阀门调节装置的制作方法

文档序号:5237850阅读:201来源:国知局
专利名称:阀门调节装置的制作方法
技术领域
本发明涉及到对发动机(如象内燃发动机)的改进,特别是涉及到对内燃发动机阀门(特指菌形阀门)运动机制的改进。
本发明还适用于其他采用阀门机构的发动机和泵。
背景技术
内燃发动机的可用扭矩主要取决于发动机的容积效率。对于往复式活塞发动机来说,这个效率就是对发动机在吸气冲程期间吸进气缸的空气容积大小相对于气缸扫气容积的度量。
往复式内燃发动机的阀门定时在发动机的某些特定转速下对发动机的容积效率有重要影响。发动机有固定的阀门定时,即活塞在上死点以前阀门按固定的曲轴转角开启,在上死点以后阀门按固定的曲轴转角关闭,该发动机在某一特定转速下工作,才能达到最高的工作效率。在该转速下,进、排气阀门相对于活塞的位置固定同步,相互配合能发出最大扭矩。
很明显,如果在一个宽广的发动机转速范围内都能给出最大扭矩当然是最理想的。为了在高发动机转速下能达到最大扭矩,理想的条件是进、排气阀门应该在尽可能大的活塞行程范围内都是开启的,因为这样可以有更多的时间让气进入气缸和让废气排出气缸从而提高发动机的容积效率。然而,有多大的活塞行程或者进、排气阀门能保持开启多大的角度(或曲轴转角),这里面存在着若干限制因素。例如,为了增加阀门的开启角度会使得进、排气阀门的开启角度同时增加,即所谓的阀门重叠,在高发动机转速下阀门重叠是有利的因为它能增加扭矩输出。然而,同一阀门重叠量虽然在发动机高转速时能产生良好的扭矩,但在低转速时却会导致发动机工作不良和输出扭矩降低。因此,总的说来,阀门早开和迟关是以低速扭矩为代价提高高速下的容积效率。相反,减小阀门重叠度虽然会提高发动机的低速扭矩但却不能得到最好的高速容积效率。
因此,理想的情况是应该设计这样一种机构,它能使得阀门的开启和关闭定时按照发动机的转速等运行参数进行调节,以便在一个宽广的发动机转速范围内都能获得最佳的扭矩。另外,发动机的其他参数,如象节流阀位置,齿轮的啮合状况等也可以用来改变阀门的开启和关闭定时。
除了阀门定时以外,其他还有一些因素对往复式发动机菌形阀门的工作也有重要影响。首先,在阀门刚要打开之前,阀门驱动器应向着阀门缓慢加速运动,以便减小并最后消除阀门与驱动器之间或者居于中间的挺杆与驱动器之间的间隙。这样一来就可以保证阀门与驱动器不会以很大的速度和冲击力互相碰撞。此后阀门就需要尽可能迅速地打开以便让新鲜的空气和燃油从进气阀门流畅地进入气缸,或者使气缸中的废气从排气阀门排出干净。阀门一旦打开后,在它被迅速地关闭以前应尽可能长时间地保持开启。随后该阀门应尽可能轻柔地落座,保持开闭,直到重新开始下一次循环。由于这时阀门的运动不应该有明显地变化(比如过度地加速),因此注意到在阀门运动轨迹上,大体上是成正弦曲线的运动是可以接受的。
对阀门的驱动和对它们运动状态的控制过去都是通过采用凸轮轴来实现的。凸轮轴上有偏心的凸轮瓣,它将推动阀门,其中凸轮瓣的轮廓决定了阀门的运动特性。这种结构存在的问题是当凸轮轴快速旋转时阀门是依靠阀门弹簧而与凸轮瓣的外表面保持接触的,但当凸轮轴的旋转加快时,阀门可能会由于惯性的作用而离开凸轮瓣的外表面。这一问题虽然可以通过增加阀门弹簧的强度而部分地得到解决,但是这会使得阀门开启困难,并且凸轮瓣表面的磨损也会加快。
凸轮轴的另一个主要问题是不能改变凸轮瓣的轮廓形状,因此改变阀门的运动特性非常困难。要改变阀门定时,凸轮轴就需要更换或进行加工,因此对于一个特定的凸轮瓣轮廓只能在一个狭窄的发动机转速范围内得到最佳的扭矩特性。这就是为什么发动机在高转速时运行良好而在低转速范围内扭矩就显得不足的原因之一。另外,在凸轮轴旋转时由于阀门弹簧总是将阀门紧紧地压在凸轮瓣上,因此沿着凸轮轴的长度方向会产生很大的扭力,该扭力有可能将凸轮轴损坏。
虽然曾经试图利用一些现有的装置来解决上述问题,但没有一个是完全令人满意的。有一种装置是在一根凸轮轴上有两个用于进气阀门的标准凸轮瓣和一个介于两个标准进气瓣之间的第三凸轮瓣。当发动机以低于某转速运转时,两个进气阀门由标准凸轮瓣驱动,而当发动机加速到超过某一预定转速后,一个销钉便与阀门的驱动器相啮合,使两个阀门由第三凸轮瓣驱动,而该凸轮瓣有适合于高转速的独特的外部轮廓,能使进气阀门开启提早并保持较长的开启时间。对于排气阀门凸轮轴也可以采用相似的机构。该系统的缺点是它不能使阀门的开启和关闭定时在两个预定的阀门运动特性之间变化,即只可能有两种阀门开启持续时间。这就使得发动机的扭矩输出从低转速到高转速是呈“阶梯”形变化,而不能实现在整个发动机转速范围都能获得最大的扭矩输出,仅仅是在两个确定的转速下达到最佳。
另一种改变阀门开启和关闭角度的方法是使凸轮的转速在单一转速的某些部分上并不总是等于曲轴转速的一半,而是随发动机转速的变化而改变。例如,在低转速时凸轮轴用曲轴转速一半的标准速度旋转。在高转速时,一个安装在凸轮轴上的机构可使凸轮轴以低于曲轴转速一半的速度旋转,同时打开阀门并使它们保持开启,从而保证阀门比低速时能在一个更宽的角度开启。为了弥补丢失的时间(因为曲轴每转二圈,凸轮轴必须均化一圈),在旋转的剩余部分凸轮轴必须以高于曲轴转速一半的速度转动,以保证阀门再开时是处在正确的位置上。很明显,这个系统也是不理想的,它要采用一套复杂的机构来改变在曲轴旋转一周范围内凸轮轴的旋转速度。另外,由于凸轮瓣的轮廓形状不能改变,因此阀门升程也不可能改变。
大多数阀门驱动机构的另一个缺点是它们都包括了用于开启阀门的凸轮轴,凸轮轴不仅制造困难而且容易磨损和损坏。
调节流阀顶部与阀门驱动器(摇臂或凸轮轴瓣)之间间隙的方法也存在缺点。由于需要在摇臂上增加间隙调节器,所以摇臂的惯量将会增加;如果采用垫片调节,则不仅将垫片放置到凸轮瓣下面有困难,而且还需要增加垫片定位元件,从而会使得阀门总成的长度增加而导致发动机尺寸增加。
发明简介本发明的目的是至少要克服一个与现有技术有关的缺点。
为此目的,本发明将提供一种可调整阀门运动特性的装置。阀门的运动特性包括定时,如曲轴的转角位置在上死点前阀门开始处的参考角度,开启持续时间,如阀门保持开启所对应的曲轴转角,在一定曲轴转角位置升程或行程,速率及受力状况。在一种形式中,调节是机械式操纵。在另一种形式中,调节器位于阀门驱动机构和阀门之间。按照本发明所述的方法来调节流阀运动特性的优点是可以从若干预定的特性中选择所需要的发动机性能标准,以及选择能达到这种标准的角度。例如,对阀门运动特性的调节可以选择为提高发动机的输出扭矩,或者选择为提高发动机的燃油经济性。
也可以制造一种阀门驱动装置,它能产生一个关于曲轴转角的近似于正弦曲线的阀门升程运动并使得阀门的运动特性得以改变。
通常,阀门驱动机构包括一个旋转元件。
一般来说,调节器可以改变阀门的开启角度和/或阀门的关闭角度及/或阀门升程,可以单独地或联合在一起地进行改变。可以看出,改变阀门的升程及开启持续时间是有利的。虽然这两项也可以分开进行但发现当发动机转速升高时增加阀门升程和延长开启持续时间更为有效。
很明显,如果调节器能将阀门的开启和关闭角度以及阀门升程联合在一起协调地改变是可取的。
在另一种形式中,本发明提供的用于调节流阀运动特性的设备所包括的调节器是沿着一条非直线路径移动来调节流阀运动的。
在另一种形式中,本发明提供的用于调节流阀运动特性设备中的调节装置包括一个有导向路径的板。
在另一种形式中,本发明提供的用于调节流阀运动特性的设备包括第一导向路径和第二导向路径,其中,阀门的运动特征由第一和第二导向路径之间的形状差和对中差来决定。
在另一种形式中,本发明提供的用于调节流阀间隙的设备是由一个机械控制式阀门驱动装置来执行的,它包括一个端部带螺纹的阀门。
在一个优选实施例中,用于调节流阀运动特性的装置包括一个带导向路径的调节元件和一个可以转动安装的、至少有一个导向面的气门驱动元件,其中,有一个销沿着导向路径和导向面移动,从而使可转动安装的驱动元件枢转并驱动阀门。
通常,基本上按循环运动来驱动。
理想的情况是,调节元件的导向路径与阀门驱动元件的导向面在它们的全长上不是平行并列的,即它们的路径不同而至少在它们的部分长度上彼此偏离。当销钉沿着两个路径移动时,这种路径差异就能使驱动元件产生运动。另外,销钉和导向器的一种动态转换可以考虑作为另一个实施例。优选实施例现在将参照附图对本发明的若干实施例加以说明,这些附图是

图1a-1d是表示本发明的调节器在不同装配状态下的示意图;
图2a是本发明的调节器和现有技术的阀门驱动机构的侧向示意图;图2b是本发明的非机械控制式阀门调节器和现有技术的阀门驱动机构的示意图;图3是本发明调节器第一实施例的部分等轴侧视图;图4是本发明调节器第一实施例的全部等轴侧视图;图5a和5b是本发明调节器第二实施例的侧视图;图6a和6b是图5a和5b所示调节器的侧视图;图7是本发明调节器改变的阀门升程和开启持续时间相对于曲轴转角的极限变化曲线图;图8显示了本发明调节器导向板的第一实例;图9显示了本发明调节器导向板的第二实例;图10a-10d是本发明调节器的摇臂实例图;图11是本发明调节器导向板上的路径的第一实例的侧向示意图;图12是本发明调节器导向板轮廓表面的侧向示意图;图13是本发明调节器导向板上的路径的第二实例的侧向示意图;图14是本发明调节器导向板上的路径的示意图;图15a-15d是本发明调节器滑动销的若干实例;图16a-16d是本发明调节器导向板的若干实例;图17a是本发明调节器导向板调节器的第一实例;图17b是本发明调节装置导向板调节器的第二实例;图18a是本发明阀门间隙调整机构的透视图;图18b是图18a所示阀门间隙调整机构的分解透视图。
参照图2a,2b,4,5a和5b,图中所示的机构10是用来调节菌形阀门1的运动特性的。机构10包括一个驱动装置,如阀门驱动曲轴12,它有一个曲柄销13,用来向阀门1提供循环的位移运动和基本的驱动定时。该阀门曲轴12通常是由曲轴(图中未画出)通过皮带、链条或齿轮驱动等公知装置驱动,其转速为发动机曲轴转速的一半。机构10一般都安装在往复式四冲程发动机(图中未画出)的前部,它还包括一个固定在前部的枢转轴14,可转动地定位驱动阀门1的摇臂16。导向元件如导向板18,安装在气缸盖上,可以在一定的位置范围内移动,比如从第一位置20移动到第二位置22,如图1b,5a,5b,6a,6b和9所示。
曲柄销13通过孔15与连杆24的一端相连接,连杆的另一端有一个滑动销26,如图1a-1d,2和3所示。当阀门曲轴12旋转时,连杆24使滑动销26沿导向板18上的路径25运动。导向板18并不随滑动销26的运动而运动,滑动销26被约束在路径25内运动,还沿着摇臂16上的路径28运动。通常每一个阀门1都有一个摇臂16,如果每个气缸有两个进气阀门(或排气阀门)那就应该有两个摇臂16。两个摇臂16和导向板18可以共用一个图4所示的连杆24和滑动销26,对于每个缸发动机气缸盖中有4个阀门时,它可以同时驱动两个阀门(进气或排气)。很明显,每一个连杆和/或滑动销能够驱动的阀门数量并不限于每缸两个进气阀门/排气阀门。在机械控制式阀门驱动的情况下,路径28可以采用路径的形式并有上下两个轮廓表面,如图1a,1b,2a,4,5a,5b,6a,6b,10a,10c,13和14所示,或者在用弹簧提供阀门关闭力的传统阀门驱动的情况下也可以只有一个轮廓表面,如图2b,10b和10d所示。
在上述两种阀门驱动方法中,导向板18中的路径25将滑动销26约束在路径25轮廓构成的通路内运动,从而使得摇臂16绕着枢转轴14转动。摇臂16转动时其远离枢转轴14的叉形驱动臂32,它通过两个拧在阀门杆上的螺母推压在阀门1上,如图5,18a和18b所示以及后面所述,从而使得阀门1按照路径25和28轮廓形状的差异被开启和关闭。正是图13和14所示的路径轮廓差别使得摇臂16绕枢轴转动。路径28和25的轮廓形状可以根据对阀门运动特性的不同要求而变化,由于各台发动机的用途不同,对阀门运动特性的要求也不相同。因此不应该企图将导板18和摇臂16上各个路径的轮廓形状局限在本文所列举实例的范围以内。
此外,阀门1可以用阀门系统100来代替,如图2a和2b所示,其中,阀门系统100包括了可以用来调节流阀间隙的公知垫片和定位套结构以及在阀门关闭时保证阀门与驱动器32保持接触的阀门弹簧101,这种阀门系统可用于非机械控制式的或传统形式的阀门驱动。机构10也可以简单地取代凸轮轴102作为阀门的驱动装置。
机构10的装配零件可以在图1a至1d中见到,其中,示出了连杆24通过曲柄销13装配到阀门曲轴12上,以及导向板18和摇臂16连接到滑动销26。图3示出了部分装配在一起的调整机构,从图中可以看到组装的阀门曲轴12、连杆24、滑动销26和通常是处于固定位置的枢转轴14之间的关系。枢轴14可以旋转,在本实施例中还包括一个偏心部分11。组装后的机构10如图4所示。其中两块导向板18可以滑动地套在摇臂轴14的偏心部分11上,两个摇臂16可转动地套在枢轴14上,使机构10能驱动两个进气阀门或两个排气阀门。在这种情况下,导向板被安装在导轨9内的销钉(图中未画出)约束住只能作直线滑动。
在运行时,阀门曲轴12以发动机曲轴转速一半的速度旋转。连杆24的一端与阀门曲轴12上的曲柄销13相连,另一端与滑动销26相连。滑动销26定位在导向板18的路径25内。当阀门曲轴12旋转时,滑动销26被约束成沿导向板18的路径25移动。导向板18可以从一个第一位置20移动到一个第二位置22以及这两个位置之间的任何位置。如图所示的导向路径25的轮廓形状确定了滑动销26的运动轨迹。滑动销26还沿着摇臂16的路径28滑动,路径28与路径25轮廓形状的差异使得摇臂16绕枢轴14来回摆动。阀门驱动件32安装在摇臂16上,随摇臂16一起运动,它与阀门1的端部相接触,并将阀门推开和将阀门拉闭。在采用非机械控制式阀门驱动时,可用阀门弹簧使阀门1关闭。
在图2a,2b,3和4的情况下,在第二个实例中,偏心调节轴30,如图5a,5b,6a,6b,17a和17b所示,通过转动摇臂轴14可以改变导向板18的位置。轴30有一个可以在开孔34内转动的偏心凸轮瓣31,它可使得导向板18从第一位置(这时的阀门运动特性如图7中的曲线40a和40b所示,它适合低发动机转速)移动到第二位置(这时的阀门运动特性适合高发动机转速,如图7中曲线42a和42b所示)。导向板18的运动情况可以从图5a和5b所示的阀门开启位置比较图看出。在图5a中,调节轴30和瓣31将导向板18定位在第一位置20上。在图5b中,调节轴30和瓣31将导向板18定位在第二位置22上,从而图5b所示的大阀门开度大于从图5a看到的最大阀门位置。轴30和瓣31在导向板的开孔34中的运转情况如图17a和17b所示,下面将要对此作更详细的说明。
阀门的运动特性可以从图7看出,其中曲线40a为表示由阀门曲轴12驱动的进气阀门1的阀门升程(纵坐标)与发动机曲轴转角(横坐标)的关系曲线,这时导向板18是在第一位置20上。导向板18在第一位置20时的排气阀门运动特性如曲线40b所示。曲线42a表示当导向板18在第二位置22时一个进气阀门的运动特性。当导向板18在第二位置22时的排气阀门运动特性则如曲线42b所示。从图7中可以看出,当导向板18从第一位置20移动到第二位置22时,在阀门的升程、开启持续时间和重叠度之间存在着明显的差别。
出现这种运动特性差别的原因是当导向板18在第一位置20时,路径28的轮廓是处在这样的位置上,即路径25与路径28之间的轮廓差别为最小,如图5a,5b和8所示,对此下面还要讨论。由于销26偏离较小,因而阀门升程较低,这时销的位置如图8中的26a所示。
导向板18在第一位置20时阀门的开启量最小,并跨越最小的角度,因此通常用于低发动机转速,在低转速时过大的阀门重叠是不可取的,而加大涡流才是可取的。导向板18的第二位置22则用来获得更大的阀门开启重叠度和较高的阀门升程,如图8中销26b的位置所示。与图5a中的阀门开启延续期相比,图5b有更长的阀门开启延续期。这种安排适用于需要最大气体流量的发动机高转速工况。图6a和6b分别显示了导向板18在第一位置和第二位置的情况。在这两种情况下阀门都是完全关闭的,即不论导向板18的位置如何,阀门均是有效地关闭着,如图6a和6b中阀门的相等位置所示。导向板18位置间的差别可以清楚地通过图6b中枢轴14与导向板18之间有一间隙看出,而在图6a中则没有。机构10允许导向板18可以处在第一位置20和第二位置22之间的任何位置点上,从而可以将阀门的重叠度和/或开启角度调整到阀门运动特性预定范围内的任何点上。这种调整的优点是,为了获得最大的容积效率可以根据发动机工作条件的变化随时改变阀门的开启角度和/或升程。
可以将导向板18中路径25的轮廓形状与摇臂16中路径28的轮廓形状之间的差异设计成能使阀门具有理想的运动特性。例如,当采用的摇臂16有一条直线路径28时,路径25可以如图11所示由四段组成,每一段有其专门的功能。A段是这样的一个部分,在滑动销26处在该段时阀门将关闭。当销26沿路径25移动,而到达B段,这是一个过渡段,它将使销26开始按照与A段的运动方向成一角度的方向运动,从而使得驱动器32以比较缓慢的速度与阀门(或阀门垫片)接触,因为在阀门总成的顶端与驱动器之间通常都有一个小间隙。当阀门的顶端与驱动器接触后,滑动销26进入路径25的C段,这一段的斜度急剧增加,驱动器便很快将阀门推开。当阀门开度达到最大时滑动销26进入D段,这时阀门的开启速度减小,阀门开始减速。在D段,滑动销26到达它的行程终点,阀门曲轴12开始将滑动销26沿D段反方向拉回,这时阀门将再次关闭。
图12显示了导向板轮廓表面的A-D段,它利用弹簧使阀门回到关闭位置,因此不需要有路径的下半部分。滑动销移动路径的图11和12中路径50和51分别设计成,与一个具有基本上是呈直线路径28的摇臂配合使用。
如果摇臂路径与导向板路径的形状相同,摇臂与导向板就没有相对运动,阀门也就不运动。因此,为了得到所需要的阀门运动,倘若摇臂或导向板中的一个具有不同的轮廓。不论是导向板路径还是摇臂路径都可以设计成多种轮廓形状。作为举例,可以使用图13中导向板路径52的形状,只要摇臂路径53的形状在正确的区域内不同而驱动摇臂。在图14中是将路径25和28重叠起来以突出它们的轮廓形状差,这种差异能使摇臂摆动并驱动阀门。
从图13和14可以清楚地看出导向板路径与摇臂路径之间的差异,这种差异与阀门升程有关。图13中的导向板路径52可以如图9所示作转动调节。可以看出,这种结构可以加大路径52和53之间的差异,因此它比图14所示的直线调节能获得更大的阀门升程。实现图13所示的增加阀门升程并未要求路径偏差有根本的加大,这对直线调节的导向板是必须的,其调节情况如图8所示。对于任何路径形,太大的路径形偏差都是不可取的,因为这会导致路径的轮廓表面磨损增加,从而使阀门运动特性发生改变。
本系统的一个优点是,它通过改变路径25和28的轮廓形状差而形成的阀门运动曲线的顶部比图7所示的更为方形化。
为了克服或减小路径28与滑动销26之间由于高接触压力引起的磨损,已经发现可以将滑动销沿路径28内滑动的区段(即磨损段)做成非圆断面来加以解决。
在图15a中所示的耐磨部分60有与直路径28直接接触的滑动销的上下表面。这些表面的轮廓形状可以随路径的相对表面的形状改变,例如,当采用了图10a所示的摇臂116的平路径128时,该耐磨表面160也将是平直的,如耐磨表面60。另一方面,耐磨表面也可以是一个具有共同曲率中心的曲面,如图15c中的耐磨表面360所示,它可与图10c中的具有相同曲率半径的相似曲面路径328相配合。如果采用传统的或非机械控制式阀门驱动机构,则滑动销只需要如图15c和15d所示的单耐磨表面260和460就可以了,因为阀门弹簧可以保证它们与对应的路径表面28连续地接触。
应该注意到图10a-10d,15a-15d和16a-16d所示的各实例应分别配套在一起使用。摇臂116具有如图10a所示的路径128,它与图15a所示的轴销126以及图16a所示的带有路径125的导向板118配合使用。这一配置所形成的调节装置可用于机械控制式阀门驱动,其中导向板118为直线调节。
类似地,带有路径228的摇臂216(图10b)与轴销226(图15b)及带路径225的导向板218(图16b)配合工作,形成带阀门的调节器,用于关闭阀门,其中导向板218也是直线调节。
带有曲线路径328的摇臂316(图10c)与轴销326(图15c)及带路径325的导向板318(图16c)配合工作,形成采用机械控制式阀门驱动的调节器,其中导向板318为转动调节。
带有曲线路径428的摇臂416(图10d)与轴销426(图15d)及带路径425的导向板418(图16d)配合工作,形成带阀门的调节器,用于关闭阀门,其中导向板418也是转动调节。
图17a显示了导向板18位置调节器的一个实例,其中调节轴30位于导向板18的开孔34中。当转动调节轴30时,轴上的偏心凸轮瓣31就推动导向板18作直线运动,如图8所示。导向板18直线运动的距离由轴30的转动量决定。这就使得导向板18可以调节到第一位置20与第二位置22之间的并包括两个极限位置在内的任何位置点上。
在图17b中,轴30是可转动地位于导向板618的开孔134中,导向板618安装成绕点135可调节地转动。当轴30转动时,偏心瓣31就迫使导向板618运动。由于导向板已被约束成枢转,因此,轴30的转动就使导向板618运动。同前面一样,导向板618的转动量可以通过轴30的转动来控制。
有一种控制单元(图中未画出)可用来控制每一个机构10中轴30的旋转,它能将导向板定位在第一位置20与第二位置22之间的任何位置上。这种控制单元可以是一个简单的通过转动一根轴促使阀门开启的装置,或者是任何其他合适的驱动导向板的装置。这类机构通常是在发动机转速升高时用来将点火定时提前的。在这种情况下阀门定时可以与点火定时一起调整或者独立进行调整。
另外一个导向板的实例518如图9所示。其中导向板518是安装在一个可转动的枢轴535上,因此调节流阀的运动特性可以通过将枢轴535(导向板518与它连成一体)转动到图中用虚线和箭头表示的两个位置之间的任何位置上,而不是像图8中用箭头表示的那样进行直线调节。
还应该注意到,在任何一个已经举过的实例中,例如用步进电动机,使导向板定位在第一位置20和第二位置22之间的某些不连续的定位点上。因此导向板的位置可以根据不同的参数要求呈阶梯性变化,这些参数可能是发动机转速,发动机转速变化率,节流阀位置和定时齿轮位置等。因此,可以制订一种模糊逻辑表,根据一套预先确定的参数将导向板定位在一系列最佳的位置上。
图16a至16d显示了另外一些不同型式的导向板。每一个导向板都将以这样的方式安装,即使得它的位置是可以控制的,以便使滑动销的路径位置也能得到控制。在图16b和16d的非机械控制式结构中,已没有必要将路径开成槽状,其轮廓形状可以采用轮廓125和325,弹簧力以传统的方式作用到阀门上使阀门关闭,因此总是有压力作用在轮廓125或325上以及各自的摇臂118或328的下侧。采用这种结构的优点是,用阀门弹簧来关闭阀门目前已有大量的现有技术和资料可以利用,同时,这样一来作往复运动的摇臂也可以做得较轻。
用于调节导向板位置的装置实例如图17a和17b所示。图17a是关于一种利用在导向板18开孔34中的转轴30对导向板进行直线位置调节的方法。当轴30转动时,轴上的瓣31便将导向板驱动到需要的位置上。开孔34的结构可使导向板18作直线运动,因此孔的侧壁大体上呈直线形状。由于许多型号的发动机都采用若干个排成一列的菌形阀门,因此可以用一根带多个凸形瓣31的转轴30来同时驱动全部导向板。
图17b显示了另一实例,其中轴30可使导向板18转动。带有凸形瓣31的转轴30在开孔134内转动而使导向板绕枢轴135转动。如果导向板如图9所示与枢轴安装在一起,则当轴30转动时它便驱动导向板转动,并使导向板路径与摇臂路径之间的差异加大或减小,从而对阀门的运动特性产生影响。由于开孔134的结构设计是用来驱动导向板18转动的,其侧壁136比侧壁137要长。
在上述实例中,当导向板作直线或旋转运动时摇臂就摆动。可以很容易地看出,摇臂也可以作直线运动来回应滑动销在导向板路径内的运动。另外,导向板的位置也可以是固定的,所有的调节运动都可以只在摇臂上发生,即摇臂可以使其枢轴相对于导向板移动。这种安排的优点是导向板被固定后所有的调节运动均由摇臂承担从而使导向板的安装大大简化。
从已举出的实例可以看出,导向板18从它的第一位置到第二位置的运动使得滑动销26沿路径25移动,从而不仅增加了阀门开启所跨越的曲轴转角,而且还同时增加了阀门升程。这些方面的组合所产生的结果是十分理想的,因为只要变换一个参数(例如导向板的运动)就可以改变阀门的两个运动特性。发动机在高转速时增加阀门升程是可取的,因为这样可以保证有最大的空气量进入气缸同时也能将废气从气缸中排除干净。然而可以看出在低速时,加大进气涡流才是必须的,这将有助于燃油在空气中的雾化。因为当发动机在低速运行时,进入气缸的空气速度也较低,所以空气经进气阀门进入气缸不会产生很大的涡流。还可以看出,减小阀门升程及阀门的开启持续期能加大进气涡流,所以能增加燃油雾化程度而使低速扭矩提高。发动机在高速时,快速流动的空气形成的涡流可以提供足够的能量使燃油雾化,这时限制因素成了挤进气缸的空气量。本发明能保证只调整一个参数就能不仅调节流阀的开启持续期,而且还能同时调节流阀升程。
阀门的运动特性也可以通过改变其他因素如像改变节流阀位置及选择定时齿轮来加以改变。
应该注意到,在发动机转速上升时增加阀门升程和开启持续期并非是必不可少的,在某些工作环境下,当发动机转速增加时减小进、排气阀门的升程和开启持续时间也许是可取的,对此本发明也能适用。
图18a显示了用于机械控制式阀门驱动的导向板418,它有两个分叉420,每个分叉上都有一个驱动头32。驱动器头置于阀门1上端的上法兰件422和下法兰件424之间。阀门1有一段螺纹部分426,包括下法兰件424的下螺母425拧在螺纹部分426上,如图18b所示。包括上法兰件422的上螺母428也拧在阀门1的螺纹部分426上。上法兰件422与下法兰件424之间的间隔可以用一个中间垫块(图中未画出)来设定,将垫块塞在上螺母428和下螺母425之间,垫块的厚度将确定上法兰件422与下法兰件424之间的间隔距离。
在图示的实例中,上法兰件422包括一个隔离套423,它与下法兰件424上的对应隔离套427相接触,从而保证了两法兰件之间有合适的间隔。通常,这个间隔的尺寸应稍大于与上下法兰件接触的阀门驱动头32的直径,以便在法兰件与驱动头之间有一定的间隙。对于上下螺母应该分别由锁紧螺母(图中未画出)将它们定位。如果要调节流阀间隙可先拧下上锁紧螺母(如果有的话),接着取下带上法兰件422和隔离套423的上螺母428,用带有尺寸合适的隔离套的法兰件替换卸下来的上法兰件422,然后重新将锁紧螺母拧到阀门1的螺纹部分上。用这种方法调整阀门间隙既可以考虑到系统的磨损还不需要更换导向板418。隔离套423与上法兰件可以做成一体也可以分开,下法兰件424和隔离套427如果有必要也可以更换。
一种替代方案是,上螺母428和上法兰件422可以利用上螺母428锁紧在一固定的位置上,上下法兰件之间的间隔可以通过调整上螺母428和上法兰件422设定的位置来进行调节。
驱动头32接触表面的半径保持不变是很重要的,因为这样将能保证在阀门开启和关闭时阀门间隙保持不变,摇臂16也可以自如地绕枢轴14转动。
权利要求
1.一种用于调节流阀运动特性的装置。
2.按照权利要求1所述的装置包括一个运转在阀门驱动机构与阀门之间的调节器。
3.按照权利要求1或2所述的装置,其中,所述的调节器可以改变阀门的开启角和阀门的关闭角。
4.按照权利要求1或2所述的装置,其中,所述的调节器可以改变阀门的升程。
5.按照权利要求2至4中任一权利要求所述的装置,其中,所述的阀门驱动机构包括一个能产生往复运动的旋转元件。
6.按照权利要求5所述的装置,其中,所述的旋转元件包括一根曲轴。
7.按照前面任一权利要求所述的装置,其中,所述的调节器是机械式的。
8.按照前面任一权利要求所述的装置,其中,所述的阀门驱动机构包括一个按圆柱面形状运动的导向元件。
9.按照权利要求2-8中任一权利要求所述的装置,其中,调节器包括一个导向元件,上面有一个用于接受滑动件的路径。
10.按照权利要求9所述的装置,其中,导向元件可以从一个第一位置移动到一个第二位置,当调节器在第一位置时,在导向元件导向路径中的滑动件有一个运动轨迹,该轨迹与调节器在第二位置时滑动件的运动轨迹不同。
11.按照权利要求3-10中任一权利要求所述的装置,其中,阀门相对于曲轴位置的开启角度和关闭角度可以在两个预先确定的角度之间变化。
12.按照权利要求11所述的装置,其中,在发动机的转速范围内至少应能选择三种阀门的开启和关闭角度。
13.一种用于调节流阀运动特性的装置,包括一个调节器,该装置按照一条非直线路径的位移运动来调节流阀的运动。
14.按照权利要求13所述的装置,其中,所述的调节器有一个导向元件和一个导向件,其中导向件既沿着导向元件的一条导向路径运动,也沿着阀门驱动机构的一条导向路径运动,使阀门驱动机构运动。
15.按照权利要求13所述的装置,包括一个可绕枢轴转动的摇臂,一个相对于枢轴可以调节的导向板,用于驱动导向件沿着摇臂路径和导向板路径运动的驱动装置,其中,当导向板在第一位置时的导向路径差比导向板在第二位置时的导向路径差小。
16.按照前述权利要求中任一权利要求所述的装置,其中,进气阀门的运动特性独立于排气阀门的运动特性改变。
17.一种用于调节流阀运动特性装置的调节装置,包括一个有导向路径的板。
18.按照权利要求17所述的装置,包括一个阀门驱动器,它上面的导向路径不同于调节器的导向路径。
19.按照权利要求17所述的装置,其中,调节器导向路径对阀门驱动器导向路径的偏移量决定了阀门驱动器的运动特性。
20.按照权利要求18所述的装置,其中,改变调节器的位置就能改变调节器导向路径与阀门驱动器导向路径之间的对中状况,从而可调节流阀的运动特性。
21.一种用于调节流阀运动特性的装置,包括一个第一导向路径和一个第二导向路径,其中,阀门的运动特性取决于第一和第二导向路径之间的形状差异和/或对中差异。
22.按照前述权利要求中任一权利要求所述的装置,包括一个机械控制式阀门驱动机构。
23.一个由机械控制式阀门驱动机构驱动的阀门间隙调整装置还包括一个端部带螺纹的阀门。
24.按照权利要求23所述的装置,其中,阀门驱动机构位于下法兰件和上法兰件之间,上法兰件则拧在阀门的螺纹部分上。
25.按照权利要求24所述的装置,其中,上法兰部分和下法兰部分是被垫块分隔开的。
26.按照前述权利要求中任一权利要求所述的装置,其中,阀门驱动装置上有一个半径基本不变的阀门接触表面。
全文摘要
一种用于调节发动机阀门运动特性的装置,包括一个能改变阀门的开启和关闭角度以及能改变阀门升程的调节器,该装置包括一个可从一个第一位置移动到一个第二位置的导向元件,该导向元件有一个用于接受阀门驱动机构导向件的导向路径,当调节器在第一位置时导向路径中导向件的运动轨迹与调节器在第二位置时导向件的运动轨迹是不同的。
文档编号F01L1/20GK1251637SQ98803715
公开日2000年4月26日 申请日期1998年2月13日 优先权日1997年2月13日
发明者马克·F·阿姆斯特朗 申请人:黑德斯特朗设计有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1