半导体器件的制造方法

文档序号:6832343阅读:146来源:国知局
专利名称:半导体器件的制造方法
技术领域
本发明涉及半导体器件的制造方法,特别是涉及在衬底上形成了半导体薄膜后进行分离、制造半导体器件,使衬底的再利用成为可能的半导体器件的制造方法。本发明还涉及在上述制造方法中使用的层叠体。本发明被应用于例如用半导体薄膜形成发光元件的列的情况。
背景技术
作为廉价形成发光元件的方法,有在蓝宝石衬底上形成中间层,在中间层上形成化合物半导体层,在该化合物半导体层上形成发光部的方法(专利文献1)。
特开平7-202265号公报另外,众所周知,在使用GaAs系的半导体作为化合物半导体的情况下,工艺过程如图22至图23所示那样进行。
在该方法中,首先,如图22所示,在GaAs衬底51上形成厚度约5μm的Al0.7Ga0.3As层52,在该层上形成厚度约30μm的GaAs薄膜53。
然后,如图23所示,通过浸渍在氢氟酸(HF)中,有选择地刻蚀除去Al0.7Ga0.3As层52,能够将GaAs薄膜53从GaAs衬底51分离。
据认为,在利用上述方法剥离半导体薄膜的情况下,例如,如果能够将剥离半导体薄膜后留下的半导体衬底作为用于得到半导体薄膜的衬底而进行再利用,就能够提高材料的利用效率。
但是,例如,如图24所示,使用上述的剥离方法作为从大口径的衬底得到多个半导体薄膜的方法,据认为是通过形成刻蚀沟槽55、分割成多个薄膜区域56,借助于该沟槽55,使得用于剥离的选择刻蚀层(例如上述的Al0.7Ga0.3As层)52露出,刻蚀除去选择刻蚀层52,得到多个半导体薄膜的方法。但是,用于刻蚀GaAs薄膜53的刻蚀剂也刻蚀AlGaAs层52。例如,一般人们熟知的刻蚀GaAs薄膜53的磷酸双氧水水溶液(磷酸+双氧水+水)或硫酸双氧水水溶液(硫酸+双氧水+水)不仅刻蚀GaAs薄膜53,而且也刻蚀AlGaAs层52。因此,在形成用于上述分割的沟槽55的情况下,存在刻蚀贯通AlGaAs层52而到达GaAs衬底51的问题。当刻蚀达到衬底51时,在衬底51的再利用之前,需要进行使表面平坦化的处理,这不是有效的方法。

发明内容
本发明的目的在于解决上述课题,提供能够有效地再利用衬底的半导体器件的制造方法,及这种制造方法中所使用的层叠体。
本发明配备衬底;包括在上述衬底上形成的刻蚀停止层及第1剥离层的复合层;以及在上述复合层上形成的半导体薄膜,提供具有下述特征的层叠体上述刻蚀停止层与上述半导体薄膜相比,用第1刻蚀液难以刻蚀;上述半导体薄膜与上述第1剥离层相比,用第2刻蚀液难以刻蚀。
另外,本发明还提供具有下述工序的半导体器件的制造方法准备上述层叠体的工序;在上述半导体薄膜上形成半导体元件的工序;用上述第1刻蚀液,在上述半导体薄膜中形成沟槽的工序;以及用上述第2刻蚀液,除去上述第1剥离层的工序。


图1是表示在本发明的第1实施例的制造方法中,形成了半导体薄膜的层叠结构状态的概略局部剖面图。
图2是表示在本发明的第1实施例的制造方法中,形成了沟槽的状态的概略局部剖面图。
图3是表示在本发明的第1实施例的制造方法中,形成了沟槽的状态的概略局部斜视图。
图4是表示在本发明的第1实施例的制造方法中,除去了半导体薄膜的状态的概略局部斜视图。
图5是表示在本发明的第2实施例的制造方法中,形成了半导体薄膜的层叠结构状态的概略局部剖面图。
图6是表示在本发明的第2实施例的制造方法的一道工序中,形成了沟槽的状态的概略局部剖面图。
图7是表示在本发明的第2实施例的制造方法中,除去了半导体薄膜及刻蚀停止层的状态的概略局部剖面图。
图8是表示在本发明的第2实施例的制造方法中,半导体薄膜从刻蚀停止层分离了的状态的概略局部剖面图。
图9是表示在本发明的第3实施例的制造方法中,形成了半导体薄膜的层叠结构的状态的概略局部剖面图。
图10是表示在本发明的第3实施例的制造方法中,形成了沟槽的状态的概略局部剖面图。
图11是表示在本发明的第3实施例的制造方法中,将半导体薄膜剥离了的状态的概略局部剖面图。
图12是表示在本发明的第3实施例的制造方法中,除去了刻蚀停止层的状态的概略局部剖面图。
图13是表示在本发明的第3实施例的制造方法中,除去了剥离层的状态的概略局部剖面图。
图14是表示在本发明的第3实施例的变形例的制造方法中,除去了刻蚀停止层及剥离层的状态的概略局部剖面图。
图15是表示在本发明的第4实施例的制造方法中,形成了半导体薄膜的层叠结构的状态的概略局部剖面图。
图16是表示在本发明的第4实施例的制造方法中,形成了沟槽的状态的概略局部剖面图。
图17是表示在本发明的第4实施例的制造方法中,剥离了半导体薄膜的状态的概略局部剖面图。
图18是表示在本发明的第4实施例的制造方法中,除去了第2及第3缓冲层、以及刻蚀停止层的状态的概略局部剖面图。
图19是表示在本发明的第5实施例的制造方法中,形成了半导体薄膜的层叠结构的状态的概略局部剖面图。
图20是表示在本发明的第5实施例的制造方法中,形成了沟槽的状态的概略局部剖面图。
图21是表示在本发明的第5实施例的制造方法中,剥离了半导体薄膜的状态的概略局部剖面图。
图22是表示在现有半导体器件的制造方法的一道工序中的半导体器件的状态的概略局部剖面图。
图23是表示在现有的半导体器件的制造方法中,刻蚀了Al0.7Ga0.3As层的状态的概略局部剖面图。
图24是表示在现有的半导体器件的制造方法中,用沟槽分割了半导体薄膜的状态的概略局部平面图。
具体实施例方式
以下,参照

本发明的实施例。由于各图是示意性地表示实施例的特征的图,故不是限定了尺寸关系和位置关系的细节等的图。
以下的实施例的半导体薄膜是构成发光二极管阵列(LED阵列)的薄膜,该薄膜被粘结在其他的半导体衬底上、与在该其他的半导体衬底上形成的驱动电路连接,是为了形成由在上述其他的衬底上形成的驱动电路和在半导体薄膜内形成的作为被驱动元件的LED阵列构成的复合半导体器件而使用的半导体薄膜。
在以下的实施例中,虽然半导体薄膜由多层构成,但是本发明也能够应用于用单层构成半导体薄膜的情形。
第1实施例图1至图4是用于说明本发明的第1实施例的制造方法的概略剖面图及概略平面图。以下,参照这些

第1实施例。
如图1所示,最初,准备具有以下各层的层叠体半导体衬底,例如n型GaAs衬底11;在衬底上形成的例如GaAs缓冲层12;在缓冲层上形成的例如(AlxGa1-x)yIn1-yP刻蚀停止层13;在刻蚀停止层上形成的例如AlAs剥离层14;在剥离层上形成的例如n型GaAs下侧接触层15;在下侧接触层上形成的例如n型AlsGa1-sAs下侧包层16;在下侧包层上形成的例如p型AltGa1-tAs活性层17;在活性层上形成的例如p型AluGa1-uAs上侧包层18;以及在上侧包层上形成的例如p型GaAs上侧接触层19。在上述各层中,用刻蚀停止层13和在它上面形成的AlAs剥离层形成复合层,该复合层在GaAs衬底11上形成,在上述复合层上形成形成了半导体薄膜20的层叠体。该层叠体例如是构成半导体晶片的层叠体。
这样的层叠体能够用下述方法形成。即,在半导体衬底例如GaAs衬底11上,顺序形成以下各层例如GaAs缓冲层12;例如(AlxGa1-x)yIn1-yP刻蚀停止层13;例如AlAs剥离层14;例如n型GaAs下侧接触层15;例如n型AlsGa1-sAs下侧包层16;例如p型AltGa1-tAs活性层17;例如p型AluGa1-uAs上侧包层18;以及例如p型GaAs上侧接触层19。
这些层例如能够用有机金属气相生长法(MOCVD法)外延生长形成。
这里,下侧接触层15、下侧包层16、活性层17、上侧包层18、上侧接触层19随后用剥离法从衬底分离,构成被粘结在其他半导体衬底上的半导体薄膜20。图示的例子的半导体薄膜20是作为LED阵列使用的薄膜,下侧接触层15及上侧接触层19在剥离了半导体薄膜20后担当作为LED中的电极接触层的作用。
另一方面,为了通过剥离使半导体薄膜20从衬底11分离,剥离层14是能够被有选择地刻蚀溶解乃至分解的薄膜。另外,如后所述,刻蚀停止层13是当用于形成分割半导体薄膜20的沟槽的刻蚀时,使刻蚀停止的薄膜。
缓冲层12是为了缓和衬底11与半导体薄膜20的晶格常数的失配,同时,缓和因衬底11与半导体薄膜20的热膨胀率的差异引起的应力的薄膜。
此外,将活性层分为上下2层,可以将下层的活性层定为n型、将上侧的活性层定为p型。
进而,可以将下侧接触层15及下侧包层16定为p型,将上侧包层18及上侧接触层定为n型。在这种情况下,当将活性层分为上下2层的情况下,将下侧定为p型,将上侧定为n型。
此外,也能够构成同质结型的LED以代替上述的异质结型的LED。在这种情况下,在使各层外延生长后,用固相扩散法从最上层的表面进行杂质扩散,在活性层内形成pn结。
另外,可以是形成同一组成的外延层,在该外延层内形成了pn结的LED。例如,作为外延半导体层,可以是形成n型GaAs层,进行Zn扩散,也可以是层叠n型GaAs层/p型GaAs层。
形成了图1所示的层叠体或者层叠结构体后,通过元件隔离(例如,刻蚀除去到除发光区以外的部分的活性层为止)或者进行上述的扩散区的形成等,形成半导体元件。如以下将详细叙述的那样,通过形成沟槽21,半导体薄膜20被分割成多个半导体薄膜片,半导体元件在各半导体薄膜片形成预定区域内形成。在本实施例中,设想各半导体薄膜构成LED阵列的情况,在各半导体薄膜片内形成由多个LED元件构成的LED阵列。
此外,如后所述,在本实施例的说明中,在各半导体薄膜片形成预定区域内形成半导体元件、例如形成LED阵列后,对向各半导体薄膜片的分离及从第1衬底进行该半导体薄膜片的剥离的制造工序进行说明,但也可以采用下述方法说明。换句话说,通过沟槽21分割半导体薄膜片后,将该半导体薄膜片从第1衬底剥离,在粘结到第2衬底上后,在半导体薄膜内形成半导体元件(例如,刻蚀除去发光区以外部分的至少到活性层为止的部分,进行必要的层间绝缘膜形成、加工、电极形成、布线形成等)。
如图2及图3所示,如上述那样形成半导体元件后,进行刻蚀形成沟槽21。该刻蚀是为了利用沟槽21,将半导体薄膜20分割成多个半导体薄膜片而进行的,用符号R表示各自的半导体薄膜片所占有的区域。在图2中,仅仅表示了多个半导体薄膜片和区域R中的2个,在图3中仅仅表示了6个。此外,在本说明书中,只要认为不发生混同,将通过分割得到的半导体薄膜片也称为半导体薄膜。
为了进行刻蚀,首先,在上侧接触层19上,使用没有图示的光掩模,使用光致抗蚀剂等感光材料形成刻蚀掩模图形,通过该掩模图形浸入刻蚀液中。
作为刻蚀液,使用对构成半导体薄膜20的各层的刻蚀速度高、对位于半导体薄膜20与衬底11之间的停止层13的刻蚀速度低的刻蚀液,例如,使用硫酸双氧水水溶液(硫酸/双氧水/纯水=16/1/1)、磷酸双氧水水溶液(磷酸/双氧水/水=12/8/80)或者柠檬酸双氧水水溶液。
反过来说,停止层13是用在半导体薄膜20的刻蚀中使用的刻蚀液比较难以刻蚀的材料,即与半导体薄膜20和剥离层14相比,用因上述刻蚀液导致的刻蚀速度低的材料构成。
如图2所示,当该刻蚀进行到刻蚀停止层13的上表面时结束。即,在图2所示的状态中,刻蚀沟槽槽21贯通剥离层14,直到使剥离层14在其厚度方向上完全暴露出来,而在(AlxGa1-x)yIn1-yP刻蚀停止层13停止。
由于上述的刻蚀速度的不同,即使不严格地控制刻蚀时间等刻蚀条件,也能够使刻蚀的进行在停止层13的上表面可靠地停止。
刻蚀沟槽21的宽度Gw例如是约50μm至100μm。为了使刻蚀液的浸透良好,沟槽的宽度以宽为宜,但从有效地利用衬底和半导体薄膜20的材料的观点看,沟槽的宽度以窄为宜。
分割区域R的尺寸Ra×Rb约为100μm×8mm。分割区域的大小能够通过适当的设计进行选择,例如,从约5mm×5mm到10mm×15mm的尺寸均可。
接着,用刻蚀法除去剥离层14,以此将半导体薄膜20从衬底剥离。
该刻蚀通过将图2及图3所示的结构体浸渍在用刻蚀液盛满的刻蚀液槽(没有图示)内进行。
作为刻蚀液,使用剥离层14的刻蚀速度高,半导体薄膜20及刻蚀停止层13的刻蚀速度低的刻蚀液,例如使用10%的氢氟酸(10%-HF)。
反过来说,刻蚀停止层13用在剥离层14的刻蚀中使用的刻蚀液难以刻蚀的材料,即与剥离层14相比,用因上述的刻蚀液导致的刻蚀速度低的材料构成。
通过刻蚀从衬底11剥离了的薄膜20被被粘结在例如没有图示的其他的半导体衬底(例如Si衬底)上,成为复合半导体器件。
当进行上述的刻蚀,除去薄膜20时,如图4所示,留下停止层13、缓冲层12和衬底11。
在图4中,符号23表示除去了被分割了的半导体薄膜20的痕迹,符号22表示刻蚀沟槽21的区域。
接着,对图4所示的结构体,通过刻蚀有选择地除去停止层13,使缓冲层12的表面露出。
在该刻蚀中,例如使用盐酸(HCl)系的刻蚀液。
据此,能够不侵蚀缓冲层12而有选择地刻蚀停止层13。
这样,仅仅留下了缓冲层12的衬底11(即衬底11与缓冲层12的组合)能够被再利用。即,在该缓冲层12上,与图1所示同样,顺序形成层13至19,然后参照图2至图4,重复进行与已经说明过的同样的处理,能够再次得到半导体薄膜20。
以下,就半导体薄膜20的各层、刻蚀停止层13、剥离层14的结构及其特性、特别是其刻蚀特性、晶格匹配性等进行详细的说明。
构成半导体薄膜20的GaAs下侧接触层15、AlsGa1-sAs下侧包层16、AltGa1-tAs活性层17、AluGa1-uAs包层18、GaAs上侧接触层19例如具有如下的特征。即,GaAs下侧接触层15是n型、AlsGa1-sAs下侧包层16是n型、AltGa1-tAs活性层17是p型、AluGa1-uAs上侧包层18是p型、GaAs上侧接触层19是p型,AlsGa1-sAs下侧包层16、AltGa1-tAs活性层17、AluGa1-uAs上侧包层18的Al的组成比的关系被定为s>t、u>t,形成所谓的双异质结结构,据此,增高了发光效率。发光效率之所以增高是由于在剥离了半导体薄膜20后,当在GaAs下侧接触层15与GaAs上侧接触层19之间流过电流时,通过pn结注入的载流子被用异质结外延界面的能量壁垒限制,最终使载流子的复合几率增高的缘故。
(AlxGa1-x)yIn1-yP刻蚀停止层13是在半导体薄膜20上形成刻蚀沟槽21时,为了防止刻蚀沟槽21到达GaAs衬底11的停止层。已知在能够刻蚀GaAs及AlGaAs的刻蚀剂中,例如,在硫酸双氧水水溶液、磷酸双氧水水溶液、柠檬酸双氧水水溶液中,构成停止层13的(AlxGa1-x)yIn1-yP和构成半导体薄膜20的各层的GaAs及AlGaAs的刻蚀速度存在很大差异。因此,当在半导体薄膜20中设置刻蚀沟槽21时,该刻蚀沟槽21不会到达GaAs衬底11。换句话说,当在半导体薄膜20上设置刻蚀沟槽21时,为了防止刻蚀沟槽21到达GaAs衬底11,不需要严密地控制刻蚀条件。由于不需要严密地控制刻蚀条件,能够设定长的刻蚀时间,以使AlAs剥离层14可靠地露出。
在形成半导体外延层的情况下,为了防止对外延层发生缺陷,希望进行材料选择,以使晶体的晶格常数匹配。例如,在GaAs衬底11上,设置(AlxGa1-x)yIn1-yP刻蚀停止层13,进而在刻蚀停止层上设置用于形成半导体元件的半导体薄膜20的情况下,希望(AlxGa1-x)yIn1-yP刻蚀停止层13的晶格常数与构成衬底11的GaAs的晶格常数相等。已知通过设定0.48≤y≤0.52,(AlxGa1-x)yIn1-yP的晶格常数与GaAs的晶格常数相等。(在理想的状态下,y=0.5的情况下,与GaAs的晶格匹配,但是根据在分子束外延法(MBE法)、有机金属气相生长法、液相生长法等的半导体外延生长层的制作方法和利用这些方法的外延层生长条件,晶格匹配的组成比(实际上分析、测量得到的y的值)产生若干的幅度。
更具体地说,例如,能够设定x=0,0.48≤y≤0.52,即能够设定GayIn1-yP(0.48≤y≤0.52)。因此,从防止外延层发生缺陷的观点出发,如上所述,希望使刻蚀停止层13的组成为,在(AlxGa1-x)yIn1-yP中,例如设定x=0,0.48≤y≤0.52,设定GayIn1-yP(0.48≤y≤0.52)。
如上所述,在衬底上的全部的刻蚀沟槽21都在(AlxGa1-x)yIn1-yP刻蚀停止层13表面停止的情况下,刻蚀沟槽21的深度是均匀的,由于AlAs剥离层14的露出程度在衬底的全部区域上也是均匀的,用于继续进行的半导体薄膜20的剥离的AlAs剥离层的刻蚀,在衬底整个区域上均匀地进行,即使在面积大的衬底上,也能够进行良好的半导体薄膜20的剥离。
如图4所示,例如,能够用盐酸系的刻蚀液,不刻蚀GaAs缓冲层12,而能够有选择地刻蚀除去半导体薄膜20剥离后留下的(AlxGa1-x)yIn1-yP刻蚀停止层13。由于能够有选择地刻蚀除去(AlxGa1-x)yIn1-yP刻蚀停止层13,即使是面积大的衬底,也能够在衬底的整个表面上,使均匀状态的GaAs缓冲层12的表面露出。
因此,能够再次在GaAs缓冲层上,例如用MOCVD法形成良好的半导体外延层。
如以上详细说明的那样,在上述第1实施例中,在用于使半导体薄膜20从GaAs衬底11剥离的AlAs剥离层与GaAs衬底11之间,形成设置了对刻蚀构成半导体薄膜20的各层的刻蚀液具有非刻蚀性的(AlxGa1-x)yIn1-yP刻蚀停止层13的层叠体,由于使用该层叠体形成半导体器件,能够得到以下的效果。
首先,在衬底11上,即使设置用于将半导体薄膜20分割成多个区域的刻蚀沟槽21,也能够防止刻蚀沟槽21到达GaAs衬底11,能够有效地再利用GaAs衬底11。
另外,不依靠严密的刻蚀条件的控制,也能够在衬底整个面上使因刻蚀沟槽21造成的剥离层14的露出状态变得均匀。即使是面积大的衬底,也能够在衬底整个面上进行良好的半导体薄膜的剥离。
第2实施例在上述第1实施例中,使用在(AlxGa1-x)yIn1-yP刻蚀停止层13上形成了AlAs剥离层14的层叠体,而如图5所示,也可以省略停止层13上的剥离层,代之以使用在停止层13的下侧设置了剥离层24的层叠体。换句话说,可以将停止层13和剥离层(14、24)的层叠顺序调换。
即,如图5所示,准备具有以下各层的层叠体半导体衬底,例如n型GaAs衬底11;在衬底上形成的例如GaAs缓冲层12;在缓冲层上形成的例如AlAs剥离层24;在剥离层上形成的例如(AlxGa1-x)yIn1-yP刻蚀停止层13;在刻蚀停止层上形成的例如n型GaAs下侧接触层15;在接触层上形成的例如AlsGa1-sAs下侧包层16;在下侧包层上形成的例如p型AltGa1-tAs活性层17;在活性层上形成的例如p型AluGa1-uAs上侧包层18;以及在上侧包层上形成的例如p型GaAs上侧接触层19。在该层叠体中,用AlAs剥离层24和在它上面形成的刻蚀停止层13形成复合层,该复合层在GaAs衬底11上形成,在上述复合层上形成半导体薄膜20。
如图6所示,当如上所述进行停止层13与剥离层(14、24)的调换的情况下,当形成刻蚀沟槽21时,在刻蚀进行到停止层13的上表面时,刻蚀结束。因此,沟槽21不贯通剥离层24,剥离层24在衬底11的外围部以外不至露出。
与对第1实施例的叙述相同,作为用于形成沟槽21的刻蚀液,通过使用对构成半导体薄膜20的各层的刻蚀速度高、停止层13的刻蚀速度低的刻蚀液,即使不严密地控制刻蚀时间等刻蚀条件,也能够使刻蚀在停止层13的表面停止。
如图7所示,在形成沟槽21后,通过刻蚀AlAs剥离层24,剥离半导体薄膜20及停止层13。在该刻蚀时,刻蚀液从衬底11的周边向着中央部,沿剥离层24浸透。如图7所示,当进行该剥离时,缓冲层12和GaAs衬底11留了下来。
在AlAs剥离层24的刻蚀工序中,由于使用AlAs的刻蚀速度高、构成衬底11和缓冲层12的GaAs的刻蚀速度低的(例如刻蚀速度比约为107倍)的刻蚀液(例如氢氟酸),GaAs衬底11上的GaAs缓冲层12的表面几乎不受刻蚀的影响,再利用容易。即,GaAs衬底11和它上面的GaAs缓冲层12的表面,具有十分平坦的良好的状态,达到对立即再度进行外延生长无障碍的程度。
从衬底11分离了的半导体薄膜20和停止层13的组合,例如,通过浸渍在盐酸系的刻蚀液中,使停止层13的全体有选择地溶解,据此,使用刻蚀沟槽21分割的各半导体薄膜20相互分离,如图8所示,能够得到独立的半导体薄膜。
此外,在第1实施例及第2实施例中,在GaAs衬底11上设置了GaAs缓冲层12。缓冲层12是为了使在它的上面形成的外延层性能良好而设置的,但也可以省略缓冲层12,在衬底11上直接形成(AlxGa1-x)yIn1-yP停止层13或者剥离层14。
另外,在上述第1及第2实施例中,再利用保留了缓冲层12的衬底11,也可以例如通过化学机械抛光等方法除去缓冲层12,仅仅再利用衬底11。在这种情况下,在衬底11上重新形成缓冲层12,在它的上面形成层13至19。
进而,衬底11并不限定于GaAs衬底,只要能够与(AlxGa1-x)yIn1-yP停止层13进行选择性的刻蚀,也可以是其他材料的衬底。
在第1实施例中,对刻蚀停止层13,使用在外延生长中能够取得晶格匹配的材料,通过衬底材料的选择,与半导体薄膜20进行晶格匹配,也可以使用具有与衬底11的晶格不匹配的组成的(AlxGa1-x)yIn1-yP停止层13。另外,也可以在(AlxGa1-x)yIn1-yP停止层13上设置缓冲层,以缓和与半导体薄膜20的晶格常数的失配。
第3实施例在第1实施例中,最初形成图1所示的层叠体,在第3实施例中,最初形成图9所示的层叠体。
该层叠体具有半导体衬底,例如n型GaAs衬底11;在衬底上形成的例如GaAs缓冲层12;在缓冲层上形成的例如AlAs剥离层31;在剥离层上形成的例如(AlxGa1-x)yIn1-yP刻蚀停止层13;在刻蚀停止层上形成的例如AlAs剥离层14;在剥离层上形成的例如n型GaAs下侧接触层15;在下侧接触层上形成的例如n型AlsGa1-sAs下侧包层16;在下侧包层上形成的例如p型AltGa1-tAs活性层17;在活性层上形成的例如p型AluGa1-uAs上侧包层18;以及在上侧包层上形成的例如p型GaAs上侧接触层19。
图9与图1的不同在于,往往在停止层13与缓冲层12之间设置第2剥离层31。此外,为了与第2剥离层31相区别,将剥离层14称为第1剥离层。
该第2剥离层31与第2实施例的剥离层31同样,例如用AlAs层形成。
图9的层叠体通过在衬底11上,顺序外延生长缓冲层12、第2剥离层31、刻蚀停止层13、第1剥离层14、下侧接触层15、下侧包层16、活性层17、上侧包层18及上侧接触层19得到。
在形成了图9的层叠体后,与对第1实施例已说明过的相同,形成刻蚀沟槽21(图10)。使该刻蚀沟槽21的深度到达停止层13的表面。这样,第1剥离层14在其厚度方向上完全露出。
作为用于形成刻蚀沟槽21的刻蚀液,是刻蚀停止层13的刻蚀速度低,构成薄膜20的各层的刻蚀速度高的刻蚀液,例如,与在第1实施例中已经说明过的同样,能够使用硫酸双氧水水溶液、磷酸双氧水水溶液、柠檬酸双氧水水溶液。
如关于第1实施例的说明那样,作为用于形成刻蚀沟槽21的刻蚀时间,例如即使将刻蚀时间取得十分长,使得大面积的衬底(晶片)的整个面上刻蚀沟槽21的深度不致不充分,刻蚀也能够在(AlxGa1-x)yIn1-yP刻蚀停止层13的表面上停止。
接着,如图11所示,从GaAs衬底11剥离半导体薄膜20。这如对第1实施例的叙述那样,通过用氢氟酸(HF)刻蚀第1剥离层14进行。
如图11所示,由于利用刻蚀沟槽21被细分化了的半导体薄膜20下面的第1剥离层14也被细分化,刻蚀液从刻蚀沟槽21高速地浸透第1剥离层14。
另一方面,由于第2剥离层31在衬底(晶片)整个面上被(AlxGa1-x)yIn1-yP停止层13与GaAs衬底11夹持,在上下方向上遮蔽刻蚀液,刻蚀从衬底11的周边向着中央沿剥离层31进行。因此,如图11所示,第1剥离层14的刻蚀除去结束,在半导体薄膜20从GaAs衬底11分离的时刻,第2剥离层31仅仅周围附近的部分被除去,大部分保留了下来。
这里,使第2剥离层的层厚小于第1剥离层的层厚,使刻蚀液向第2剥离层的浸透减慢,在第1剥离层的刻蚀时,能够使第2剥离层可靠地保留下来。另外,使第2剥离层的材料与第1剥离层的材料为相同的材料,或者使第2剥离层的刻蚀速度比第1剥离层的刻蚀速度减慢,这样,能够使第1剥离层在刻蚀时,能够可靠地使第2剥离层保留下来。在这种情况下,例如,将第1剥离层的材料定为AlpGa1-pAs(1≥p>0)、将第2剥离层的材料定为AlqGa1-qAs(1≥q>0),能够使p≥q。
在剥离半导体薄膜20后,例如用盐酸系的刻蚀液刻蚀除去(AlxGa1-x)yIn1-yP刻蚀停止层13,使第2剥离层31露出(图12)。
如上所述,在使第2剥离层31露出后,例如,用10%氢氟酸刻蚀除去第2剥离层31。
在用氢氟酸刻蚀第2剥离层31时,由于构成缓冲层12的GaAs对氢氟酸的刻蚀速度,与构成剥离层31的AlAs对氢氟酸的刻蚀速度相比极慢(约1/107),GaAs缓冲层12几乎没有被侵蚀,在刻蚀除去AlAs剥离层31后的GaAs缓冲层12的表面是极平滑的表面。
此外,如上所述,对图11的结构体,在用盐酸系的刻蚀液进行刻蚀除去停止层13后,然后用氢氟酸作为刻蚀液刻蚀除去剥离层31,对图11的结构体,也可以代之以通过利用使用了氢氟酸的刻蚀法除去第2剥离层31,同时除去第2剥离层31和在它的上面的停止层13(图14)。
在这种情况下,刻蚀液从衬底11的周围部向着中心、沿第2剥离层31浸透。
另外,第1剥离层14的除去和第2剥离层31的除去能够用相同的刻蚀液(氢氟酸)进行,能够同时(作为一道工序)进行这些操作。在这种情况下,通过适当选择第1剥离层14及第2剥离层31的组成、厚度等,能够大致同时地完成第1剥离层14的除去和第2剥离层31的除去。关于这一点,将在后面详细叙述。
根据上述第3实施例,由于在刻蚀停止层13与缓冲层12之间插入第2剥离层31,当第2剥离层31的刻蚀除去时,缓冲层12几乎不受刻蚀的影响,在剥离层31(及停止层13)除去后,能够得到具有十分平坦的表面的缓冲层12。因此,在再利用配备了缓冲层12的衬底11时,能够在缓冲层12上生长良好的外延层。
此外,在第3实施例中,也可以不设置GaAs缓冲层12,而是直接在衬底11上设置第2剥离层31。在这种情况下,在对剥离层31进行剥离时,由于GaAs衬底11的表面成为极平坦的表面,当再利用衬底时,能够在GaAs衬底11的表面上生长良好的外延层。
第4实施例在第3实施例中,最初形成图9所示的层叠体,但也可以代之以形成图15所示的层叠体。
该层叠体具有半导体衬底例如n型GaAs衬底11;在衬底上形成的例如GaAs缓冲层12;在缓冲层上形成的例如AlAs剥离层31;在剥离层上形成的例如GaAs缓冲层33;在缓冲层上形成的例如(AlxGa1-x)yIn1-yP刻蚀停止层13;在刻蚀停止层上形成的例如GaAs缓冲层34;在缓冲层上形成的例如AlAs剥离层14;在剥离层上形成的例如n型GaAs下侧接触层15;在下侧接触层上形成的例如n型AlsGa1-sAs下侧包层16;在下侧包层上形成的例如p型AltGa1-tAs活性层17;在活性层上形成的例如p型AluGa1-uAs上侧包层18;以及在上侧包层上形成的例如p型GaAs上侧接触层19。
图15与图9的不同之外在于在停止层13与下侧剥离层31之间设置第2缓冲层33,在停止层13与上侧剥离层14之间设置第3缓冲层34。为了与第2及第3缓冲层33及34区别,称缓冲层12为第1缓冲层。
第2缓冲层33及第3缓冲层34都用GaAs形成。
图15的层叠体通过在衬底11上顺序外延生长缓冲层12、第2剥离层31、缓冲层33、停止层13、缓冲层34、第1剥离层14、接触层15、包层16、活性层17、包层18、接触层19得到。
在形成图15所示的层叠体后,与对第1实施例所作的说明同样,形成刻蚀沟槽21,使第1剥离层14露出(图16)。
刻蚀沟槽21的深度要至少使AlAs层14露出。在这里所示的图中,例如,使深度达到停止层13的表面。
接着,用氢氟酸刻蚀除去第1剥离层14,剥离半导体薄膜20(图17)。
接着,用氢氟酸刻蚀除去第2剥离层31,使GaAs缓冲层12露出(图18)。当用氢氟酸刻蚀除去剥离层31时,刻蚀液(氢氟酸)沿第2剥离层31从衬底11的周围向中央浸透。
在上述第4实施例中也能得到与上述第3实施例同样的效果,另外,同样的变形也是可能的。
此外,在第4实施例中,由于在设置第2缓冲层或者第3缓冲层之后,设置停止层、第1剥离层,能够提高第1剥离层及半导体薄膜层的品质,能够使半导体薄膜的剥离界面的状态更好。另外,能够得到更高品质的半导体元件。
另外,在第4实施例中,虽然设置了第2剥离层31,但是,如第1实施例那样,也可以不设置第2剥离层31,而在仅仅设置了第1剥离层14的结构中,在剥离层14与刻蚀停止层13之间设置缓冲层34。
第5实施例在第1实施例中,最初形成图1所示的层叠体,但也可以代之以形成图19所示的层叠体。
该层叠体具有半导体衬底,例如硅(Si)衬底41;在衬底上形成的例如GaAs缓冲层12;在缓冲层上形成的例如AlAs剥离层14;在剥离层上形成的例如n型GaAs下侧接触层15;在下侧接触层上形成例如n型AlsGa1-sAs的下侧包层16;在下侧包层上形成的例如p型AltGa1-tAs活性层17;在活性层上形成的例如p型AluGa1-uAs上侧包层18;以及在上侧包层上形成的例如p型GaAs上侧接触层19。
图19与图1的不同之处在于,使用硅(Si)衬底41代替GaAs衬底11和不设置停止层13。
图19的层叠体通过在衬底41上顺序外延生长缓冲层12、剥离层14、接触层15、包层16、活性层17、包层18、接触层19得到。
如本实施例那样,当在Si衬底41上形成化合物半导体的半导体薄膜时,为了降低半导体薄膜的缺陷密度,需要形成比较厚的缓冲层12。
在形成图19的层叠体后,与对第1实施例已经说明的一样,形成刻蚀沟槽21使剥离层14露出(图20)。
使刻蚀沟槽21到GaAs缓冲层12的中途停止。
作为刻蚀液,使用能够刻蚀半导体薄膜20、AlAs层14、缓冲层12的刻蚀液,例如使用磷酸双氧水水溶液(磷酸+双氧水+水)。
然后,例如用10%的氢氟酸刻蚀除去剥离层14,使半导体薄膜20从衬底41分离(图21)。
然后,用不刻蚀Si衬底41的刻蚀液,例如使用硫酸双氧水水溶液,有选择地刻蚀除去缓冲层12。
其结果是,得到表面平坦的Si衬底41(图21)。
该Si衬底41具有平坦的表面,能够再利用。
此外,在上述的例子中,如图20所示,使刻蚀沟槽21到缓冲层12的中途为止,在本实施例中,由于缓冲层12比较厚,即使刻蚀时间等的控制不能正确地进行,也能够使刻蚀的进行在缓冲层12的中途停止。
在第5实施例中,由于使用Si衬底41,即使在衬底41上的半导体薄膜中设置刻蚀沟槽21,细分化成一个个半导体薄膜区,刻蚀沟槽21也不会侵蚀Si衬底41,在半导体薄膜20剥离后,能够得到平坦的Si衬底41。
此外,对第1及第2实施例(图1至图8)所述的几个变形,也能够适用于其他的实施例。
例如,如对第1及第2实施例(图1至图8)所述的那样,即使在第3及第4实施例(图9至图18)中,衬底11也不限定于GaAs衬底,只要是能够有选择地刻蚀(AlxGa1-x)yIn1-yP停止层13的衬底,也可以是其他材料的衬底。
另外,如对第1、第2及第3实施例(图1至图14)所述的那样,即使在第4及第5实施例中(图5至图21的实施例),也可以省略缓冲层12。
另外,在第4实施例中,也可以省略缓冲层33。
此外还有,在上述各实施例中,作为剥离层14,使用的是用AlAs形成的剥离层,但剥离层14的材料,只要是与构成半导体薄膜20的层晶格匹配的材料,只要是用对构成半导体薄膜20的层刻蚀速度低的刻蚀液进行高速刻蚀的材料,也可以是其他的材料。
例如,能够使用AlpGa1-pAs(1>p>0)代替AlAs。
此外,只要p可取1≥p>0的范围的值,也能够把AlAs认为是p=1时AlpGa1-pAs(1≥p>0)的情况。
但是,为了选择性的刻蚀,需要使Al的组成比比构成半导体薄膜20的下侧包层16、活性层17、上侧包层18的AlGaAs的Al的组成比高。即,当用AlzGa1-zAs表示半导体薄膜20的下侧包层16、活性层17、上侧包层18的材料(对下侧包层16,z=s;对活性层17,z=t;对上侧包层18,z=u)时,必须满足条件
z<P进而,在图9至图14及图15至图18的实施例中,当用AlqGa1-qAs(1>q>0)表示第2剥离层的组成时,必须满足条件z<q当第1剥离层的刻蚀时,为了结束第2剥离层的大部分的刻蚀,希望至少满足以下条件。即,希望p<q。
进而,希望第2剥离层31的层厚大于第1剥离层14的层厚。
进而,还希望,对于第2刻蚀液(氢氟酸),第2剥离层31的刻蚀速度比第1剥离层14的刻蚀速度高。
进而,使第1剥离层14的刻蚀结束时间与第2剥离层31的刻蚀结束时间大体一致,通过一次的刻蚀,能够使第1剥离层和第2剥离层的刻蚀结束。
现对于上述各点,进行更详细的说明。
在用AlGaAs构成剥离层14及31的情况下,Al的组成比越大,使用氢氟酸作为第2刻蚀液得到的刻蚀速度越高。因此,第1剥离层14的Al组成比p及第2剥离层31的Al组成比q,只要满足p<q就能够使第2剥离层31的刻蚀速度比第1剥离层14的高。
另外,第1剥离层14位于被刻蚀沟槽21分离成孤立的岛状半导体薄膜20的下方,在多条沟槽21中被露出,而第2剥离层31被刻蚀停止层13覆盖,只不过在衬底11的边缘部中露出。因此,在这种状态下,在刻蚀第1及第2剥离层14及31的情况下,氢氟酸必须浸透的第1及第2剥离层14及31的长度(沿刻蚀进行方向的距离)L1及L2存在如下关系L2>L1这里,假设第1及第2剥离层14及31的刻蚀速度为S1、S2时,第1及第2剥离层14及31的刻蚀所需的时间分别为T1、T2T1=L1/S1T2=L2/S2如上所述,在L2>L1的情况下,成为S2>S1的条件,即,如果选择第2剥离层31的刻蚀速度比第1剥离层14高的条件,则能够得到T1与T2大体相等的结果。如果能够使T1=T2,在用第2刻蚀液的半导体薄膜20的剥离工序中,不仅能够剥离半导体薄膜20,第2剥离层的除去也能够大体同时结束。换句话说,能够一次进行大体同时结束因第1剥离层14的刻蚀除去导致的半导体薄膜20的剥离和第2剥离层31的除去。
另外,如果使第2剥离层31比第1剥离层14厚,在第1剥离层14与第2剥离层31的材料相同的情况下,第2剥离层31的材料的刻蚀速度S2比第1剥离层的材料的刻蚀速度快。即,成为S2>S1。因此,对如以上说明的AlGaAs的Al组成比,使p<q与此情况相同,能够使第1剥离层的刻蚀时间T1=L1/S1与第2剥离层的刻蚀时间T2=L2/S2大体相等。其结果是,在用第2刻蚀液的半导体薄膜20的剥离工序中,不仅半导体薄膜20的剥离,也能够使第2剥离层的除去大体同时结束。换句话说,能够一次进行、并大体同时结束因第1剥离层14的刻蚀除去而导致的半导体薄膜20的剥离和第2剥离层31的除去。
此外,如上所述,也可以用使p与q互不相等的方式以代替使第2剥离层31的Al的组成比大于第1剥离层14的Al的组成比。例如,也可以使p>q。
另外,如上所述,也可以用使第1剥离层14的厚度与第2剥离层31的厚度互不相等的方式以代替使第2剥离层31的厚度比第1剥离层14的厚度厚。例如,也可以使第1剥离层14的厚度比第2剥离层31的厚度厚。在这种情况下(使p>q和第1剥离层14的厚度>第2剥离层的厚度的情况下),在第1剥离层14的刻蚀时,第2剥离层31的刻蚀几乎不进行,在使刻蚀停止层13进行整个面刻蚀(在晶片整个面上对整个面露出的刻蚀停止层13同时进行整个面的刻蚀)后,能够对第2剥离层31的整个面进行刻蚀(在晶片整个面上对整个面露出的第2剥离层31同时进行整个面的刻蚀)。
另外,在上述各实施例中,作为刻蚀停止层13,使用用(AlxGa1-x)yIn1-yP形成的刻蚀停止层。
而且,如对于第1实施例(图1至图4)已经叙述了的那样,在第2至第4实施例(图5至图18)中,在衬底11是GaAs的情况下,从与GaAs的晶格匹配的观点出发,也希望0.48≤y≤0.52。更具体地说,例如希望是x=0、0.48≤y≤0.52的GayIn1-yP(0.48≤y≤0.52)。
但是,只要是能够与构成半导体薄膜20的层进行选择性刻蚀的材料,刻蚀停止层13的材料也可以是其他的材料。例如,能够使用InP、InGaAs、InAlAs、InGaAsP等材料。
进而,在第1及第3实施例中,通过调整刻蚀时间,也能够在AlAs剥离层14的中途结束刻蚀,即,也能够使AlAs剥离层14仅仅在其厚度方向的一部分露出。
另外,在上述各实施例中,半导体薄膜20是作为LED阵列使用的半导体薄膜,但是本发明不是限定于此,半导体薄膜也能够应用于在形成LED以外的各种元件和电路中使用的情况。
发明的效果如上所述,根据本发明,能够有效地再利用衬底。
权利要求
1.一种层叠体,它配备衬底;包括在上述衬底上形成的刻蚀停止层及第1剥离层的复合层;以及在上述复合层上形成的半导体薄膜,该层叠体的特征在于上述刻蚀停止层是与上述半导体薄膜相比难以用第1刻蚀液刻蚀的层,上述半导体薄膜是与上述第1剥离层相比难以用第2刻蚀液刻蚀的薄膜。
2.如权利要求1所述的层叠体,其特征在于上述刻蚀停止层在上述衬底上形成,上述第1剥离层在上述刻蚀停止层上形成,上述半导体薄膜在上述第1剥离层上形成。
3.如权利要求1所述的层叠体,其特征在于上述第1剥离层在上述衬底上形成,上述刻蚀停止层在上述第1剥离层上形成,上述半导体薄膜在上述刻蚀停止层上形成。
4.如权利要求1至3中任一项所述的层叠体,其特征在于上述衬底与上述刻蚀停止层相比是难以用第3刻蚀液刻蚀的材料。
5.如权利要求1至3中任一项所述的层叠体,其特征在于上述衬底是GaAs,上述第1剥离层是AlpGa1-pAs(1≥p≥0),停止层是(AlxGa1-x)yIn1-yP层(1≥x≥0、1≥y≥0)
6.如权利要求5所述的层叠体,其特征在于上述半导体薄膜的各层是AlzGa1-zAs(1≥z≥0)。
7.如权利要求6所述的层叠体,其特征在于对于上述半导体薄膜的各层的Al组成比z与上述第1剥离层的Al的组成比p,z<p。
8.如权利要求6所述的层叠体,其特征在于上述第1剥离层是AlAs。
9.如权利要求5所述的层叠体,其特征在于在上述停止层的组成(AlxGa1-x)yIn1-yP中,X=0、0.48≤y≤0.52。
10.如权利要求2所述的层叠体,其特征在于进一步具有在上述衬底上形成的第2剥离层,上述停止层在上述第2剥离层上形成,上述第2剥离层是与上述衬底相比容易用上述第1刻蚀液刻蚀、而且也容易用上述第2刻蚀液刻蚀的层。
11.如权利要求10所述的层叠体,其特征在于上述衬底是GaAs衬底,上述第1剥离层是AlpGa1-pAs(1≥p≥0),上述停止层是(AlxGa1-x)yIn1-yP层(1≥x≥0、1≥y≥0)上述第2剥离层是AlqGa1-qAs(1≥q≥0)。
12.如权利要求11所述的层叠体,其特征在于上述半导体薄膜的各层是AlzGa1-zAs(1≥z≥0)。
13.如权利要求12所述的层叠体,其特征在于对于上述半导体薄膜的各层的Al组成比z、第1剥离层的Al组成比p、第2剥离层Al组成比q,z<p、z<q。
14.如权利要求11所述的层叠体,其特征在于上述第1剥离层的Al组成比p与上述第2剥离层Al组成比q互不相等。
15.如权利要求11所述的层叠体,其特征在于上述第1剥离层的厚度与上述第2剥离层的厚度互不相等。
16.如权利要求11所述的层叠体,其特征在于对于上述第1剥离层和上述第2剥离层,对于上述第2刻蚀液,上述第2剥离层的刻蚀速度比上述第1剥离层的刻蚀速度大。
17.如权利要求16所述的层叠体,其特征在于对于上述第1剥离层的Al组成比p和上述第2剥离层的Al组成比q,p<q。
18.如权利要求11所述的层叠体,其特征在于上述第1剥离层和上述第2剥离层是AlAs。
19.如权利要求16或者18所述的层叠体,其特征在于上述第2剥离层的层厚比上述第1剥离层的层厚大。
20.如权利要求11所述的层叠体,其特征在于在上述停止层的组成(AlxGa1-x)yIn1-yP中,是x=0、0.48≤y≤0.52。
21.如权利要求11所述的层叠体,其特征在于进一步包括在上述衬底上形成的第1缓冲层,上述第2剥离层在上述第1缓冲层上形成,进一步包括在上述第2剥离层上形成的第2缓冲层,上述停止层在上述第2缓冲层上形成,进一步包括在上述停止层上形成的第3缓冲层,上述第1剥离层在上述第3缓冲层上形成。
22.如权利要求1或者2所述的层叠体,其特征在于进一步具有在上述第1剥离层与上述刻蚀停止层之间设置的缓冲层。
23.一种层叠体,它具有衬底;在上述衬底上形成的剥离层;以及在上述剥离层上形成的半导体薄膜,该层叠体的特征在于上述衬底与上述半导体薄膜及上述剥离层相比,是难以用第1刻蚀液刻蚀的材料,上述衬底与上述剥离层相比,是难以用第2刻蚀液刻蚀的材料。
24.如权利要求23所述的层叠体,其特征在于上述衬底是Si衬底,上述半导体薄膜是GaAs系的半导体薄膜。
25.如权利要求24所述的层叠体,其特征在于上述半导体薄膜的各层的材料是用AlzGa1-zAs(z≥0)表示的材料。
26.如权利要求24所述的层叠体,其特征在于上述剥离层的材料是用AlpGa1-pAs(1≥p>0)表示的材料。
27.如权利要求26所述的层叠体,其特征在于对于上述半导体薄膜的各层的Al组成比z和第2外延层的Al组成比p,z<p。
28.如权利要求26所述的层叠体,其特征在于上述剥离层的材料是用AlAs表示的材料。
29.如权利要求24所述的层叠体,其特征在于上述第1衬底与上述剥离层相接。
30.如权利要求1、2、3、10至18、20及21的任一项所述的层叠体,其特征在于上述半导体薄膜包括下侧接触层、位于下侧接触层上的下侧包层、位于下侧包层上的活性层、位于活性层上的上侧包层、位于上侧包层上的上侧接触层。
31.如权利要求30所述的层叠体,其特征在于上述半导体薄膜通过顺序外延生长上述下侧接触层、上述下侧包层、上述活性层、上述上侧包层及上述上侧接触层形成。
32.如权利要求1或者2所述的层叠体,其特征在于上述衬底与上述刻蚀停止层相比难以用第3刻蚀液刻蚀。
33.如权利要求1或者3所述的层叠体,其特征在于上述衬底与上述刻蚀停止层相比难以用第3刻蚀液刻蚀。
34.如权利要求1、2、3、10至18及20至29的任一项所述的层叠体,其特征在于上述层叠体是构成半导体晶片的层叠体。
35.一种半导体器件的制造方法,其特征在于具有下述工序准备权利要求2所述的层叠体的工序;在上述半导体薄膜上形成半导体元件的工序;用上述第1刻蚀液在上述半导体薄膜中形成沟槽的工序;以及用上述第2刻蚀液除去上述第1剥离层的工序。
36.一种半导体器件的制造方法,其特征在于具有下述工序准备权利要求3所述的层叠体的工序;在上述半导体薄膜上形成半导体元件的工序;用上述第1刻蚀液在上述半导体薄膜中形成沟槽的工序;以及用上述第2刻蚀液除去上述第1剥离层的工序。
37.一种半导体器件的制造方法,其特征在于具有下述工序准备权利要求32所述的层叠体的工序;在上述半导体薄膜上形成半导体元件的工序;用上述第1刻蚀液在上述半导体薄膜中形成沟槽的工序;用上述第2刻蚀液除去上述第1剥离层的工序,以及用第3刻蚀液除去上述停止层的工序。
38.一种半导体器件的制造方法,其特征在于具有下述工序准备权利要求33所述的层叠体的工序;在上述半导体薄膜上形成半导体元件的工序;用上述第1刻蚀液在上述半导体薄膜中形成沟槽的工序;用上述第2刻蚀液除去上述第1剥离层的工序,以及用第3刻蚀液除去上述停止层的工序。
39.一种半导体器件的制造方法,其特征在于具有下述工序准备权利要求10至18及20中的任一项所述的层叠体的工序;在上述半导体薄膜上形成半导体元件的工序;用上述第1刻蚀液在上述半导体薄膜中形成沟槽的工序;用上述第2刻蚀液除去上述第1剥离层的工序,以及在除去上述第1剥离层的工序后,除去上述第2剥离层的工序。
40.如权利要求39所述的半导体器件的制造方法,其特征在于在除去上述第1剥离层的工序后,而且,在除去上述第2剥离层的工序前,进一步具有除去上述停止层的工序。
41.一种半导体器件的制造方法,其特征在于具有下述工序准备权利要求21所述的层叠体的工序;在上述半导体薄膜上形成半导体元件的工序;用上述第1刻蚀液在上述半导体薄膜中形成沟槽的工序;用上述第2刻蚀液除去上述第1剥离层的工序;以及在除去上述第1剥离层的工序后,通过除去上述第2剥离层,将上述第3缓冲层、上述停止层及上述第2缓冲层从上述衬底分离的工序。
42.一种半导体器件的制造方法,其特征在于具有下述工序准备权利要求23至29的任一项所述的层叠体的工序;在上述半导体薄膜上形成半导体元件的工序;用上述第1刻蚀液在上述半导体薄膜中形成沟槽的工序;以及通过用上述第2刻蚀液除去上述剥离层,使上述半导体薄膜从上述衬底分离的工序。
全文摘要
本发明的课题是,在衬底上形成半导体薄膜后进行分离以制造半导体器件的半导体器件的制造方法中,提高衬底的再利用效率。在衬底(11)上顺序形成刻蚀停止层(13)、剥离层(14)以及半导体薄膜(20),在半导体薄膜(20)上形成半导体元件后,用第1刻蚀液,例如硫酸双氧水水溶液,在半导体薄膜(20)及剥离层(14)中形成沟槽(21),接着,用第2刻蚀液例如氢氟酸除去剥离层(14)。刻蚀停止层(13)与半导体薄膜(20)及剥离层(14)相比是难以用第1刻蚀液(硫酸双氧水水溶液)刻蚀的层,半导体薄膜(20)与剥离层(14)相比,是难以用第2刻蚀液(氢氟酸)刻蚀的材料。
文档编号H01L21/02GK1577905SQ20041006180
公开日2005年2月9日 申请日期2004年6月25日 优先权日2003年6月25日
发明者荻原光彦, 藤原博之, 佐久田昌明, 安孙子一松 申请人:冲数据株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1