车辆的控制装置的制作方法

文档序号:12140839阅读:169来源:国知局
车辆的控制装置的制作方法

本发明涉及车辆的控制装置,具备:内燃机,使用气体燃料运转;以及增压装置,利用内燃机的吸气通道的吸气负压来助推制动操作力。



背景技术:

专利文献1公开了一种车辆,具备使用CNG(压缩天然气)等气体燃料运转的内燃机。在该车辆中,当内燃机正在进行空转运转时,配置于吸气通道的节流阀的开度被控制为第1开度。另外,当车辆行驶中被要求减速时,禁止向内燃机供给气体燃料,并且节流阀的开度被控制成小于第1开度。由此,吸气通道中的节流阀的下游侧的吸气负压变大,增压装置的增压压力变大。其结果,能够利用增压装置适当地助推驾驶者对刹车踏板的操作力。在这种情况下,吸气通道中的节流阀的下游侧的压力越低,吸气负压变得越大。增压压力是基于吸气负压与大气压之差的值。

作为具备使用气体燃料运转的内燃机的车辆,已知有这样的车辆:推定吸气负压,当该推定值为判断值以下时,开始增大增压压力的负压恢复处理。内燃机旋转速度越大,吸气负压越容易变大。节流阀的开度越小,吸气负压越容易变大。另外,节流阀的开度与油门踏板的开度大致对应。因此,能够代替节流阀的开度而使用油门踏板的开度推定吸气负压。

但是,在推定吸气负压,对该推定值和判断值进行比较,由此决定负压恢复处理的开始定时的情况下,若吸气负压的推定精度低,则负压恢复处理的开始定时容易发生偏差。

现有技术文献

专利文献

专利文献1:日本特开2013-231427号公报



技术实现要素:

发明所要解决的课题

本发明的目的在于,提供一种车辆的控制装置,能够精度良好地推定吸气通道中的比节流阀靠下游侧的吸气负压,恰当地决定负压恢复处理的开始定时。

用于解决课题的手段

为了解决上述课题,提供一种车辆的控制装置,具有:内燃机,使用气体燃料运转;以及增压装置,利用吸气通道中的节流阀的下游侧的吸气负压助推制动操作力。控制装置具备:负压推定部,根据节流阀的开度或油门踏板的开度与内燃机旋转速度之间的关系,计算吸气负压的推定值;以及恢复控制部,根据吸气负压的推定值来决定增大增压装置的增压压力的负压恢复处理的开始定时。控制装置还具备负压校正部,在内燃机运转中使用的气体燃料的燃烧效率越高,负压校正部将通过负压推定部计算出的吸气负压的推定值设定得越大。当通过负压校正部进行了校正的吸气负压的推定值为判断值以下时,恢复控制部开始负压恢复处理。

附图说明

图1是具备本发明的控制装置的车辆的一部分的概要结构图。

图2是按照燃料性状来表示曲柄轴正在以某个速度旋转时的吸气负压与节流开度的关系的曲线图。

图3是示出为了学习在内燃机运转中使用的CNG的性状而执行的处理程序的流程图。

图4是示出用于决定负压恢复处理的开始定时而执行的处理程序的流程图。

图5是示出具备其他例的控制装置的车辆的一部分的概要结构图。

具体实施方式

下面依照图1~图4来说明将本发明的车辆的控制装置具体化的一实施方式。

如图1所示,在车辆上搭载有内燃机10、制动装置30。内燃机10是两用燃料型内燃机,选择性地切换使用作为液体燃料的汽油和作为气体燃料的CNG。在内燃机10的汽缸11的内部收纳有进行往返运动的活塞12。活塞12的往返运动通过连接杆13转换为旋转运动而传递给曲柄轴14。内燃机旋转速度、即曲柄轴14的旋转速度NE由曲柄位置传感器111进行检测。

汽缸11的内周面、活塞12的顶面以及缸盖15形成燃烧室16。在燃烧室16的上部,以与活塞12对置的方式配置有火花塞17。在燃烧室16中连接有吸气通道18和排气通道19,吸入空气在吸气通道18中流动,从燃烧室16排出的排气在排气通道19中流动。

在吸气通道18中配置有节流阀21。节流阀21的开度通过致动器20的驱动来调整。在吸气通道18中,于节流阀21的下游侧安装有喷射汽油的第1燃料喷射阀22和喷射CNG的第2燃料喷射阀23。汽油以及CNG等燃料在吸气通道18中的节流阀21的下游侧喷射。

当吸气阀24处于开阀时,包含从燃料喷射阀22喷射的汽油、从燃料喷射阀23喷射的CNG以及吸入空气的混合气体从吸气通道18供给到燃烧室16。在燃烧室16中,火花塞17使混合气体燃烧。然后,当排气阀25被开阀时,排气从燃烧室16排出到排气通道19。

制动装置30具备增压装置32以及主缸体33。增压装置32助推驾驶者对刹车踏板31的操作力、即制动操作力。主缸体33产生与被增压装置32助推了的制动操作力相应的液压。对车辆赋予与在主缸体33内产生的液压相应的制动力。

增压装置32利用吸气通道18中的节流阀21的下游侧的吸气负压助推制动操作力。在增压装置32形成有大气压室321以及负压室322。大气压室321与大气连通。负压室322经由负压供给通道34而与吸气通道18中的节流阀21的下游侧连通。在负压供给通道34安装有单向阀35。单向阀35允许空气从负压室322向吸气通道18流动,并限制空气从吸气通道18向负压室322流动。因此,负压室322的压力与吸气负压为相同程度。与负压室322内的压力和大气压室321内的压力之差相应的增压压力越大,增压装置32能够有效助推制动操作力。负压室322内的压力越低,增压压力越容易增大。另外,大气压室321内的压力越大,增压压力越容易增大。

在控制装置100上,除了曲柄位置传感器111之外,还电气连接有油门开度传感器112、空气流量计113、空燃比传感器114以及车速传感器115。油门开度传感器112检测由驾驶者操作的油门踏板26的开度、即油门开度AC。空气流量计113检测在吸气通道18中流动的空气的流量。空燃比传感器114检测在排气通道19中流动的排气的氧气浓度。空燃比传感器114根据排气的氧气浓度,计算在燃烧室16中燃烧的混合气体的空燃比。车速传感器115检测车速V。控制装置100根据由包括各传感器111~115的各种检测系统检测的信息来控制车辆。

在将使用了CNG的内燃机运转中的曲柄轴14的旋转速度NE设为规定速度的情况下,相比于使用了汽油的内燃机运转中的曲柄轴14的旋转速度NE为规定速度的情况,需要使一次燃料喷射量更多。因此,使用了CNG的内燃机运转时的吸气负压难以大于使用了汽油的内燃机运转时的吸气负压。因此,增压装置32的增压压力难以变大,增压装置32对制动操作力的助推效率变低。基于这一点,本实施方式的控制装置100在使用了CNG的内燃机运转时推定吸气负压,当吸气负压的推定值PE为判断值PTh以下时,实施增大吸气负压的负压恢复处理。

作为负压恢复处理,能够举出从使用了CNG的内燃机运转切换为使用了汽油的内燃机运转的处理。像这样,燃料从CNG切换到汽油时,一次燃料喷射量变少,吸气负压增大。其结果,增压压力增大,增压装置32对制动操作力的助推效率低的状态被解除。

接着,参照图2来说明吸气负压的推定方法。

通常,曲柄轴14的旋转速度NE越大,每单位时间的吸气行程的数量越多,吸入到燃烧室16的空气量增多。因此,吸气负压容易变大。另外,节流阀21的开度、即节流开度TH越大,在吸气通道18中流动的吸入空气的量越多,所以吸气负压越容易变小。也就是说,吸气负压的推定值PE基本上是基于曲柄轴14的旋转速度NE和节流开度TH之间的关系的值。

但是,吸气负压也根据内燃机运转中使用的CNG的性状等燃料性状而改变。也就是说,使用燃烧效率低的性状的CNG来进行内燃机运转时的一次燃料喷射量容易比使用了燃料效率高的性状的CNG的内燃机运转时的一次燃料喷射量更多。因此,吸气负压难以变大。

图2的实线表示使用了标准燃烧效率的CNG(以下称为“标准CNG”)的内燃机运转时的吸气负压P与节流开度TH之间的关系。图2的虚线表示使用了燃烧效率低的性状的CNG(以下称为“低水准CNG”)的内燃机运转时的吸气负压P与节流开度TH之间的关系。图2的单点划线表示使用了高燃烧效率的性状的CNG(以下称为“高水准CNG”)的内燃机运转时的吸气负压P与节流开度TH之间的关系。

如图2所示,无论是使用哪种性状的CNG的内燃机运转,节流开度TH越小,吸气负压P越大。但是,按照每个CNG的性状比较的话,使用了高水准CNG时的吸气负压P大于使用了标准CNG、低水准CNG时的吸气负压P。另外,使用了低水准CNG时的吸气负压P小于使用了标准CNG、高水准CNG时的吸气负压P。因此,预先学习在内燃机运转中使用的CNG的性状,与CNG的性状相应地对根据曲柄轴14的旋转速度NE与节流开度TH之间的关系计算出的吸气负压的推定值PE进行校正,从而能够提高吸气负压的推定精度。

CNG的性状能够根据在燃烧室16中燃烧的混合气体的空燃比、即一次CNG喷射量的校正量来推定。CNG的喷射量根据实际的空燃比和目标空燃比进行校正,实际的空燃比根据空燃比传感器114的检测结果计算。也就是说,在实际的空燃比与目标空燃比大致相等的情况下,判断CNG的喷射量为适量,不校正喷射量。另一方面,在实际的空燃比大于目标空燃比的情况下,判断CNG的喷射量少,对喷射量进行增大校正。另外,在实际的空燃比小于目标空燃比的情况下,判断CNG的喷射量多,对喷射量进行减少校正。将在内燃机运转中使用的CNG是标准CNG时的CNG的喷射量定义为标准喷射量。在校正后的喷射量、即实际的喷射量比标准喷射量多的情况下,能够判断为在内燃机运转中使用的CNG是低水准CNG。另一方面,在实际的喷射量比标准喷射量少的情况下,能够判断为在内燃机运转中使用的CNG是高水准CNG。

根据本实施方式,控制装置100假设在内燃机运转中使用的CNG是标准CNG,根据曲柄轴14的旋转速度NE与节流开度TH之间的关系,计算吸气负压的推定值PE。在实际使用的CNG看作是标准CNG的情况下,不对吸气负压的推定值PE进行校正。在实际使用的CNG看作是低水准CNG的情况下,对基于曲柄轴14的旋转速度NE和节流开度TH之间的关系的吸气负压的推定值PE进行减少校正。另外,在实际使用的CNG看作是高水准CNG的情况下,对基于曲柄轴14的旋转速度NE和节流开度TH之间的关系的吸气负压的推定值PE进行增大校正。

判断值PTh是用于决定负压恢复处理的开始定时的值。因此,优选对车辆要求大的减速度(制动力)的可能性越高,将判断值PTh设定得越大,尽早开始负压恢复处理。作为对车辆要求大的减速度的可能性高的情况,可以列举车速V大的情况。车速V越大,驾驶者对车辆要求急制动的可能性越高。因此,控制装置100在车速V越大时将判断值PTh设定得越大。

另外,大气压室321内的压力、即大气压和基于吸气负压P的负压室322内的压力之差越大,增压压力越大。因此,例如、车辆在大气压低的高地中行驶的情况下,增压压力难以变大,增压装置32对制动操作力的助推效率容易变低。因此,控制装置100控制成,大气压越低,将判断值PTh设定得越大,尽早开始负压恢复处理。

接着,参照图3所示的流程图,说明为了学习在内燃机运转中使用的CNG的性状而由控制装置100执行的处理程序。在内燃机运转中,在每个预先设定的控制循环执行本处理程序。

如图3所示,在本处理程序中,控制装置100判断是否正在执行使用了CNG的内燃机运转(步骤S11)。在正在进行使用了汽油的内燃机运转的情况下(步骤S11:否),控制装置100暂时结束本处理程序。另一方面,在正在进行使用了CNG的内燃机运转的情况下(步骤S11:是),控制装置100根据由空燃比传感器114检测出的排气的氧气浓度,计算在燃烧室16中燃烧的混合气体的空燃比AF(步骤S12)。像这样,控制装置100作为空燃比计算部发挥作用,计算在燃烧室16中燃烧的混合气体的空燃比AF。

而且,控制装置100根据计算出的空燃比AF实施校正处理,对一次CNG喷射量X进行校正(步骤S13)。接着,控制装置100实施学习处理,学习在内燃机运转中使用的CNG的性状(步骤S14)。此时,控制装置100根据实际的CNG的喷射量X和标准喷射量的比较,计算与在内燃机运转中使用的CNG的性状相应的燃料系学习值Z。像这样,控制装置100作为性状学习部发挥作用,学习在内燃机运转中使用的CNG的性状。然后,控制装置100暂时结束本处理程序。

接着,参照图4所示的流程图,说明为了决定负压恢复处理的开始定时而由控制装置100执行的处理程序。在内燃机运转中,在预先设定的每个控制循环执行本处理程序。

如图4所示,控制装置100判断是否正在进行使用了CNG的内燃机运转(步骤S21)。在正在进行使用了汽油的内燃机运转的情况下(步骤S21:否),控制装置100暂时结束本处理程序。另一方面,在正在进行使用了CNG的内燃机运转的情况下(步骤S21:是),控制装置100根据车速V计算判断值PTh(步骤S22)。像这样,控制装置100作为车速判断值决定部发挥作用,车速V越大,将判断值PTh设定得越大。接着,控制装置100根据大气压AP而对在步骤S22中计算出的判断值PTh进行校正(步骤S23)。像这样,控制装置100作为大气压判断值决定部发挥作用,大气压AP越低,将判断值PTh设定得越大。

而且,控制装置100根据曲柄轴14的旋转速度NE与节流开度TH之间的关系,计算吸气负压的推定值PE(步骤S24)。吸气负压的推定值PE是假设在内燃机运转中使用的CNG是标准CNG的基础上计算出的值。像这样,控制装置100作为负压推定部发挥作用。接着,控制装置100根据在步骤S14中计算出的燃料系学习值Z,对在步骤S24中计算出的吸气负压的推定值PE进行校正(步骤S25)。例如、在内燃机运转中使用的CNG为高水准CNG的情况下,对吸气负压的推定值PE进行增大校正。另外,在内燃机运转中使用的CNG为低水准CNG的情况下,对吸气负压的推定值PE进行减少校正。在内燃机运转中使用的CNG为标准CNG的情况下,不对吸气负压的推定值PE进行校正。像这样,控制装置100作为负压校正部发挥作用,在内燃机运转中使用的CNG的性状越是高燃烧效率的性状,将吸气负压的推定值PE设定得越大。

而且,控制装置100判断计算出的吸气负压的推定值PE是否为判断值PTh以下(步骤S26)。在吸气负压的推定值PE大于判断值PTh的情况下(步骤S26:否),控制装置100不开始负压恢复处理,暂时结束本处理程序。另一方面,在吸气负压的推定值PE为判断值PTh以下的情况下(步骤S26:是),控制装置100开始负压恢复处理(步骤S27),然后结束本处理程序。

接着,说明具备本实施方式的控制装置100的车辆的作用。

在使用了CNG的内燃机运转时,计算吸气负压的推定值PE。吸气负压的推定值PE是与在内燃机运转中使用的CNG的性状相应的值。与在内燃机运转中使用的CNG为高水准CNG的情况下也不根据CNG的性状对吸气负压的推定值PE进行校正的情况相比,吸气负压的推定值PE变大。因此,负压恢复处理变得难以开始。也就是说,如下情况被抑制:在实际的吸气负压变大且增压装置32对制动操作力的助推效率处于容许范围的阶段开始负压恢复控制。

另一方面,与在内燃机运转中使用的CNG为低水准CNG的情况下也不根据CNG的性状对吸气负压的推定值PE进行校正的情况相比,吸气负压的推定值PE变小。因此,负压恢复处理尽早开始。也就是说,不易发生如下情况:尽管实际的吸气负压变小且增压装置32对制动操作力的助推效率低仍不实施负压恢复控制。

负压恢复处理开始时,内燃机运转从使用了CNG的内燃机运转切换为使用了汽油的内燃机运转。而且,若开始向吸气通道18喷射汽油,则与一次燃料喷射量变少相对应地,吸气负压P变大。其结果,增压装置32的负压室322的压力减少,增压压力变大。由此,增压装置32对制动操作力的助推效率低的状态被解除。

以上根据上述构成以及作用,能够得到以下所示的效果。

(1)根据向车辆供给气体燃料的设备的不同,有时所供给的气体燃料的性状不同。在利用燃烧效率低的气体燃料进行内燃机运转的情况下,在燃烧室中燃烧的混合气体的空燃比容易变得比目标空燃比大。因此,在使用了燃烧效率低的气体燃料的内燃机运转时,通过增多一次燃料喷射量,从而使空燃比接近目标空燃比。另外,若一次燃料喷射量增多,则吸气通道中的节流阀的下游侧的吸气负压难以变大。另一方面,在利用燃烧效率高的气体燃料进行内燃机运转的情况下,在燃烧室中燃烧的混合气体的空燃比容易变得比目标空燃比小。因此,在使用了燃烧效率高的气体燃料的内燃机运转时,通过减少一次燃料喷射量,从而使空燃比接近目标空燃比。另外,若减少一次燃料喷射量,则吸气负压容易变大。像这样,吸气负压容易根据在内燃机运转中使用的气体燃料的性状而改变。

在这一点上,根据本实施方式,与在内燃机运转中使用的CNG的性状相应地,对基于曲柄轴14的旋转速度NE和节流开度TH之间的关系的吸气负压的推定值PE进行校正。像这样,通过考虑使用中的CNG的性状,从而能够使吸气负压的推定值PE接近实际的吸气负压。由此,能够高精度地推定吸气负压P,恰当地决定负压恢复处理的开始定时。

(2)车速V越大,越容易对车辆要求大的减速度。另外,要求高的减速度时,优选提高增压装置对制动操作力的助推效率。在这一点上,根据本实施方式,控制装置100作为车速判断值决定部发挥作用,车速越大,将判断值PTh设定得越大。根据此结构,根据车速V,决定用于决定负压恢复处理的开始定时的判断值PTh。详细地说,在车速V大的情况下,相比于车速V小的情况,在吸气负压较大的阶段开始负压恢复处理。因此,车速V越大,驾驶者对车辆要求大的减速度的可能性越高,能够尽早开始负压恢复处理。因此,由驾驶者进行了制动操作时,车辆能够得到大的减速度。

(3)增压装置32具有与吸气通道18连通的负压室322。增压装置32的增压压力是基于负压室322内的压力与大气压AP之差的值。因此,在大气压AP低的高地等,增压装置32对制动操作力的助推效率难以变大。在这一点上,根据本实施方式,控制装置100作为大气压判断值决定部发挥作用,大气压AP越低,将判断值PTh设定得越大。根据此结构,判断值PTh根据大气压AP被校正。详细地说,大气压AP越低而增压压力越难以变大时,在吸气负压较大的阶段,开始负压恢复处理。因此,大气压AP越低而增压压力越难以变大时,能够尽早开始负压恢复处理。因此,能够尽早消除因大气压AP低而导致的增压装置32对制动操作力的助推效率下降的状态。

(4)汽油的燃烧力大于CNG的燃烧力。因此,为了得到与使用了汽油的内燃机运转时同等的内燃机输出,需要将使用了CNG的内燃机运转时的一次燃料喷射量设为比使用了汽油时的一次燃料喷射量多。因此,在使用了汽油的内燃机运转时,一次燃料喷射量容易变少,相应地,与使用了CNG时相比,吸气负压容易变大。在本实施方式中,设置于车辆的内燃机10是选择性地切换使用作为液体燃料的汽油和作为气体燃料的CNG的两用燃料型内燃机。在这种情况下,作为恢复控制部的控制装置100,在使用了CNG的内燃机运转时,校正后的吸气负压的推定值PE为判断值以下的情况下,开始负压恢复处理。负压恢复处理开始,内燃机运转从使用了CNG的内燃机运转切换为使用了汽油的内燃机运转。由此,吸气负压变大,增压压力变大,所以能够消除增压装置32对制动操作力的助推效率低的状态。

上述实施方式也可以按照如下方式进行变更。

·只要由大气压AP的变动引起的增压压力的变动在容许范围内,也可以不根据大气压AP对判断值PTh进行校正。即使是这种结构,也能够得到与上述(1)、(2)同等的效果。

·也可以与车速V无关地决定判断值PTh。在这种情况下,根据大气压AP来变更判断值PTh,从而能够得到与上述(1)、(3)同等的效果。

·也可以与车速V、大气压AP无关地决定判断值PTh。也就是说,也可以将判断值PTh固定为规定值。在这种情况下,能够得到与上述(1)同等的效果。

·油门开度AC越大,节流开度TH越容易变大。因此,代替节流开度TH,也可以使用油门开度AC计算吸气负压的推定值PE。即使是这种结构,也能够得到与上述(1)同等的效果。

·在上述实施方式中,根据内燃机运转中使用的CNG是标准CNG、高水准CNG以及低水准CNG中的哪一种,阶梯性地校正吸气负压的推定值PE,但也可以以如下方式校正:CNG的燃烧效率越高,吸气负压的推定值PE逐渐变得越大。

·如图5所示,在具备用于使增压装置32的负压室322减压的电动泵40的车辆的情况下,负压恢复处理包括:从使用了CNG的内燃机运转切换到使用了汽油的内燃机运转的处理;以及通过电动泵40的作动而对负压室322减压的处理。根据此结构,通过使电动泵40作动,从而能够对增压装置32的负压室322内进行减压。由此,增压压力变大,所以能够解除增压装置32的助推效率低的状态。

具备电动泵40的车辆也可以是搭载了只进行使用了CNG的内燃机运转的单燃料型内燃机的车辆。在这种情况下,负压恢复处理只包含使电动泵40作动的处理。

·负压恢复处理不限于从使用了CNG的内燃机运转切换到使用了汽油的内燃机运转的处理。例如,负压恢复处理也可以是通过减小节流开度TH而增大吸气负压P的处理。另外,负压恢复处理也可以是使点火时期延迟的处理。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1