甩液装置的制造方法_4

文档序号:8738820阅读:来源:国知局
,储液装置还可以回收从甩液空间210沉落的液体或液体混合物等。
[0101]甩液装置100在甩液空间210内运转以将储液装置提供给其的液体转化为三维液滴场21A和三维液膜场21B其中的至少一个,产生的三维液滴场21A和/或三维液膜场210B可以吸附由进风口 208进入到甩液空间210内的空气中的杂质污染物,以将进入甩液空间210内的空气转化为净化后的空气,然后净化后的空气可以从壳体上的出风口 209排出,依此循环,空气净化器1000可以持续地净化空气。
[0102]这里,需要说明的是,用于产生三维液滴场210A的甩液装置100可以包括超声雾化喷头、旋转的甩液盘101或者旋转的甩液刷102等,用于产生三维运动式液膜的甩液装置100可以包括旋转的甩液刷102等,其中超声雾化喷头可以用于产生0.1微米到20微米范围内的微细液雾,且通过调节甩液盘101的半径和甩液刷102上刷毛1021的直径、长度和表面结构及其空间分布,可以方便地调节液滴粒径分布模式,另外,还可以通过调节转轴的转速、溅射表面等,实现对液滴粒度分布的范围的调节。
[0103]由此,当含污染物的气体从三维液滴场210A穿过时,不同粒径大小液滴共同作用,高密度的微纳米液滴主要与微纳米颗粒物、液滴及气体发生扩散粘附、凝集、扩散漂移、热漂移、斯蒂芬流、热泳等过程对气体中杂质进行净化,三维多粒径液滴场中的饱和蒸汽、气液温度梯度、化学浓度梯度、涡流效应等都会促进扩散粘附、凝集、扩散漂移、热漂移、斯蒂芬流、热泳等过程,较大的液滴主要与较大的颗粒物、液滴发生碰并、拦截等相互作用而把较大颗粒物和液滴除去,当涡流气体经过下层微细水雾时,可能有部分微细小水雾会随气流运动,但是当气流经过上层大水滴层时,这些水雾也会被洗涤除去。
[0104]由于甩液装置100产生的三维液滴场210A的运动速度、粒度分布范围和模式可以调节为预定要求,从而液滴和气体间传质传热更加高效,且由于甩液装置100产生的三维液膜场210B的速度和范围可以调节为预定要求,从而三维运动液膜能更主动地与气体相互作用,相互作用的范围可以扩展到污染物运动的整个三维空间内,且相对速度也更优,净化效果更好。
[0105]这里,需要说明的是,储液装置内储存的液体可以为水,或者为一些具有特殊功能的液体,例如可以在水中添加健康促溶物,例如一些表面活性剂、有机溶剂等,从而可以增加空气污染物中不溶性的颗粒物、液滴、气体等的溶解性,以便于产生的三维液滴场21A和/或三维液膜场210B更好地吸附污染物,当然,液体中也可以添加化学反应物,通过化学反应来除去空气污染物中不溶性物质,以有效地提高净化效果。
[0106]根据本实用新型实施例的空气净化器1000,通过设置上述实施例的甩液装置100,从而提高了空气净化器1000的净化能力。
[0107]在本实用新型的一个实施例中,壳体包括:外壳201和至少一层内壳204,外壳201的侧壁上形成有进风口 208,至少一层内壳设在外壳201内,且内壳204和外壳201在出风口 209处密封连接,出风口 209位于内壳204的顶部,内壳204内限定出甩液空间210,内壳204的下部形成有与进风口 208连通的连通口 212。
[0108]例如壳体可以包括多层内壳204,其中,外壳201和每层内壳204可以分别大体构造为中空的圆形筒,且外壳201的尺寸大于每层内壳204的尺寸,多层内壳204可以为多层嵌套式结构,外壳201可以套设在最外层的内壳204之外,外壳201与多层内壳204的顶部连接在一起,外壳201与最外层的内壳204共同限定出外进风通道,每相邻的两层内壳204之间限定出内进风通道211,最内层的内壳204的内部限定出甩液空间210,外壳201周壁的上部可以形成有进风口 208,最内层的内壳204的顶部敞开以形成出风口 209,最内层的内壳204的底部敞开以形成连通口 212。
[0109]其中,进风口 208与外进风通道相连,外进风通道与多个内进风通道211相连通,多个内进风通道211相互连通,且多个内进风通道211与连通口 212相连通,连通口 212与甩液空间210相连通,甩液空间210与出风口 209相连通,从而从进风口 208进入的空气可以依次流经外进风通道和多个内进风通道211、再流入甩液空间210,最终由甩液空间210顶部的出风口 209流出,以完成净化。
[0110]这里,需要说明的是,外进风通道、多个内进风通道211和甩液空间210的连通方式可以为蛇形连通方式,也就是说,空气从进入外进风通道后可以沿蛇形顺次流经外进风通道和多个内进风通道211,并最终流入甩液空间210。另外,本实用新型不限于此,外进风通道、多个内进风通道211和甩液空间210之间还可以通过在每层内壳204周壁上开设通风口而连通。由此,通过设置多层内壳204,可以延长空气的流通路径,以提高净化效果。
[0111]当然,壳体还可以仅包括一层内壳204,内壳204构造为顶部和底部分别敞开的圆筒,且套设在外壳201内,内壳204的顶部与外壳201可以通过上隔板205相连以限定出底部敞开的进风通道211,内壳204内限定出顶部和底部分别敞开的甩液空间210,甩液空间210的顶部敞开以构造为出风口 209,甩液空间210的顶部敞开以构造为连通口 212,连通口212与进风通道211的下端相连通。
[0112]进风口 208和连通口 212之间设有彼此间隔开设置的至少一个导风板500。也就是说,进风通道211 (包括外进风通道和多个内进风通道211)内可以设有一个或者多个导风板500,当导风板500为多个时,多个导风板500可以彼此间隔开设置。例如在图10的示例中,进风通道211内设有一个导风板500,一个导风板500可以沿螺旋线盘绕在内壳204的外周壁上,且导风板500的外周壁可以与外壳201的内周壁相连,导风板500的上端从进风口 208处开始向下延伸,导风板500的下端延伸至进风通道211的下端,且与连通口 212相连通,从而从进风口 208流入进风通道211的空气可以沿着导风板500流入甩液空间210内。另外,甩液空间210内也可以设置涡流导风板500,且导风板500的外周壁可以与内壳204的内周壁相连。
[0113]这里,需要说明的是,虽然气流有一定的运动方向,但在气流内部,气体分子在不停地作着热运动,从而在气体分子的撞击下,微细微粒做复杂的布朗运动,然而,运动过程中,气体分子和微细微粒与液滴接触而被捕集,由此,净化效率与液滴直径成反比,与液滴的密度和数量成正比,与颗粒物和液滴的相对速度成正比。
[0114]理论上传质传热效率比较高的液滴粒径是零点几微米左右到几百微米,但实际应用中,当液滴直径太小,导致液滴随气流一起运动,液滴和气流的相对速度减小,不利于碰撞数的增加,从而通过选择净化效率较低的直径为500—1000微米的液滴来完成净化。从而当空气的流动速度较快且空气的流动风路较短时,由于空气的热运动和布朗运动较慢,将会导致对粒径为2.5的颗粒物和气体分子的去除效率较低。由此,通过在进风通道211内设置导风板500,从而可以加强空气进入甩液空间210后的紊流运动(或涡流或湍流运动),提高对各种尺寸颗粒物的净化效果。
[0115]由此,根据本实用新型实施例的空气净化器1000,为空气提供了折反式、涡流式、文丘里式风路,从而有效地提高了净化效果。具体地,通过设置外壳201和至少一层内壳204,从而限定出了至少一次的折返结构的进风通道211,且进风通道211内设置有涡流导风板500,空气可以从进风口 208涡旋而入,并沿着进风通道211内的螺旋导风板500形成旋风涡流进入甩液空间210内,甩液空间210内可以设有涡流导风板500、旋转纤维刷、涡流风扇702等涡流发生装置,在进风通道211内形成为涡流的空气与导风板500表面的液膜(这里,可以向导风板500上喷射液体以使导风板500上形成液膜,具体实施方法将在下文中详述)相互作用而初步分离净化,导风板500上还可以形成有密密麻麻的小孔以形成为板式填料塔泡沫净化效应。
[0116]这样,空气流入形成有三维多粒径液滴场的甩液空间210内后,甩液空间210内的涡流导风板500与甩液装置100之间形成狭缝,以模拟文丘里式净化效应。综上所述,折返式设计延长风路,文丘里式狭缝和小孔可以增加局部风速,涡流导风板500可以加剧涡流,导致气液相互作用时间延长,大范围不规则布朗扩散作用对小粒径呼吸尘和气体效果好,而在狭缝和小孔局部加快风速,较大颗粒物的碰并效率提高。另外,涡流气体与三维多粒径液滴场或三维运动的液膜方向呈钝角反向相互作用,涡流作用增加了液滴和气体相对速度,增强了相互作用效率。
[0117]内壳204的底部形成有回液口 207,其中甩液装置100设在内壳204内,储液装置设在回液口 207的下方。如图10所示,外壳201内还可以安装下隔板206,下隔板206位于外壳201内的下部,且位于内壳204的下方,甩液空间210和进风通道211限定在下隔板206以上,下隔板206上的中心处可以形成有沿上下方向贯穿的回液口 207,回液口 207位于内壳204的底部,将甩液装置100安装在甩液空间210内后,回液口 207位于甩液装置100的底部,下隔板206的下端面与外壳201限定出安装空间,储液装置设置在下隔板206下方的安装空间内,且位于回液口 207的下方。由此,甩液空间210内沉落的液体可以通过回液口 207流入储液装置内,以对甩液空间210内的净化液体进行回收。
[0118]回液口 207处可以设有回液管2071,回液管2071形成为漏斗状,且回液管2071的上端与内壳204的底壁密封连接,回液管2071的下端伸入到储液槽301内。
[0119]具体地,储液装置可以构造为储液槽301,储液槽301内设有净化网304以将储液槽301内部分隔成回收腔305和位于回收腔305下方的供液腔306,其中回收腔305与回液口 207连通。参照图10,储液槽301大体构造为中空的容器,储液槽301的顶部形成有沿上下方向贯穿进液口 303,进液口 303与回液口 207上下正对,净化网304可以水平地安装在储液槽301内,以将储液槽301内的空间分隔成上下两部分,其中上部分为回收腔305,下部分为供液腔306,由此,从回液口 207留下的液体可以通过进液口 303流入储液槽301内的回收腔305内,回收腔305内的液体在净化网304的过滤作用下再流入供液腔306内,从而供液腔306内存储的为净化后的干净液体。可选地,净化网304还可以为活性炭网、或者其他多孔材料网,以用来吸附液体中的各类气体污染物,
[0120]供液腔306与甩液空间210连通以向甩液空间210内供入液体。参照图10,供液腔306可以通过供液管601连通至甩液空间210,其中,供液管601的下端可以向下穿过下隔板206且伸入储液槽301内的供液腔306内,供液管601的上端竖直地设在容纳空间内,且供液管601的侧壁上可以插设有多个子供液管602,每个子供液管602的固定端与供液管601相连,每个子供液管602的自由端延伸至甩液组件,供液管601上可以设置液泵603,当液泵603开启后,液泵603可以将供液腔306内的液体抽出,且抽出的液体可以沿着供液管601和多个子供液管602供送给甩液装置100。
[0121]这里,需要说明的是,为了解决某些被冲刷到水溶液里的有机物、细菌等再次进入空气造成二次污染的问题,通常情况下,由于污染物浓度不会特别高,所以提高换液频率便可以达到很好的净化效果,但有些时候由于忘记更换液体,或者由于其他原因可能会导致液体中污染物浓度比较高,为此,可以通过向储液槽301中添加Ag离子、高锰酸钾或硫酸铜等常用的杀菌消毒剂以对液体进行杀菌、消毒、除螨等,另外,当向液体中添加高锰酸钾的
当前第4页1 2 3 4 5 6 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1