一种SCR催化剂氨存储量计算方法及所采用的装置与流程

文档序号:11541318阅读:607来源:国知局
一种SCR催化剂氨存储量计算方法及所采用的装置与流程

本发明涉及发动机领域,特别涉及排气后处理领域。



背景技术:

scr(selectivecatalyticreduction)技术是消除柴油机排气中氮氧化物的主要后处理技术之一。向scr催化剂喷射尿素水溶液,喷进去的尿素水溶液通过水解和热解反应产生nh3,nh3在scr催化剂中有三种方式存在,如图1所示:一是与nox进行反应,并且1:1的反应;是二是通过氨泄漏释放;三是以氨存储方式储存。现有技术中通过测量scr催化剂不喷尿素时的nox浓度和喷尿素后的nox浓度、氨泄漏及尿素溶液喷射速率可计算出nh3的存储量。首先根据喷射的尿素水溶液完全转化为nh3的浓度,此为总的nh3的浓度。由于nh3与nox反应是1:1的反应,喷尿素前后nox浓度之差即可计算出参与反应的nh3的浓度。总的nh3的浓度减去与nox反应的nh3的浓度与氨泄漏的浓度即为氨存储量,公式如下所示:

(nh3)存储=(nh3)总-(nh3)反应-(nh3)泄漏

现有技术中,由于要根据喷进去的尿素水溶液计算总的nh3,故是基于喷进scr催化剂的尿素水溶液完全转化成nh3来参与计算的,但实际上尿素水溶液并不能完全转化为nh3,主要因为:一是低温下尿素并不能完全发生热解反应,会产生一定的结晶;二是尿素在水解热解过程中会产生其他的产物而不是尿素。这样喷进去的尿素并不能完全转化为nh3,因此总的nh3就不准确,故现有技术计算不够准确,存在误差,这样导致计算的氨存储存在较大误差。

现有技术由于要计算参与反应的nh3的浓度,需要测量不喷尿素和喷尿素后的nox浓度,这样如果有一台测试设备的话,需要测两次,一次是不喷尿素时的nox浓度,一次是喷尿素后的nox浓度;或者如果有两台测试设备的话,需要对不喷尿素和喷尿素后两个地方同时测量才能获得不喷尿素和喷尿素后的nox浓度。这样就增加了测量难度,造成试验资源的浪费。



技术实现要素:

针对现有技术的上述缺陷,本发明提出一种scr催化剂氨存储量计算方法及所采用的装置,可以准确测量计算scr催化剂的氨存储量。

本发明的目的之一是通过以下技术方案实现的。

一种scr催化剂氨存储量计算方法,所述方法包括如下步骤:

s1:向scr催化剂中持续喷射尿素水溶液,测量nox的浓度和氨泄漏的浓度;

s2:当氨泄漏的浓度达到10ppm时,停喷尿素水溶液,记录此时刻为t1;

s3:持续记录nox的浓度变化,将记录结果拟合出nox的浓度随时间变化的函数,表示为nox(t);直至nox的浓度基本不变达到稳定状态,记录此时刻为t2,并且记nox的浓度稳定值为(nox)稳定;

s4:根据如下公式计算scr催化剂氨存储量:

式中,(nh3)存储为scr催化剂氨存储量。

本发明的目的之二是通过以下技术方案实现的。

一种scr催化剂氨存储量计算所采用的装置,所述装置包括布置在发动机排气管后的scr系统控制单元、尿素剂量单元、催化反应单元、布置在scr上下游端的温度传感器、布置在scr下游的氨泄漏检测设备、检测nox浓度的气体分析仪;其中,所述scr系统控制单元与发动机的控制单元(ecu)集成在一起,主要是用来执行scr控制策略;尿素剂量单元主要包括尿素箱、尿素供给单元、尿素喷射单元、加热组件及连接管路和线路;催化反应单元主要包括scr催化剂及其封装;所述装置配置为执行上述scr催化剂氨存储量计算方法。

本发明的优点在于:

本发明的计算方法不是基于尿素水溶液完全转化为nh3这一理论,而是根据scr催化剂存储的nh3释放与nox反应计算得出。此测量过程简单,算法准确,避免造成测量难度大、试验资源浪费等问题。

附图说明

通过阅读下文优选实施方式的详细描述,各种其他的优点和益处对于本领域普通技术人员将变得清楚明了。附图仅用于示出优选实施方式的目的,而并不认为是对本发明的限制。而且在整个附图中,用相同的参考符号表示相同的部件。在附图中:

图1示出了根据本发明实施方式的nh3在scr催化剂中三种存在方式示意图。

图2示出了根据本发明实施方式的计算方法采用的装置的示意图。

图3使出了根据本发明实施方式的计算方法的nox变化过程示意图。

具体实施方式

下面将参照附图更详细地描述本公开的示例性实施方式。虽然附图中显示了本公开的示例性实施方式,然而应当理解,可以以各种形式实现本公开而不应被这里阐述的实施方式所限制。相反,提供这些实施方式是为了能够更透彻地理解本公开,并且能够将本公开的范围完整的传达给本领域的技术人员。

根据本发明的实施方式,提出一种scr催化剂氨存储量计算所采用的装置,参考图2,所述装置包括布置在发动机排气管后的scr系统控制单元、尿素剂量单元、催化反应单元、布置在scr上下游端的温度传感器、布置在scr下游的氨泄漏检测设备、检测nox浓度的气体分析仪;其中,所述scr系统控制单元与发动机的控制单元(ecu)集成在一起,主要是用来执行scr控制策略;并根据环境温度、排气温度、尿素液位、尿素温度、尿素压力、nox浓度等传感器信号控制尿素剂量单元,根据需求定时定量地将尿素溶液喷射到排气气流中;尿素剂量单元主要包括尿素箱、尿素供给单元、尿素喷射单元、加热组件及连接管路和线路;保证尿素溶液的充分雾化和分解;催化反应单元主要包括scr催化剂及其封装,用来将柴油机排气中的主要有害成分氮氧化物还原为氮气和水。

利用上述装置,提出一种scr催化剂氨存储量计算方法,所述方法包括如下步骤:

s1:向scr催化剂中持续喷射尿素水溶液,测量nox的浓度和氨泄漏的浓度;

s2:当氨泄漏的浓度达到10ppm时,停喷尿素水溶液,记录此时刻为t1;

s3:持续记录nox的浓度变化,将记录结果拟合出nox的浓度随时间变化的函数,表示为nox(t);直至nox的浓度基本不变达到稳定状态,记录此时刻为t2,并且记nox的浓度稳定值为(nox)稳定;

s4:根据如下公式计算scr催化剂氨存储量:

式中,(nh3)存储为scr催化剂氨存储量。

上述方法中nox浓度随时间变化过程如图3所示。

本发明计算方法的原理为:喷射尿素后,经过水解热解后的nh3吸附在催化剂表面,一部分nh3虽吸附在催化剂上,但没有与nox进行反应,从而产生nh3的存储。停喷尿素后,存储的nh3释放与nox发生反应,直至存储的nh3反应完毕,即nox浓度逐渐增多直至稳定。通过对此段过程消耗的nox浓度进行积分即可得到消耗的nox的量(即图中阴影部分的面积),根据nox与nh3反应1:1的比例,即可得出氨存储的量。

以上所述,仅为本发明较佳的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以所述权利要求的保护范围为准。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1