一种锂离子电池系统SOC估算方法与流程

文档序号:12268872阅读:737来源:国知局

本发明属于新能源汽车行业电池系统技术领域,尤其是涉及一种锂离子电池系统SOC估算方法。



背景技术:

随着全球经济发展以及能源环保问题日益突出,汽车产业向节约能源的绿色汽车产业转型,电动汽车以零排放和噪声低等优点成为节能环保汽车发展的主要方向之一。电池管理系统(BMS)是电动汽车的核心组成部分之一,而剩余荷电状态(SOC)估算是BMS的重点难点所在。SOC估算准确度直接影响到电动汽车续航里程、电池系统寿命、电池系统安全性以及电池系统控制策略。

现阶段新能源行业发展迅猛,电动汽车市场保有量大幅增加,电池管理系统(BMS)生产研发厂家较多,各厂家技术状态存在一定的差异,SOC算法也存在不同,导致市面上的车辆SOC估算精度也存在着差异。现阶段BMS厂家针对SOC算法主要有:放电试验法、安时积分法,卡尔曼滤波法、SOC-OCV修正法,线性模型法、内阻法、神经网络法。这些估算方法计算方法不够准确,以及考虑环境对电池放电容量造成影响因素不够全面。



技术实现要素:

有鉴于此,本发明旨在提出一种锂离子电池系统SOC估算方法,通过导入单体数据库模型大大提升了系统SOC估算精度。

为达到上述目的,本发明的技术方案是这样实现的:

一种锂离子电池系统SOC估算方法,包括如下步骤,

(1)建立电池单体数据库模型,包括单体电芯的容量数据、自放电数据、容量衰减数据、不同温度不同倍率充放电容量数据、不同温度下SOC-OCV数据、不同温度下充电对电池总容量的关系系数、循环次数对电池总容量的关系系数;

(2)电池系统在充放电过程中,通过安时积分法计算当前的SOC值,通过温度传感器采集电池系统的温度变化数值,调用单体数据库模型中不同温度充放电容量对安时积分法中的结果进行修正。

进一步的,所述步骤(2)具体包括

通过调用数据库中不同温度下充电对电池总容量的关系系数k,以及循环次数对电池总容量的关系系数m,更为准确的估算出系统当前SOC数值。具体计算公式如下:

CN=C1*m*k

其中,SOC0为初始时刻的荷电状态,C1为初始额定容量,CN为不同温度下的可充电容量,η为不同温度下充电效率,SOC为当前时刻荷电状态。

进一步的,所述步骤(2)中还包括电池系统在充放电后期通过实时计算上来的单串SOC数值对单串进行被动均衡。

进一步的,所述步骤(2)中还包括充电末端采用单体电压保护,总电压和总电流数值同时达到规定条件时对SOC进行末端修正。

进一步的,所述步骤(2)中还包括放电末端采用单体电压保护,单串SOC以及放电电流数值最低值对SOC进行末端修正。

相对于现有技术,本发明所述的一种锂离子电池系统SOC估算方法具有以下优势:本发明在于可独立估算电池系统中任充一单串SOC,通过导入单体数据库模型大大提升了系统SOC估算精度,通过放电末端多条件共同参与修正SOC数值,有效降低了末端误修正或修正不准的现象发生。

附图说明

构成本发明的一部分的附图用来提供对本发明的进一步理解,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:

图1为本发明实施例所述一种锂离子电池系统SOC估算方法的流程图。

具体实施方式

需要说明的是,在不冲突的情况下,本发明中的实施例及实施例中的特征可以相互组合。

下面将参考附图并结合实施例来详细说明本发明。

如图1所示,本估算方法包含静态SOC-OCV修正,电池系统在上电后会根据上次上电时间以及静态电流数值判定是否需要进行SOC-OCV修正,当前后两次上电时间间隔大于4h且静态电流为0A时会调用系统中已经添加好的单体数据库模型进行SOC修正。电池管理系统具备充放电次数记录功能,在SOC修正时会根据系统充放电次数调用电芯数据库模型中的数据。

单体数据库模型包括:包括单体电芯的容量数据、自放电数据、容量衰减数据、不同温度不同倍率充放电容量数据、不同温度下SOC-OCV数据、不同温度下充电对电池总容量的关系系数、循环次数对电池总容量的关系系数。

电池系统在充放电过程中主要应用到安时积分法,安时积分法通过充放电电流积分计算与电池容量进行比值从而计算出SOC数值,安时积分法在电流测试准确且增加主动修正方法的情况下计算准确度较高,本系统采用安时积分法为主要估算方法,同时通过采集到的电池的温度为依据结合单体数据库模型较为准确的估测SOC数值,并且在充放电末端通过单体电压,系统总电压和系统电流以及单串SOC最高数值参与SOC末端修正,充放电过程进行均衡,保证系统一致性。

具体步骤为通过调用数据库中不同温度下充电对电池总容量的关系系数k,以及循环次数对电池总容量的关系系数m,更为准确的估算出系统当前SOC数值。具体计算公式如下:

CN=C1*m*k

其中,SOC0为初始时刻的荷电状态,C1为初始额定容量,CN为不同温度下的可充电容量,η为不同温度下充电效率,SOC为当前时刻荷电状态。

由于电池充电容量收环境温度影响较大,高温下充电容量相对较高,温度逐渐降低充电容量也会降低,实时修正的目的在于准确的估算电池系统剩余SOC,如不修正电池容量并非为电池在该温度下的可用容量;在每次充放电开始前BMS参照充放电次数和系统温度,并结合单体数据库模型将电池衰减因素考虑到SOC估算中(锂电池可用容量受到循环次数的影响,SOC估算方法中默认的电池可用容量为初始程序写入时的电池系统额定容量,在经过多次循环后电池可用容量会降低,将电池衰减因素考虑到SOC估算中可有效提高SOC估算精度)。

电池系统在充电后期还通过实时计算上来的单串SOC数值对单串进行被动均衡,提高系统一致性;通过在充电后期采集到所有单体SOC数值进行分析确定被动均衡开启的位置及均衡电流大小进行被动均衡,可提高电池单体一致性,避免因个别单体电压过高影响充电容量及充电效率,提高SOC估算精度。

为了规避单体一致性差引起的末端SOC错误修正,在充电末端采用单体电压保护,总电压和总电流数值同时达到规定条件时对SOC进行末端修正;充电末端采用单体电压保护,总电压和总电流数值同时达到规定条件后才进行末端SOC修正,主要是为了避免因单体SOC差异较大,个别单体SOC异常会造成提前终止充电下SOC错误的修正,增加总电压及总电流限制可避免此现象发生,当充电电流小于0.05CN时,结合总电压数值进行满电SOC修正,总电压数值以具体电池系统规定充电截止电压为准;

放电末端采用单体电压保护的目的是防止单体过放,放电末端SOC修正需要结合最低单串SOC数值和总数值,在放电末端总电流为0A时,以最低单串SOC数值对系统SOC进行修正,此方法可较为准确估算电池系统剩余SOC。

以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1