选择性石脑油脱硫处理和催化剂的制作方法

文档序号:5100948阅读:204来源:国知局
专利名称:选择性石脑油脱硫处理和催化剂的制作方法
背景技术
本发明所从属的技术领域是含烯烃石脑油的选择性加氢脱硫。希望得到的产品是硫浓度降低、同时保持最大烯烃浓度的石脑油流。在原油精炼中,石脑油流是主要产品之一。将这些物流混合以得到被售做发动机燃料的调和汽油。石脑油流,尤其是那些通过热裂化或催化裂化方法如焦化或流态化催化裂化所生产的物流,含有不合需要的高水平硫和合乎需要的烯烃化合物。在所得到的汽油总合中,有价值的烯烃对高辛烷值燃料的希望得到的特性有帮助,因此在加氢脱硫过程中不希望高辛烷值的烯烃被饱和成低辛烷值的链烷烃。对具有改善石脑油流的脱硫特性以使得可以降低裂化石脑油的硫浓度的催化剂有持续的需求。现有技术已经讲解了石脑油原料流的脱硫同时努力最小化烯烃化合物的饱和度所用的加氢脱硫催化剂和方法。虽然存在现在在用的成功商业化的加氢脱硫催化剂,依然还对能够将高水平的脱硫和烯烃饱和度的最小化结合起来的改良催化剂有持续的需求。
信息公开US6126814(Lapinski等人)公开了一个石脑油原料流加氢脱硫的方法,使用含有钼和钴且平均中位孔直径从60到200,钴对钼的原子比为0.1到1,氧化钼表面浓度为0.5×10-4到3×10-4g氧化钼/m2以及以直径计的平均颗粒度小于2mm的催化剂。US6177381(Jensen等人)公开了一种分层催化剂组合物,它含有内核如α-氧化铝和粘合到内核上的外层,其由外部难熔无机氧化物如γ-氧化铝所组成。外层已经被均匀分散在铂族金属如铂和助催化剂金属如锡上。组合物也含有改性金属如锂。催化剂表现出对烃类脱氢改善的耐久性和选择性。发明还公开了这种催化剂对烃类的加氢有用。US6673237(Liu等人)公开了一个利用单块蜂窝状催化剂床进行石脑油原料流选择性脱硫的方法。US4716143(Imai等人)公开了含有铂族金属成份的表面浸渍催化复合物。
发明概述本发明是利用加氢脱硫催化剂进行选择性石脑油脱硫的方法,在催化剂薄外层中分散有脱硫金属。在本发明的一个实现方案中,加氢脱硫催化剂是一种分层组合物,含有内核和含有无机氧化物的粘合到内核上的外层,其中外层含有被分散在外层中的脱硫金属。在本发明另一个实现方案中,加氢脱硫催化剂是用脱硫金属进行表面浸渍以使得厚度为40到400微米的表层上表面浸渍脱硫金属的平均浓度至少为在载体中心核中的各个脱硫金属浓度的两倍。
图的简要说明图中展现本发明与现有技术的加氢脱硫选择性比较的图表。
发明的详细说明适用于本发明的石脑油原料可含有任何一种或多种常压下在38℃(100)到232℃(450)范围里沸腾的精炼厂物流。石脑油原料通常含有裂化石脑油(它经常含有流体催化裂化装置石脑油(FCC石脑油),焦化石脑油,加氢裂化装置石脑油和从可产生石脑油沸程物流的其他来源而得到的汽油混合组分)。FCC石脑油和焦化石脑油一般是更加类似烯的石脑油,因为它们是催化和热裂化反应的产物,并更优选作为原料用于本发明中。石脑油原料,优选裂化石脑油,一般不仅含有链烷烃、环烷和芳香族化合物,而且还含有不饱和化合物,如开链和环状烯烃、二烯和环烷烃(其带有烯侧链)。裂化的石脑油原料一般含有高达60重量%的总烯浓度。裂化石脑油原料可具有多达15重量%的二烯浓度。高的二烯浓度会导致汽油产品稳定性差和带有颜色。基于原料的重量,裂化石脑油原料的硫含量一般在0.05到0.7重量%的范围里。氮含量一般在5wppm到500wppm的范围里。在现有技术中有许多的加氢脱硫催化剂,而随着它们脱除石脑油沸程烃类的硫的能力,它们成功地使可能存在的烯烃加氢。由于环境的原因,石脑油必须脱硫而烯烃对高辛烷值有贡献,因此在脱硫石脑油中强烈希望尽可能保持最高的烯烃浓度。石脑油脱硫的许多途径已经集中到使用较不苛刻的操作条件和可选择性除去硫而留下大量烯烃未反应的催化剂修改常规的加氢处理方法。出人意料地,发现将装载金属限制到催化剂外层的加氢处理催化剂与其中金属被均匀分布的催化剂相比,对加氢脱硫的选择性相对于烯烃饱和作用更强。依照本发明,催化剂优选含有选自下列的脱硫金属钴、镍、钼和钨。在本发明一个实现方案中所用催化剂载体材料是分层的组合物,含有由相对于外层对催化金属前体具有显著更低吸附能力的物质所组成的内核。一些内核物质基本上也不能被液态烃渗透。内核物质的例子包括,但不限于,难熔无机氧化物、碳化硅和金属。难熔无机氧化物的例子包括但不限于α-氧化铝,θ-氧化铝,堇青石,氧化锆,氧化钛及其混合物。优选的无机氧化物是α-氧化铝。形成内核的物质可被制成各种形状,例如颗粒、挤出物、球状或不规则形状的颗粒,尽管不是所有的材料可以被制成每一种形状。内核的制备可以通过本领域已知的方法来进行,例如油滴、压模、金属成形、成球、造粒、挤出、滚动方法和制丸。优选球形内核。无论是否是球形,优选内核的有效直径为0.05mm到5mm,并更优选从0.8mm到3mm。对于非球形内核,有效直径被定义为如果将其模制成球所应该具有的直径。一旦制出内核,将它在400℃到1500℃的温度下煅烧。此后用难熔无机氧化物层覆盖内核,该氧化物不同于可被用作内核的氧化物,并将它称作外部难熔无机氧化物。该外部难熔氧化物具有好的多孔性,表面积至少为20m2/g,并优选至少为50m2/g,表观容积密度为0.2g/ml到1.5g/ml并选自γ-氧化铝、δ-氧化铝、η-氧化铝、θ-氧化铝、氧化硅/氧化铝、沸石、非沸石型分子筛(NZMS)、氧化钛、氧化锆及其混合物。应该指出的是氧化硅/氧化铝不是氧化硅和氧化铝的物理混合物而是指已经被共凝胶或共沉淀的酸性和无定形物质。在本领域这个术语是众所周知的,见例如US3909450;US3274124和US4988659。沸石的例子包括,但不限于,沸石Y,沸石X,沸石L,沸石β,镁碱沸石,MFI,发光沸石和毛沸石。非沸石型分子筛(NZMS)是那些含有除了铝和硅之外元素的分子筛且包括在US4440871中所述的硅铝磷酸盐(SAPO)、在US4793984中所述的ELAPSO、在US4567029中所述的MeAPO,所有这些被引入作为参考。优选用作外层的难熔无机氧化物是γ和θ氧化铝。γ氧化铝的制备方法是通过众所周知的油滴法(它在被引入作为参考的US2620314中有描述)。油滴法包括通过任何在本领域已讲述的方法来形成铝水凝胶并优选通过铝金属与盐酸反应来形成;将水凝胶与适宜的胶凝剂例如六亚甲基四胺结合,并将所得到的混合物滴入被保持在升高的温度(约93℃)下的油浴中。混合物的小滴留在油浴中直到它们固化并形成水凝胶球。随后从油浴中连续抽出球并通常在油和氨类溶液中经过特定的老化和干燥处理以进一步改善其物理特性。然后洗涤所得到的老化和胶凝球并在80℃到260℃的相对低温下干燥,然后在455℃到705℃的温度下煅烧1到20个小时。这个处理实现水凝胶到相应晶体γ氧化铝的转化。通过形成外层难熔氧化物的浆料然后通过本领域众所周知的方法将浆料涂在内核上来涂上外层。可通过本领域众所周知的方法(一般涉及使用胶溶剂)来制备无机氧化物的浆料。例如,将任一过渡氧化铝与水和酸如硝酸、盐酸或硫酸混合以得到一种浆料。或者,可以通过例如将铝金属溶解在盐酸中、然后将铝溶胶和氧化铝混合来制得铝溶胶。优选浆料含有有机粘合剂,它有助于将分层物质粘合到内核上。这种有机粘合剂的例子包括但不限于,聚乙烯醇(PVA),羟基丙基纤维素,甲基纤维素和羧基甲基纤维素。添加到浆料中的有机粘合剂的量可以从浆料的0.1重量%显著变化到3重量%。外层被粘合到内核上的强度可以通过在摩擦试验过程中所损失的层物质即摩擦损失的量来测量。通过搅拌催化剂,收集细物质并计算摩擦损失来测量第二难熔氧化物的摩擦损失。已经发现,通过使用如上所述的有机粘合剂,摩擦损失小于外层的10重量%。最终,外层的厚度从40到400微米变化,优选从40微米到300微米变化并更优选从45微米到200微米变化。根据外层难熔无机氧化物的颗粒度,肯崩有必要研磨浆料以减小颗粒度同时得到更窄的颗粒度分布。这可以通过本领域已知的方法来实现,如在球磨机中研磨30分钟到5小时并优选从1.5小时到3小时。已经发现使用具有窄颗粒度分布的浆料可以改善外层粘合在内核上的。浆料中也可含有选自氧化铝粘合剂、氧化硅粘合剂或其混合物的无机粘合剂。氧化硅粘合剂的例子包括氧化硅溶胶和氧化硅凝胶,而氧化铝粘合剂的例子包括氧化铝溶胶、勃姆石和硝酸铝。在成品组合物中无机粘合剂被转化成氧化铝或氧化硅。基于浆料的重量,无机粘合剂的量在2到15重量%(以氧化物计)之间变化。通过例如滚动、浸入、喷雾等手段来将浆料涂到内核上。一个优选的技术包括使用内核颗粒的固定流化床并将浆料喷雾到床中来均匀地涂上颗粒。层厚可变化很大,但通常是从40到400微米优选从40到300微米并最优选从50微米到200微米。一旦内核被涂上了外层难熔无机氧化物层后,将所得到的分层载体在100℃到320℃的温度下干燥1到24小时,然后在400℃到900℃的温度下煅烧0.5到10小时以使得外层有效地粘合到内核上并提供分层催化剂载体。当然,干燥和煅烧步骤可被合并成一个步骤。当内核是由难熔无机氧化物(内层难熔氧化物)所组成时,有必要让外层难熔无机氧化物不同于内层难熔氧化物。另外,要求内层难熔无机氧化物相对于外层难熔无机氧化物对催化金属前体具有更低的吸附能力。已经获得分层催化剂载体后,通过本领域已知的手段将催化金属分散到分层载体上。这些催化金属成分可以以本领域已知的任何适宜的方式被沉积在分层载体上。一种方法包括用金属可分解化合物的溶液(优选水溶液)浸渍分层载体。可分解指的是通过加热,金属化合物被转化成金属或金属化合物,同时释放出副产物。本发明催化剂的金属可以通过任意常规的方法被沉积或结合到载体上,例如通过利用所希望的氢化金属的可热分解盐的浸渍或对于本领域技术人员来说是已知的其他方法例如离子交换,优选浸渍法。将氢化金属浸渍到催化剂载体上可以通过使用初始湿法技术来实现。将催化剂载体预煅烧并确定刚好使得所有载体润湿所要添加的水的量。添加浸渍水溶液以使水溶液就含有要被沉积到给定质量载体上的所有氢化成分金属的量。可以分别对每一种金属进行浸渍,包括在浸渍之间插入干燥步骤,或作为单一的共浸渍步骤。然后将饱和的载体分离、排水并干燥以备煅烧用,煅烧一般是在260℃(500)到648℃(1200),或更优选在426℃(800)到593℃(1100)的温度下进行的。在被沉积到内层难熔氧化物或核上之前,可用脱硫金属浸渍外层难熔无机氧化物或与脱硫金属结合。无论如何,在外层难熔无机氧化物中所存在的脱硫金属的量优选在2到20重量%。根据本发明的另一个实现方案,在难熔无机氧化物载体上,催化复合物含有选自钴、镍、钼和钨的脱硫金属,其中脱硫金属被这样地表面浸渍在厚度为40到400微米的表层上,即被表面浸渍的脱硫金属的平均浓度至少为在载体中心核的各自脱硫金属浓度的两倍。本发明这个实现方案的一个必要特征是脱硫金属被表面浸渍到催化载体物质上而且基本上所有的脱硫金属位于催化剂载体外表层至多400微米之内。应该明白的是术语“外表”指的是催化剂颗粒的最外层。“层”指的是厚度基本上一致的层。当在催化剂外表层40到400微米内的金属平均浓度至少为催化剂中心核中的同一金属平均浓度的两倍时,脱硫金属被认为是被表面浸渍了。“基本上所有”指的是至少75%的正被讨论的表面浸渍金属成分。随着接近载体的中心,表面浸渍金属浓度渐渐减小。在催化剂载体中的脱硫金属的实际梯度随着被用来制造催化剂的确切制造方法而变化。所以,脱硫金属的分布最好被定义成被表面浸渍而且基本上所有都位于载体外表层至多400微米之内。优选载体物质的公称直径为850微米或更大。对于直径为850微米的催化剂载体物质,其中75%表面浸渍成分所在的外表层将接近100微米。其中75%表面浸渍金属所在的外表层接近最大值400微米时,催化剂载体的直径将超过200微米。虽然还不完全明白和不希望受任何特定理论的束缚,据信通过限制基本上所有的表面浸渍金属到至多400微米催化剂载体的外表层,就可以更方便和更有选择性地接触这些催化位点,允许缩短烃类反应物和产物扩散路径。通过减少反应物和产物的扩散路径长度,可以缩短和最优化在催化剂颗粒中的停留时间,从而成功获得脱硫反应,同时最小化新鲜原料中烯烃成分的饱和或氢化。这导致对脱硫石脑油所需要产物选择性的提高同时最大化烯烃的保留。本发明的这个实现方案所用到的催化剂载体可以选自在上文所公开和讲述的、适合用作本发明另一个实现方案的外层难熔无机氧化物的无机氧化物。优选此实现方案所用的难熔无机氧化物载体物质是γ和δ氧化铝。在一个实现方案中,可以通过适宜的方式将脱硫金属合并到催化复合物中以获得金属的表面浸渍,其中基本上所有的表面浸渍金属位于催化剂载体颗粒外表层至多400微米之内。可以利用任何已知可以获得在此所述的必要金属分布的技术来实施表面浸渍。将金属表面浸渍到脱硫催化剂上的一个方法是调整浸渍溶液的pH值来控制金属成分的位置。表面浸渍的另一种方法是限制浸渍溶液的总体积以限制浸渍溶液的渗透,从而将金属浸渍到载体颗粒中。在脱硫金属成分已经被表面浸渍到催化剂载体中后,通常将所得到的催化剂复合物在100℃到150℃的温度下干燥,然后在300℃到650℃的温度下煅烧。制成的表面浸渍催化剂优选含有脱硫金属的量在2到20重量%。加氢脱硫条件包括从240℃(400)到399℃(750)的温度和从790kPa(100psig)到4MPa(500psig)的压力。使用本发明催化剂的加氢脱硫方法通常从裂化石脑油原料预加热步骤开始。在进入到燃烧炉进行最后的预热之前,优选将进料在进料/出料热交换器中预热到反应区目标入口温度。在预热之前、当中或之后,可以将原料与富含氢气的气流接触。也可以将富含氢气的气流加入加氢脱硫反应区中。氢流可以是纯氢气或在精炼厂氢流中找到的其他成分与氢气的混合物。优选氢流几乎不含有,如有的话,硫化氢。氢流的纯度优选至少为65体积%氢气,为了得到最好的结果,更优选至少为75体积%氢气。加氢脱硫反应区可由一个或多个含有许多催化剂床的固定床反应器所组成。由于将发生一些烯烃饱和作用而且烯烃饱和和脱硫反应一般都放热,结果在同一反应器外壳中的催化剂层之间或在固定床反应器之间可以采用级间冷却。可以回收从加氢脱硫方法所产生的一部分热量而且在这种选择不适用不适用时,可以用氢骤冷流、空气或冷却水由热交换来获得冷却。
实施例通过挤出含有钴、钼和氧化铝的共研磨糊,形成含有1重量%钴和3.4重量%钼的3.17mm(1/8”)三叶状挤出物颗粒制备出催化剂。金属被均匀地分散到每一个催化剂颗粒的全部中。所得到的这种催化剂被称作催化剂A而且不是本发明的催化剂。将一部分催化剂A压碎成公称直径在1.41mm(0.0937英寸)到2.38mm(0.937英寸)范围里的催化剂颗粒。所得到的这种催化剂被称作催化剂B而且也不是本发明的催化剂。制备出一批含有低表面积的堇青石的核、带有100微米(0.1mm)厚的氧化铝表面层涂层的球形载体物质,其公称直径为2000微米(0.08英寸)。将所得到的这种球形载体物质进行浸渍,生产出氧化铝金属装载量1重量%钴和3.4重量%钼的催化剂。所得到的这种催化剂被称作催化剂C而且是本发明一个实现方案的催化剂。选择一种含有烯烃的石脑油原料来测试上述的催化剂,石脑油原料含50/50体积混合的中间裂化石脑油和重裂化石脑油,其含有2200wppm硫和24重量%烯烃。按同样的方式对每一个催化剂进行预硫化处理并用上述的石脑油原料在下述条件下在加氢脱硫反应区中进行测试压力为1800kPa(250psig),液时空速(LHSV)为3和温度为274℃(525)。在一个移动时间(line out period)后,催化剂A制得一种硫浓度为250wppm但烯烃浓度从24重量%烯烃降到18.5重量%烯烃的石脑油产品。催化剂B制得一种硫浓度为250wppm同时烯烃浓度从24重量%烯烃降到19.5重量%烯烃的石脑油产品。在最初测试条件下(包括入口温度为274℃(525)),催化剂C制得一种硫浓度为600wppm但基本上没有降低烯烃浓度的石脑油产品。在催化剂C的测试过程中,随后将反应器入口温度从274℃(525)提高到296℃(565),产品的硫浓度降低到250wppm同时烯烃浓度从24重量%仅降到20.1重量%。虽然催化剂C的入口温度高于催化剂A和催化剂B以获得相似的产品硫浓度,但观察到高烯烃保留能力这个非常希望的特性。为了证明烯烃保留能力特性,对每一个催化剂计算出一系列的选择性。为了方便起见,选择性被定义为硫转化率除以烯烃转化率并乘以100。另外硫转化率被定义成进料硫减去产品硫再除以进料硫。另外烯烃转化率也被定义成进料烯烃减去产品烯烃再除以进料烯烃。以选择性对在线时间(以小时计)作图以得到对三个测试催化剂计算所得到的选择性。从图中,很显然可看出在恒定的脱硫水平下,在三个所测试的催化剂中,催化剂A的烯烃保留最低。在产品中催化剂B的烯烃保持能力高于催化剂A。图中也显示出,在三个所测试的催化剂的产品中,本发明的催化剂C拥有最高的烯烃保持。所以,本发明成功获得含烯烃石脑油的脱硫同时在脱硫产品石脑油中保持更大的烯烃浓度。前述说明、实施例和附图
清楚地展现了被本发明所包含的优点以及使用它们所能提供的益处。
权利要求
1.分层催化剂组合物,其包含内核和粘合到内核上并且含有其上分散有至少一种选自钴、镍、钼和钨的金属成份的难熔无机氧化物的外层。
2.权利要求1的催化剂组合物,其中内核选自α-氧化铝、θ-氧化铝、碳化硅、金属、堇青石、氧化锆、氧化钛及其混合物。
3.权利要求1的催化剂组合物,其中外层选自γ-氧化铝、δ-氧化铝、θ-氧化铝、氧化硅-氧化铝、沸石、非沸石分子筛、氧化钛及其混合物。
4.权利要求1到3中任一项的催化剂组合物,其中外层含有至少一种金属成份,其量为2重量%到30重量%。
5.权利要求1到3中任一项的催化剂组合物,其中外层厚度为40到400微米。
6.权利要求1到3中任一项的催化剂组合物,其中相对于外层,内核对催化金属前体具有更低的吸附能力。
7.权利要求1的催化剂组合物,其中至少一种金属成份被表面浸渍在载体上,以使得表面浸渍金属形成厚度为40到400微米、浓度至少为在构成内核的载体的剩余中心部分中的各自金属浓度的两倍的外层。
8.权利要求7的催化复合物,其中表层含有至少一种其量为2重量%到30重量%的金属成份。
9.加氢脱硫方法,其包括将含烯烃石脑油进料流与权利要求1-3、7和8中任一项的催化剂组合物在加氢脱硫区中在加氢脱硫条件下进行接触以产生硫浓度降低的石脑油流。
10.权利要求9的方法,其中加氢脱硫区操作于包括从204℃(400)到399℃(750)的温度和从790kPa(100psig)到3950kPa(500psig)的压力的条件下。
11.权利要求9的方法,其中石脑油进料流在从38℃(100)到232℃(450)的范围里沸腾。
全文摘要
含烯烃的石脑油选择性加氢脱硫所用的方法和催化剂。该方法产生硫浓度降低同时保持最大的烯烃浓度的石脑油流。
文档编号C10G45/04GK1988952SQ200580024979
公开日2007年6月27日 申请日期2005年6月16日 优先权日2004年6月23日
发明者L·J·鲍尔, S·F·阿布多, L·E·琼斯, P·柯卡耶夫 申请人:环球油品公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1