供足够的强度并且也是nox还原催化剂的合适载体的金属材料。金属泡沫体优选包含镍、铁、铝、铬或其合金。

在一个实施例中,陶瓷泡沫体可以通过用陶瓷(举例来说,al2o3、zro2)的含水浆料填充发泡聚合物(举例来说,聚氨酯)的孔隙来制备。在适量的润湿剂、分散稳定剂和粘度调节剂存在下,浆料可以在水中含有0.1至10μm直径的颗粒。将湿泡沫体在高于1000℃的温度下在空气中干燥并煅烧。聚合物蒸发或燃烧,而陶瓷颗粒烧结。在另一个实施例中,浆料的粘度可以通过加入增稠剂来提高。此方法进一步描述于j.t.richardson,陶瓷泡沫体催化剂载体的性能:压降(propertiesofceramicfoamcatalystsupports:pressuredrop),《应用催化a:一般(appliedcatalysisa:general)》204(2000)19-32,其通过引用并入本文。

在一个实施例中,金属泡沫体可以通过将镍泡沫体或铁泡沫体转化成高温稳定合金的粉末冶金工艺制备。在此工艺中,将镍或铁泡沫体不断地展开,首先用粘合剂溶液采用喷涂技术涂覆,并且接着用高合金粉末涂覆。之后,将泡沫体切成所需尺寸的片材。此方法进一步描述于g.walther等人,制造用于高温应用的合金泡沫体的新pm工艺(anewpmprocessformanufacturingofalloyedfoamsforhightemperatureapplications),《pm2010世界大会—泡沫体和多孔材料(pm2010worldcongress–foamsandporousmaterials)》,其通过引用并入本文。

泡沫体具有至少60%,优选至少70%,并且更优选至少80%的空隙空间。空隙空间定义为开放结构的体积除以结构的总体积(开口和陶瓷或金属)乘以100。

陶瓷和金属泡沫体具有互连的内部曲折孔隙结构。这也可以被称为具有网状结构。此结构产生穿过泡沫体的湍流气体流,与蜂窝通道内的层流相比,引起与催化剂的接触改善。

陶瓷或金属泡沫体的曲折度优选大于1.0,更优选大于1.5,并且最优选大于2.0。曲折度可以计算为气体穿过陶瓷或金属泡沫体的流动路径长度除以从陶瓷或金属泡沫体的入口到出口的最短直线路径的长度的比值。直线通道路径的曲折度为1.0。

陶瓷或金属泡沫体具有每英寸约5至约50个孔隙,优选每英寸约10至约30个孔隙。泡沫体的每英寸孔隙影响泡沫体允许粉尘通过催化剂床的能力。

在一个实施例中,金属泡沫体的密度在0.4至0.75g/cm3范围内。这提供了可用于处理这些气体的轻质泡沫体。

任何nox还原催化剂均可适用于本发明的工艺中,举例来说美国专利6419889中所描述的那些催化剂。来自美国专利6419889的示例性催化剂包含二氧化钛载体和选自由钒、钼和钨组成的群组中的一种或多种金属化合物。在一个实施例中,nox还原催化剂是二氧化钛催化剂上的钒。在另一个实施例中,nox还原催化剂是二氧化钛催化剂上的钒和钨。

其他合适的催化剂包括金属,如铝、铜、铁、钴、锡、铬、镍、锰、钛、银、铂、铑、钯或其混合物的氧化物。金属氧化物可以负载在任何常规载体或其他材料上,举例来说,氧化铝、硅-氧化铝、氧化镁-氧化铝、二氧化钛、氧化铝、氧化钙-氧化铝、氧化铬-氧化铝或二氧化硅-氧化铬-氧化铝。

另外,含有铜或铁的沸石催化剂可用于nox还原。一个优选的实例是铁交换的沸石β。沸石催化剂可以包含其他金属,如铂、钌、钯、锇、铑或其混合物。

催化剂通过氮吸附测量的表面积可以在约70m2/g与约150m2/g之间。催化剂可以具有双峰孔隙分布,并且超过90%的孔隙体积存在于直径为至多约100nm的孔隙中,其中孔隙体积被认为是存在于直径在约1nm与约104nm之间的孔隙中的孔隙体积。

催化剂可以通过以下来制备:在干燥和煅烧载体之后或在挤出之后用(一种或多种)金属化合物浸渍或沉积载体,接着干燥,并且接着煅烧所述载体。浸渍可以通过使载体与(一种或多种)金属化合物的水溶液接触来进行。在一个实施例中,金属草酸盐溶液可以用于浸渍。催化剂也可以通过将载体与金属化合物共同研磨以形成固体混合物来制备。根据这些方法形成的催化剂可以在通过涂覆而施用在陶瓷或金属泡沫体上之前,在浆料中被研磨或碾磨至特定的粒径分布。

用于将催化剂添加至泡沫体中的另一种方法是催化剂沉积,其通过对载体进行孔隙体积浸渍,并且接着将经过浸渍的载体沉积在泡沫体上来进行。另一种方法包含制备金属(举例来说,钛和钒)的涂层浆料,并且接着将其沉积在泡沫体上。

nox还原催化剂还可以包含有助于将催化剂粘合到载体(support)和/或陶瓷或金属泡沫体上的粘合剂材料。

用于降低含微粒气流中nox浓度的方法包含使含有nox的第一气流进入接触区。气流可能来自多个来源,包括发电厂、热裂解炉、焚化炉、冶金厂、化肥厂和化工厂。气流包含相当大量的粉尘。

气流包含至少5mg/nm3的粉尘。本发明的方法可以处理具有至少10mg/nm3的粉尘的气流。所述方法能够处理具有至少20mg/nm3的粉尘,优选至少30mg/nm3的粉尘,并且更优选至少70mg/nm3的粉尘的气流。

使气流与陶瓷或金属泡沫体催化剂床接触,其中所述催化剂床包含nox还原催化剂以产生第二气流。催化剂床具有一个或多个穿过所述催化剂床的流动路径,其允许气流与nox还原催化剂之间的接触。

气流中nox的还原可以在0kpa至1200kpa范围内的压力和100℃至400℃范围内的温度下进行。温度优选在100℃至350℃的范围内,更优选在100℃至250℃的范围内,并且最优选在140℃至220℃的范围内。

许多催化剂需要更高的温度以实现nox的高转化率。优选使用在上述温度下具有高活性和选择性的催化剂,从而可以使用较低的温度。在接触条件下,nox还原催化剂可以通过化学转化除去至少大部分的nox。第二气流含有至多40%存在于进料气流中的nox。此第二气流含有至多25%存在于第一气流中的nox,优选至多5%存在于第一气流中的nox,并且更优选至多1%存在于第一气流中的nox。

第二气流含有至少50%存在于进料至催化剂床的第一气流中的粉尘。第二气流优选包含至少60%存在于第一气流中的粉尘,并且更优选包含至少80%存在于第一气流中的粉尘。即使在包含高含量粉尘的气流通过泡沫体持续一段时间后,整个陶瓷或金属泡沫体上的压降也不会显著增加。整个泡沫体催化剂上的压降可能在操作过程中增加,但不足以影响denox系统的操作。在气流含有至少5mg/nm3粉尘的条件下,在整个操作过程中,在于相同条件下测量的情况下,泡沫体催化剂床的压降相对于初始压降增加300%或更少。优选地,在整个操作过程中,泡沫体催化剂床的压降相对于初始压降增加200%或更少。由于泡沫体催化剂床中积聚了一些粉尘,压降增加。

实例

实例1

在此实例中,测试denox催化剂粒料(a)的固定催化剂床和泡沫体陶瓷denox催化剂(b)的固定催化剂床以测定使具有高粉尘含量的气流通过催化剂床的效果。催化剂粒料为3.2mm三叶形粒料。陶瓷泡沫体denox催化剂具有每英寸18个孔隙。测试在粉尘过滤实验室中进行,并且包含使含有浓度为70mg/nm3的粉尘的空气通过催化剂床。粉尘的平均粒径为1微米。使用相同的颗粒和浓度以比较两种类型的催化剂床。测量环境温度和压力下整个催化剂床的压降。此测试的结果展示在图1中,其中在含有粉尘的气流通过催化剂床的时间期间,绘制背压随所述时间(以分钟为单位)的变化。

如从图中可见,陶瓷泡沫体催化剂最初的背压比催化剂粒料更低。此外,当粉尘通过催化剂床时,陶瓷泡沫体的背压仅轻微增加,而粒料催化剂的背压迅速增加至最大系统设计压力。此时,催化剂粒料必须在可以继续使用之前进行清洁。

除测量背压之外,还测量了通过泡沫体陶瓷催化剂床的粉尘的量。最初,当测试开始时,60%的进入陶瓷泡沫体的粉尘通过催化剂床。在气流通过陶瓷泡沫体催化剂床达给定时间之后,通过泡沫体的粉尘的量被测定为64%。此实例展示,陶瓷泡沫体催化剂床可以在高粉尘条件下操作,并且催化剂粒料在高粉尘条件下不能有效操作。

实例2

在此实例中,测试了三种催化剂以测定它们对nox转化的活性。第一测试(c)使用具有每英寸30个孔隙的陶瓷泡沫体催化剂。第二测试(d)使用具有每英寸18个孔隙的陶瓷泡沫体催化剂。第三测试(e)使用3.2mm三叶形催化剂粒料。测试在固定床反应器中进行,并且所有三个试验的催化剂负载量相同。所有三个测试的空速维持在恒定的22,000hr-1,并且测试在环境压力下进行。入口气体组成为300ppmnh3、200ppmno、10%h2o、7.5%o2,其余为氮气。使用ftir仪器分别监测催化剂床前后的no浓度。实例的结果显示在图2中。如从图中可见,陶瓷泡沫体的活性与催化剂粒料相当,并且在较高温度下的活性比催化剂粒料更高。

这些实例展示,陶瓷泡沫体催化剂可以用于有效地降低气流中的nox含量,并且此外陶瓷泡沫体催化剂床可以在高粉尘条件下使用。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1