一种新型多孔麻纤维重金属吸附剂的制备与应用的制作方法

文档序号:14451312阅读:384来源:国知局

本发明属于吸附材料制备领域,具体涉及一种新型多孔麻纤维重金属吸附剂制备与应用。



背景技术:

由于大量重金属废水的排放,重金属污染引起全世界的广泛关注,对生态系统和人类健康带来严重危害.常见去除水中重金属方法包括化学沉淀、吸附、电化学还原、生化处理等。其中,吸附法因其低淤泥量、易操作等优点而备受关注。而常用的吸附存在成本高、吸附容量低或重复利用性差等不足。高效、低成本、可重复利用是吸附剂用于实际重金属废水处理所必须满足的条件。。

植物生物吸附剂由于其低成本、生物量大的优势而备受关注,然而其低吸附容量、重复利用性差的缺点严重制约它们用于实际废水处理;传统酸碱处理只能对植物纤维表面改性,吸附容量难以显著提高,多用于废水粗过滤分离,并且植物叶经酸碱处理后在水中变得粘稠而难回收利用,需与其它材料复合改性才可用于废水处理。

黄麻生物量位居世界麻类第二,其茎和杆主要用于纺织原料,大量黄麻叶被废弃浪费。黄麻叶片已经被证实对溶液中重金属离子具有良好的吸附性能。本工作以黄麻叶为原料,首次采用索氏提取法一步制备得到多孔黄麻纤维吸附剂(jlf)。纤维中易腐烂粘稠成分被彻底去除,保留稳定的纤维网络结构,形成多孔结构,充分暴露纤维内部官能团,提高重金属吸附容量,极大改善重复利用性。



技术实现要素:

本发明采用索氏提取法一步制备得到多孔黄麻纤维吸附剂(jlf),成本低廉,得率高,并能重复利用。为区别用常规碱处理黄麻叶制备的黄麻吸附剂,将其用jl表示。

制备步骤如下:

1.黄麻叶粉末(粒径为70-90目)加入到20倍体积的氯仿-正丁醇(1:1)索氏提取器,110℃回流2h;

2.所得固体用去离子水洗涤3次,在80℃烘干24h;

3.每使用一个循环后,吸附剂用0.5m的hcl洗脱重金属离子,再用0.1m的naoh溶液和去离子水处理。

本发明还公开了制得多孔黄麻纤维吸附剂用于处理含重金属离子废水的方法:

本发明的有益效果如下:

1.采用索氏提取技术一步制备植物纤维多孔吸附剂操作简单;

2.所得吸附剂可以在ph5~8范围内很好吸附废水中的重金属离子,对cd(ii)吸附容量高达198.79mg/g;

3.所得吸附剂可以在高硬度的废水中有效吸附cd(ii),具有很强抗干扰能力;

4.所得吸附剂具有良好的重复利用性和实际重金属废水处理性能,尤其对pb、cd和cr有很好去除效果.

附图说明

图1中(a)为jl的sem(电镜扫描图);(b)jlf的电镜扫描图;(c)jlf的bet(比表面积图),(d)是jlf的ftir(红外光谱图)。

图2中(a)显示jlf颗粒大小对cd(ii)吸附的影响;(b)显示ph对cd(ii)去除效率的影响;(c)显示温度对cd(ii)去除效率的影响;(d)是废水硬度对jlf吸附cd(ii)抗干扰能力的影响。

图3中(a)是jlf吸附cd(ii)动力学曲线,(b)是jlf吸附cd(ii)的等温吸附曲线。

图4中(a)是jlf吸附cd(ii)后的红外图,(b)是jlf吸附cd(ii)前后的xps全谱图,(c)和(d)是jlf高分辨xps图。

图5中(a)是jlf和jl重复利用1-5次后的去除率;(b)是重复5个循环后jlf的sem(电镜扫描图),jl(c)的sem(电镜扫描图)。

图6为索氏提取器。

具体实施方式

以下所述仅为本发明的较佳实施案例,对本发明并不构成限制,并且本领域技术人员在不脱离所附权利要求的范围情况下可设计出替换实施例。

实施例1索氏提取法处理黄麻叶粉末

10g黄麻叶粉末加入到200ml氯仿-正丁醇(1:1)索氏提取器,110℃回流2h,固体用去离子水洗涤3次,在80℃烘干24h.吸附剂制备成本约为0.7万元/吨,远低于常用水处理硅胶(8万元/吨)和水处理吸附碳(3万元/吨)。作为对比,用常规碱处理黄麻叶制备黄麻吸附剂(jl).

实施例2jlf吸附剂形貌与特性

黄麻叶用碱处理后,表面覆盖少量丝状物(图1a),而索氏提取法处理后,得到多孔的黄麻纤维(图1b)。后者的比表面积为64m2/g,几乎是前者3倍(23m2/g)(图1c)。索氏提取强化了可溶性物质的溶解析出,形成多孔结构,充分暴露纤维内部官能团,并为金属离子的扩散提供快速通道.红外光谱显示(图1d),jl和jfl除了都具有纤维素中-ch2峰外(1315、1070、1420和2910cm-1),jlf中的o-h(3250cm-1)和n-h(1653cm-1)峰强度明显增强,证实羧酸衍生物在索氏提取过程中分解更充分,释放出更多羧基和氨基。

实施例3颗粒大小对jlf吸附cd(ii)的影响

图2a显示jlf颗粒大小对cd(ii)吸附的影响.cd(ii)的去除效率开始随吸附剂颗粒变小(目数越大)而升高;但颗粒更小时(目数大于80),去除效率反而下降.原因是:颗粒开始变得越小,比表面积越大,暴露吸附活性位点越多,吸附效率更高;当颗粒变得更细时,容易发生聚集,暴露吸附活性位点下降,吸附效率下降。因此,颗粒度为70-90时,jlf的吸附效果最佳。

实施例4ph对吸附cd(ii)的影响

ph可影响金属离子水合赋存状态及吸附剂表面电荷状态.图2b显示cd(ii)去除效率随ph的升高而升高,在ph5以后保持稳定.因为ph越高,吸附剂表面负电荷密度越高,有利于静电吸附带正电荷金属离子.当ph达到金属离子沉淀ph时(phbsp),金属离子便会氢氧化物形式沉淀.对于cd(ii)浓度40mg/l以内的含cd(ii)废水(phbsp=8.57),jlf可在ph5~8宽的范围内很好吸附cd(ii)。

实施例5溶液中其他离子对jlf吸附cd(ii)的影响

图2b还显示溶液离子(na+)强度对cd(ii)去除的影响.当na+浓度<0.01m时,离子强度对cd(ii)去除影响不大;只有当na+浓度高达0.1m时,离子强度对cd(ii)去除影响才明显.

实施例6溶液温度对jlf吸附cd(ii)的影响

图2c表明,吸附效率和吸附容量随着温度升高而升高,说明该吸附过程是一个吸热过程。热力学计算表明(表1),热焓(δh0)为正值,也证实该吸附为吸热过程,升高温度有利于吸附。

表1热力学参数

实施例7废水硬度对jlf吸附cd(ii)的影响

图2d表明,当水中ca(ii)或mg(ii)离子是cd(ii)浓度20倍时,cd(ii)的去除效率为92%;当ca(ii)或mg(ii)离子是cd(ii)浓度60倍时,cd(ii)的去除效率仍然高达86%。结果表明,该吸附剂可以在高硬度的废水中有效吸附cd(ii),具有很强抗干扰能力。

实施例8吸附剂jlf的吸附动力学研究

吸附动力学研究表明(图3a),在前20min吸附速率很快,在60min分钟内cd(ii)去除率达到80%以上,在120min内基本达到吸附平衡,cd(ii)去除率达到94%。分别采用伪一级动力学(方程1)和伪二级动力学模型(方程2)来拟合实验数据:

qt=qe(1-exp(-k1t))(1)

其中,qe、qt、k分别代表平衡时金属离子吸附量、一定时间内金属离子吸附量和平衡速率常数。计算结果可以看出(表2),两种模型相关系数(r2)很接近,说明cd(ii)吸附包含化学吸附和物理吸附。

实施例9吸附剂jlf的吸附热力学研究

等温吸附曲线显示(图3b),吸附效率随温度的升高而升高,这与图2c的结果一致。分别采用langmuir(方程3)和freundlich(方程4)模型来分析实验数据[20]

其中,ce、qe、qm和k分别代表金属离子平衡浓度、平衡吸附容量、最大理论吸附容量和平衡吸附常数.计算结果显示(表3),langmuir相关系数(r2)明显高于freundlich,暗示cd(ii)在jlf表面是均一单层吸附,313k时最大理论吸附量为198.79mg/g.还发现,langmuir分离因子(rl)处于0与1之间,暗示jlf表面有利于cd(ii)的吸附和脱吸附。

表2动力学参数

表3等温吸附参数

实施例10jlf吸附机理研究

采用ir和xps表征来分析jlf吸附cd(ii)前后官能团和原子结合能的变化(图4).相比吸附前ir谱图(图1d),吸附cd(ii)后,羧羟基峰(1580-1250cm-1)强度减弱,并出现一个新吸收峰(1383cm-1)(图4a),暗示吸附位点很可能是羧基。xps结果显示,吸附后出现明显的cd峰(图4a和c),n1s结合能变化很小(+0.09ev);而吸附cd(ii)后出现一个新的o1s峰(535.89ev),并且c=o中o1s结合能从530.87ev移到低场531.20ev,而c-oh中的o1s结合能从532.08ev移到高场532.29ev,暗示c=o中o的电子云密度向c-oh偏移(图4d),说明cd(ii)与羧羟基结合在一起。

实施例11吸附剂jlf的重复利用性

吸附剂的重复利用性是吸附剂实际利用性的一个重要指标.每使用一个循环后,吸附剂用0.5m的hcl洗脱cd(ii),再用0.1m的naoh溶液和去离子水处理.经过5个使用循环后,jlf仍然保持高度稳定的cd(ii)去除效率,而jl对cd(ii)去除效率逐渐下降,且去除效率远低于jlf(图5a)。sem结果显示,经历5个循环后,jlf仍然保持高度的多孔结构,而jl表面致密凌乱(图5b和c)。结果表明,索氏提取技术可以直接从植物制备高度实用的吸附剂。

实施例12实际废水处理

用不同剂量的jlf处理水口山冶炼废水,结果见表4.在低吸附剂量(1g/l)时,pb、cd、cr和fe的去除率达到96%以上;当吸附剂量提高到2g/l,pb、cd和cr的浓度低于0.001mg/l以及fe的浓度低于0.01mg/l(原子吸收对fe的最低检测限);当吸附剂量提高到4g/l,其它金属离子的浓度均下降到较低的水平。结果表明,jlf吸附剂在实际重金属废水处理方面有着巨大潜力。

表4实际废水处理效果

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1