包含锗锑碲记录层的光记录介质的制作方法

文档序号:6762937阅读:300来源:国知局
专利名称:包含锗锑碲记录层的光记录介质的制作方法
技术领域
本发明涉及一种用激光束进行高速记录的可重写光信息介质,所述介质包括一个载有叠层的基片,该叠层依次包括第一介电层,一种包含有由Ge、Sb和Te组成的合金的相变材料记录层,第二介电层,以及金属镜层。
本发明还涉及这种光记录介质在高存储密度和高数据速率应用中的使用。
这种基于相变原理的光信息或数据存储颇具吸引力,因为它把直接重写(DOW)和容易兼容的高存储密度的可能性同只读系统结合了起来。相变光记录就是利用聚焦的激光束在一个薄晶体膜上留下亚微米的非晶记录标记。在记录信息期间,该介质相对于所述聚焦的激光束移动,该激光束根据所要记录的信息进行调制。因此,在所述相变记录层里发生猝熄并在该记录层暴露的区域里生成非晶信息比特,而在非暴露区域里该记录层仍保持结晶状态。通过同一个激光器的加热再结晶,可实现所写非晶标记的擦除。该非晶标记所代表的数据比特能够用一种低功率的聚焦激光束通过所述基片再生成。非晶标记相对于结晶记录层的反射差将会产生一个被调制的激光束,该激光束接着由探测器按照编码、记录的数字信息转换成一种被调制的光电流。
在相变光记录中最重要的要求之一是高数据速率。高数据速率需要记录层具有高结晶速率,即短的结晶时间。为了保证先前记录的非晶标记在直接重写期间能够结晶,记录层应具有合适的结晶时间,以匹配该介质相对于所述激光束的线速度。如果结晶速率不够高,不能匹配该介质相对于所述激光束的线速度,那么先前记录的已有数据(非晶标记)在DOW期间便不能完全擦除(再结晶)。这会产生较高的噪声级。特别是在诸如盘状的DVD+RW、DVR-红和蓝、以及CD-RW等高密度记录和高数据速率应用中,需要有高结晶速率,其完全擦除时间(CET)必须小于约50ns。对于记录密度为每120mm盘片4.7GB的DVD+RW,要求用户的数据比特率为33兆比特/秒,而对于DVR-红的所述速率为35兆比特/秒。对于诸如DVR-蓝(使用蓝色激光束进行工作的数字式录像),要求用户数据比特率高于50兆比特/秒。
本文开始所述的此类光信息介质可见于美国专利US5,191,565。这种已知相变类型的介质包括一个载有叠层的盘状基片,这些层依次为第一介电层,Ge-Sb-Te合金的相变记录层,第二介电层和金属镜层。这种叠层可以认为是一种IPIM结构,其中,M代表反射层或镜层,I代表介电层,P代表相变记录层。在三元成分图(图5)中,所述专利提供了理想配比化合物Ge2Sb2Te5在70ns脉冲间隔内的轨迹,在该脉冲时间里Ge-Sb-Te化合物开始结晶。该时间不等于完全擦除时间CET,而是较短些。完全擦除时间CET被定义为在静态测量的结晶环境中,为使所写非晶标记进行完全结晶而需要的擦除脉冲最短时间。要完全擦除非晶标记需要两个步骤,即晶核生成和晶粒(晶体)生长。该专利所述的时间是晶核生成的时间,即能够观察到第一晶体的时间。完全擦除、即非晶标记完全结晶还额外需要十纳秒或更多。该专利指出,三元图中GeTe-Sb2Te3连线上的化合物可更迅速地结晶。例如理想配比化合物Ge2Sb2Te5(Ge22.2Sb22.2Te55.6,按原子百分比)晶核生成时间为50ns。该申请人的实验显示这种化合物CET值为53ns。
本发明的目的是提供一种可重写的光信息介质,它适用于诸如DVD-RAM和光带的高速光记录,其CET值为50ns或更短。本文中的高速记录应理解为介质相对激光束的线速度至少为7.2m/s,它是光盘标准速度的六倍。
用本文开始所述的光信息介质便可实现本发明的这些目的,其特征在于所述记录层包括一种合金,其成分按原子百分比由三元成分图Ge-Sb-Te中的一个区域定义,该区域为五边形,具有如下顶点Ge24.6Sb20.2Te55.2(A)Ge23.5Sb19.2Te57.3(B)Ge20.5Sb20.5Te59.0(C)Ge18.8Sb22.6Te58.6(D)Ge20.1Sb23.7Te56.2(E);-第一介电层,其厚度为70~(70+λ/2n)nm,其中,λ为激光束的波长,n为该层的折射率;-记录层,其厚度为10~35nm;-第二介电层,其厚度为10~50nm;
-金属镜层,其厚度为60~160hm。
令人惊奇的是,三角形三元Ge-Sb-Te成分图(见

图1)的五边形区域ABCDE中的合金所示的CET值为50ns或更短,甚至低于45ns。这些合金的成分位于成分GeTe和Sb2Te3连线的左边,且所示的CET值比该连线上的伪二元化合物Ge2Sb2Te5更短。这与上述美国专利US5,191,565相反,根据该专利,远离GeTe-Sb2Te3连线将会使化合物Ge2Sb2Te5的晶核生成时间从50ns增加至其左边合金的70ns或更多。区域ABCDE之外的CET值大于50ns。
特别有用的是含有成分为(Ge2Sb2Te5)1-xTex的这些合金,其中摩尔因子x满足0.01≤x ≤ 0.43。
这些成分在三元成分图中处于Ge2Sb2Te5和Te的连线上,但在五边形ABCDE区域中。图1中的顶点C对应于其x=0.43的成分(Ge20.5Sb20.5Te59.0)。
根据本发明的另一种改良介质,其x值满足0.02≤x≤0.35。利用这种x值,可得到低于45ns的CET值。
一种满足该式的成分实施例是Ge21.5Sb21.5Te57.0(x=0.23),其CET值为44ns。
所述第一介电层,即基片和相变记录层之间的层可保护记录层免受潮湿的损坏,并保护基片免受热损伤,并使光学对比度最佳。为使振动最小,第一介电层的厚度最好不少于70nm。考虑到光学对比度,该层的厚度应限制在(70+λ/2n)nm,λ为激光束的波长,n为该第一介电层的折射率。
上述Ge-Sb-Te合金的CET值依赖于所述记录层的层厚。如果该层的厚度增加到10nm,CET会迅速减小,且如果该层的厚度进一步增加,那么CET会达到50nm或更小。当所述记录层厚于25nm时,CET基本上与厚度无关。大于35nm时,介质的循环能力会受到不利影响。在经大量、如105次的DOW循环后,可通过光学对比度的相应改变测出介质的循环能力。每次循环中,当用激光束加热、通过再结晶擦除所写的非晶比特时,则写入新的非晶标记。在理想情况下,循环后的光学对比度应保持不变。实际上,当记录层的厚度达到35nm时,所述循环能力是恒定的。作为综合考虑CET和循环能力要求的结果,记录层的厚度范围应在10~35nm之间,在20~35nm之间更好,在25~35nm之间最好。记录层厚度在25~35nm之间的介质,在第一个105次的DOW循环期间具有恒定低的震动。
所述第二介电层、也即记录层和金属镜层之间的层,其最佳厚度范围是在10~50nm之间,最好在20~40nm之间。当该层太薄时,记录层和金属镜层之间的绝热会受到不利影响。因此,记录层的散热速率会增加,这会导致结晶过程减慢和循环能力降低。增加第二介电层的厚度将降低散热速率。
如果所述金属镜层的厚度在20~200nm之间,则CET值对该厚度并不敏感。但如果金属镜层比60nm薄,则循环能力会因散热速率太低而受到不利影响。如果金属镜层厚度为160nm或更厚,则循环能力会进一步降低,并且记录和擦除的功率一定会因热传导增大而变大。所述金属镜层的厚度最好在80~120nm之间。
所述第一和第二介电层可以用一种ZnS和SiO2的混和物构成,如(ZnS)80(SiO2)20。或是诸如SiO2、TiO2、ZnS、AlN、Si3N4和Ta2O5的混和物。最好使用碳化合物,如SiC、WC、TaC、ZrC或TiC。这些材料具有比ZnS-SiO2混和物更高的结晶速度和更好的循环能力。
所述金属镜层可以采用诸如Al、Ti、Au、Ag、Cu、Pt、Pd、Ni、Cr、Mo、W和Ta等金属制成,也可采用这些金属的合金。合适的合金例子有AlTi、AlCr和AlTa。
所述反射层和介电层能用汽相淀积或喷镀实现。
所述信息介质的基片至少是该激光波长可穿透的,而且可由诸如聚碳酸酯、聚甲基丙烯酸甲酯(PMMA)、非晶聚烯烃或玻璃构成。在典型实施例中,该基片为盘状,直径为120mm,厚度为0.1、0.6或1.2mm。当所使用的基片为0.6或1.2mm时,该基片上可以如此安排起始为第一介电层,接着是记录层等。激光束经该基片的入射面进入该叠层。基片上的叠层还可按反序安排(反向薄膜相变叠层),即起始为金属镜层,接着是第二介电层、相变层等。最后一层介电层(现在为所述第一介电层)则是透光质地的覆盖层,或是上述一种材质的薄片,其厚度为0.1mm(100μm)。激光束经该穿透层的入射面进入该叠层。这种薄层允许激光束物镜的高数值孔径,如N.A.=0.85。
另外,所述基片还可以是合成树脂的可塑形的磁带形式,譬如用聚酯薄膜制成。这样得到的光带将用于诸如基于快速旋转多边形的光带记录器。在这种装置中,被反射的激光束穿过磁带表面进行横向扫描。
在记录层一侧的盘状基片的表面最好备有能够光扫描的伺服轨道。该伺服轨道通常由螺旋状凹槽构成,并在注塑和锻压期间在所述基片上用铸模制成。所述凹槽还可在复制过程中在合成树脂层上形成,例如该合成树脂层分别在基片上提供的丙烯盐酸酯UV光致层。在高密度记录中,所述凹槽的间距可为0.7-0.8μm,宽度为0.5μm。
可选择地借助诸如UV光致的聚(甲基)丙烯酸酯等保护层使所述叠层的最外层免受环境的影响。
通过使用诸如波长为675nm或更短(红色~蓝色)的短波长激光便能够实现高密度的记录和擦除。
通过对合适的目标进行汽相淀积或喷镀能够将所述相变记录层应用于所述基片。因此该淀积层为非结晶性,且表现为低反射特性。为了构造一种合适的高反射记录层,必须首先使该层完全结晶,这通常称为初始化。为此,该记录层可在加热炉内加热至一个高于Ge-Sb-Te合金结晶温度的温度,如180℃。诸如聚碳酸酯这类合成树脂基片还能够用足够高功率的激光束来进行加热。例如这可在记录器中实现,在该情况下所述激光束扫描正在移动的记录层。然后,该非晶层被局部加热至使该层结晶所需的温度,且该基片不易受到不利的热负荷。
如果需要,还能够在基片和第一介电层之间插入一个附加的薄金属层M’,从而形成所谓的M’IPIM结构。虽然此结构变得更复杂,但该附加金属层加快了所述记录层的散热速率以及增大了光学对比度。
若在叠层II+PI+IM或II+PIM中使用了上述材料,则可进一步加快结晶速度,其中I+是一种氮化物、氧化物,或最好是一种碳化物。在该叠层中,记录层P夹在两个附加层I+之间。第一碳化层和第二碳化层最好是SiC、ZrC、TaC、TiC和WC碳化物组中的一种,这些碳化物同时具有出色的循环能力和很短的CET值。SiC因其光学、机械和热特性而成为一种优选材料;而且其价格相对较低。实验显示II+PI+IM叠层的CET值低于IPIM叠层的60%。
附加碳化层的厚度最好在2~8nm之间。当该厚度较小时,碳化物相对高的导热性将只对所述叠层产生较小的影响,因此简化了该叠层的热设计。
下面将借助示例性实施方案和附图对本发明进行更详细地阐述,其中图1所示为按原子百分比的三角形三元成分图Ge-Sb-Te的一部分,图2所示为依据本发明的光信息介质的剖视图,以及图3所示为表示Ge(原子百分比)和Sb/Te(原子比)的三元成分图的一部分。
实施例1~8(根据本发明)图2示意地示出了依据本发明的光信息介质的一部分剖视图。参考数字1代表盘状的聚碳酸酯基片,其直径为120mm,厚度为1.2mn。该基片具有如下结构的IPIM叠层-(ZnS)80(SiO2)20的第一介电层(I)2,厚度为90nm,-Ge-Sb-Te合金的记录层(P)3,厚度为28nm,-(ZnS)80(SiO2)20的第二介电层(I)4,厚度为25nm,-Al的金属镜层(M)5,厚度为100nm。
所有这些层均是喷镀而成的。通过加热记录器中的上述淀积的非晶合金可得到记录层3的初始结晶状态,这样,该记录层便由连续激光束加热至其结晶温度以上。
用于信息记录、复制和擦除的激光束经基片1入射到所述记录层3上。该激光束用箭头6示意性表示。所述非晶标记用功率Pw=1.25Pm(Pm=熔化极限功率)、脉冲宽度为100ns的单个激光脉冲写入。擦除功率为Pw/2。
表1总结了本发明实施例的结果,其中已改变了Ge-Sb-Te合金的成分。
表1
实施例1~8在图1和图3中位于五边形区域ABCDE内。该五边形的顶点A、B、C、D代表含有权利要求1所述成分的合金。图1为完整的三角形三元成分图Ge-Sb-Te的一部分。该图的顶点分别为Te(100%Te)、化合物GeTe(50%Ge,50%Te,0%Sb)和成分0%Ge、50%Sb、50%Te。化合物Ge2Sb2Te5(Ge22.2Sb22.2Te55.6按原子百分比)位于化合物GeTe和Sb2Te3的连线(虚线)上。
图3所示为放大了的不同规格的成分图。其纵轴表示Ge含量(按原子百分比),而水平轴表示Sb/Te的原子比。该图所示为图1中连线的一部分以及化合物Ge2Sb2Te5。顶点C位于Te和Ge2Sb2Te5的连线上。本发明实施例1~8用五边形ABCDE区域中的叉x表示。
最低的CET值位于Te和Ge2Sb2Te5的连线(虚线)上,但在五边形ABCDE区域中,如表1中的实施例5。通过向纯净的Ge2Sb2Te5中添加Te,该成分从Ge2Sb2Te5沿这两个端点的连线向Te移动,对应于成分(Ge2Sb2Te5)1-xTex。如果x=0.00,即为纯净的化合物Ge2Sb2Te5,则其CET值为53 ns。加入少量的Te(x=0.01)后,CET值降低至50ns。在到x=0.43(Ge20.5Sb20.5Te59.0按原子百分比)之前,CET保持低于50ns,这对应于图1和3中的顶点C。如果x在0.02~0.35之间,CET甚至可保持低于45ns。实施例5(x=0.23)也位于此连线上。
对比实施例9~14(非本发明)表2总结了非本发明实施例的结果。
表2
这些实施例所示的CET值均高于50ns。该成分位于五边形ABCDE区域之外,在图3中用点●表示。
根据本发明,所提供的可重写相变光信息介质的CET值为50ns或更低,该介质适合于直接重写和高速记录,例如DVD+RW,DVD-红和蓝。
权利要求
1.一种利用激光束进行高速记录的可重写光信息介质,所述介质包括一个载有叠层的基片,该叠层依次包括第一介电层、一种包含有由Ge、Sb和Te组成的合金的相变材料记录层、第二介电层和金属镜层,其特征在于-所述合金,其成分按原子百分比由三元成分图Ge-Sb-Te中的一个区域定义,该区域为五边形,具有如下顶点Ge24.6Sb20.2Te55.2(A)Ge23.5Sb19.2Te57.3(B)Ge20.5Sb20.5Te59.0(C)Ge18.8Sb22.6Te58.6(D)Ge20.1Sb23.7Te56.2(E);-第一介电层,其厚度为70~(70+λ/2n)nm,其中,λ为激光束的波长,n为该层的折射率;-记录层,其厚度为10~35nm;-第二介电层,其厚度为10~50nm;-金属镜层,其厚度为60~160nm。
2.如权利要求1的光信息介质,其特征在于所述合金的成分有(Ge2Sb2Te5)1-xTex,其中摩尔因子x满足0.01≤x≤0.43,最好为0.02≤x≤0.35。
3.如权利要求1的光信息介质,其特征在于所述记录层的厚度在20~35nm之间,最好在25~35nm之间。
4.如权利要求1的光信息介质,其特征在于所述第二介电层的厚度在20~40nm之间。
5.如权利要求1的光信息介质,其特征在于所述金属镜层的厚度在80~120nm之间。
6.如权利要求1的光信息介质,其特征在于所述金属镜层至少包括选自Al、Ti、Au、Ag、Cu、Pt、Pd、Ni、Cr、Mo、W和Ta中的一种金属,还包括这些金属的合金。
7.如权利要求1的光信息介质,其特征在于所述介质为盘或磁带。
8.如权利要求1的光信息介质,其特征在于所述记录层夹在两个附加碳化层之间,其厚度均在2~8mn之间。
9.上述权利要求之一的光信息介质在高速记录中的使用,所述激光束和介质之间的相对速度至少为7.2m/s。
全文摘要
讲述一种可重写的光信息介质,该介质含有基于Ge-Sb-Te合金的相变记录层,该合金成分位于三元成分图中的五边形ABCDE区域内。这些合金具有50ns或更短的完全擦除时间(CET)。在ABCDE区域中位于Te和化合物Ge
文档编号G11B7/253GK1327581SQ00802145
公开日2001年12月19日 申请日期2000年9月27日 优先权日1999年10月4日
发明者G·F·周, B·A·J·雅各布斯 申请人:皇家菲利浦电子有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1