具有一对散热片的半导体装置的制作方法

文档序号:6836210阅读:85来源:国知局
专利名称:具有一对散热片的半导体装置的制作方法
技术领域
本发明涉及具有一对散热片的半导体装置。
背景技术
已经公开了在半导体装置的上下表面上软钎焊接合了一组散热片的半导体装置。该半导体装置适于使用时的发热量大的高耐压·大电流用的半导体元件,例如IGBT(绝缘栅型双极型晶体管)等晶体管和二极管等。例如在US专利No.6,703,707中公开了上述半导体装置。在该半导体装置中,由半导体元件发生的热量从其上下表面通过散热片被传送并散热。这样,半导体元件的封装的热阻变小,能够降低元件尺寸和元件使用个数等。从而,能够降低半导体装置的成本。
但是,在利用焊锡进行接合的情况下,有焊锡与金属体短路而成为工作不良的原因的问题,还有始于半导体元件的散热路径在装置的上下不均匀,从而散热性能不充分的问题。

发明内容
因此,本发明的目的在于提供一种具有充分的散热性能的具有一对散热片的半导体装置。
半导体装置由半导体元件、一对上下散热片和散热块构成。这些部件按照下侧散热片、半导体元件、散热块、上侧散热片的顺序配置。散热块具有小于半导体元件的平面形状。半导体元件具有面向散热块的发热部。发热部具有外周缘,发热部的外周缘与散热块的外周缘的距离在1.0mm以下。
根据这样的结构,在将半导体元件的发热部配置在散热块的下面的同时,形成在距散热块的端部大致小于1.0mm的范围内的位置上,因此,由发热部产生的热量的散热路径成为半导体元件的上下方向,能得到充分的散热性能,能够有效地防止元件温度的上升。
最好发热部是半导体元件的主单元的流过沟道电流的区域。
最好发热部是半导体元件的主单元的沟道形成区域。
另外,半导体装置由具有配置在半导体元件的主面上的主电极的半导体元件、配置在半导体元件的主面侧的与主电极接合的金属板、保护半导体元件、主电极和金属板的封装部件构成。主电极具有多边形状的外形,此外,金属板具有多边形状的外形。金属板的多边形状与对应的主电极的多边形状的边相等或短于它。
在如上所述构成的半导体装置中,可使金属板与主电极之间的焊锡层不从主电极的范围溢出。这样,能够充分地确保金属体与需要与其绝缘的部分之间的绝缘性,能够避免工作不良。
此外,能够防止引线与金属体接触,从而能够避免由此产生的工作不良。
由于既能确保与引线以及形成在半导体元件的外周部的保护环部的绝缘性,又能防止键合用工具与金属体接触,因此,也得到了不用增大芯片尺寸到必须程度的效果。另外,由于也能够防止金属体和附着其上的焊锡层外伸,因此,能够防止半导体元件的耐久性的降低。
最好金属板的多边形状不具有凹部,此外,主电极的多边形状不具有凹部。
另外,半导体装置由具有配置在半导体元件的主面上的主电极的半导体元件、配置在半导体元件的主面侧的与主电极接合的金属板、保护半导体元件、主电极和金属板的封装部件构成。主电极具有多边形状,此外,金属板具有多边形状。金属板的多边形状的面积小于等于主电极的多边形状的面积。
在如上所述构成的半导体装置中,可使金属板与主电极之间的焊锡层不从主电极的范围溢出。这样,能够充分地确保金属体与需要与其绝缘的部分之间的绝缘性,能够避免工作不良。此外,也得到了不用增大芯片尺寸到必须程度的效果。另外,能够防止半导体元件的耐久性的降低。


参照下述附图,从以下的详细说明能进一步明白本发明的上述或其他的目的、结构、优点。
图1是俯视图,示出本发明的第一实施例中的半导体装置中的半导体元件。
图2是剖视图,示出第一实施例的半导体装置。
图3是部分放大的剖视图,示出沿图1的III-III线的半导体元件。
图4是部分放大后的剖视图,示出主单元部分。
图5是图表,示出距离d与元件最高温度的关系。
图6是部分放大的剖视图,示出本发明的第二实施例中的半导体装置中的半导体元件。
图7是俯视图,示出本发明的第三实施例中的半导体装置中的半导体元件。
图8是俯视图,示出本发明的第四实施例中的半导体装置中的半导体元件。
图9是俯视图,示出第一实施例的比较例中的半导体装置中的半导体元件。
图10是剖视图,示出本发明的第五实施例中的半导体装置。
图11A是俯视图,图11B是剖视图,示出第五实施例中的半导体装置中的半导体元件。
图12A是俯视图,图123是剖视图,示出第六实施例中的半导体装置中的半导体元件。
具体实施例方式
(第一实施例)发明者们预先对具有上下表面冷却构造的半导体装置进行了研究。图9中示出使用于半导体装置的半导体元件(功率元件)的一例。众所周知,该图9中示出的半导体元件1在现有技术中作为单面冷却用的通用的功率元件(例如IGBT)来使用。在该半导体元件1的下表面的整个面上形成集电极电极,将该集电极电极焊接在下侧的散热片上。
另一方面,如图9所示,在上述半导体元件1的上表面形成多个长方形状的发射极电极2,在这些发射极电极2上焊接着散热块3。在此,发射极电极2(即,保护膜开口部)的范围的大小,小于发射极电流流过的范围即主单元(发射极主单元部)4的大小。
在该结构的情况下,半导体元件1中的散热块3的下方的主单元4中产生的热量的散热路径为元件的上下方向,因此,能够有效地防止元件温度的上升。与其相对,主单元4中的离开了散热块3的部分(即,散热块3的外侧部分)4a中产生的热量的散热路径就只是朝元件的下方的方向。从而,上述部分4a的元件温度变得高于散热块3的下方部分的元件温度。即,虽然具有从半导体元件1的上下两个面散热的结构,但可知散热性能不太充分。
鉴于上述问题点,提供了关于本发明的第一实施例的半导体装置。图1至图4中示出该半导体装置11。首先,图2是示出半导体装置11的整体结构的纵剖视图。如该图2所示,半导体装置11具有半导体芯片(半导体元件)12、下侧散热装置(散热片)13、上侧散热装置(散热片)14、散热装置块(散热块)15。
该情况下,半导体芯片12的下表面与下侧散热装置13的上表面之间,利用作为接合部件的例如由焊锡形成的焊锡层16进行接合。另外,半导体芯片12的上表面与散热装置块15的下表面之间也利用焊锡层16进行接合。另外,在散热装置块15的上表面与上侧散热装置14的下表面之间也利用焊锡层16进行接合。这样,就成为从半导体芯片12的上下两个面通过散热装置13、14(即,一对散热片)进行散热的结构。
再有,上述半导体芯片12由例如IGBT、DMOS、FWD、闸流晶体管等功率半导体元件构成。半导体芯片12的形状在本实施例的情况下如图1和图2所示,例如是矩形的薄板状。
此外,下侧散热装置13、上侧散热装置14和散热装置块15由例如Cu构成。再有,也可以由Al等导热性和导电性良好的金属构成。此外,下侧散热装置13和上侧散热装置14与半导体芯片12的各主电极(例如集电极电极和发射极电极等)电气地连接。
然后,如图2所示,下侧散热装置13整体是例如大致长方形状的板材,以向着图2中右方延伸的方式一体地突出设置有导线(下侧导线)13a。
此外,散热装置块15是小于半导体芯片12的大小(图1中的双点划线的矩形范围的大小)的矩形的板材。另外,上侧散热装置14如图2所示,整体由例如大致正方形状的板材构成,以向着图2中右方延伸的方式一体地突出设置有导线(上侧导线)14a。
再有,下侧散热装置13的导线13a和上侧散热装置14的导线14a构成为,相互的位置偏移,即不是正对面。
此外,下侧散热装置13的上表面与上侧散热转置14的下表面之间的距离构成为例如1~2mm左右。再有,将作为涂层树脂的例如聚酰胺树脂(无图示)涂敷在一对散热装置13、14的表面和芯片12及散热装置块15的周围部分上。
另外,如图2所示,在一对散热转置13、14的间隙、以及芯片12和散热装置块15的周围部分上填充密封着树脂模(例如由环氧树脂形成)17。再有,上述聚酰胺树脂是用于增强树脂17与散热装置13、14间的粘接力和树脂17与芯片12间的粘接力及树脂17与散热装置块15间的粘接力的涂敷层(树脂)。
此外,半导体芯片12的控制电极(例如栅电极或信号电极等)如图1和2所示,与导线框18引线键合。
下面,按照图1至图5,对于半导体芯片12的具体结构进行说明。首先,按照图1,对于半导体芯片12的上表面的结构进行叙述。在半导体芯片12的上表面形成多个(例如7个)长方形状的发射极电极19,这些发射极电极19的范围成为主单元的范围。即,发射极电极19的范围与主单元的范围成为大致相同的范围。
然后,在半导体芯片12的上表面中的下边部分形成栅电极20、温度检测用的一对电极21、电流检测用的电极22、发射极用的电极23。此外,在半导体芯片12的上表面中的左端侧的2个发射极电极19之间的区域的大致中央部分形成有温度传感器24。
在此,上述散热装置块15焊接在半导体芯片12的上表面中的发射极电极19(即,主单元)的上面,位于图1中的双点划线示出的位置。然后,将发射极电极19的形成区域即主单元19的沟道形成区域(或主单元的流过沟道电流的区域)配置在散热转置块15的下面,同时,散热装置块15的端部与沟道形成区域的间隔大致小于等于1.0mm。
下面,图3中示出了半导体装置11是例如沟槽形IGBT的情况下的沿着图1中的III-III线的剖面的放大图。特别是,图4中示出了部分放大的主单元区域19部分的图。如该图4所示,主单元区域19由沟栅25、p型沟道层26、n型发射极层27、元件表面的发射极Al电极28、构成发射极Al电极28和Si的连接部(集电极部)的绝缘膜29、形成在其下方的Si基板30及背面电极31(参照图3)构成。
在本实施例中,将从发射极电极19流过沟道电子电流的部分称作主单元区域。然后,该主单元区域19成为形成在距散热装置块15的端部小于1.0mm的范围中的部位上的结构。该情况下,图3中示出的尺寸d(散热装置块15的端部与主单元区域19的端部之间的距离)小于等于1.0mm。
此外,在半导体芯片12的上表面形成着例如由聚酰亚胺构成的保护膜32。另外,在发射极Al电极28的上表面中的保护膜32的开口部,成膜了软钎焊接合用的Ni电镀膜33和Au电镀膜34。该Au电镀膜34构成了上述的发射极电极19。然后,通过焊锡层16,于上述Au电镀膜34的上表面接合了散热装置块15。
另外,如图3所示,在半导体芯片12的上表面的右端部形成着信号用的电极35。该电极35构成栅电极20、温度检测用的一对电极21、电流检测用的电极22、发射极用的电极23。
Al电极28和在该Al电极28的上表面中的相当于保护膜32的开口部的部位上成膜的引线键合用的Ni电镀膜33和Au电镀膜34,构成上述电极35。
该情况下,在上述信号用的电极35(Au电镀膜34)的上面引线键合着例如线径为150μm的键合引线36。为了避免该键合引线36与散热装置块15的干扰,需要使键合坐标中心与散热装置块15的距离离开0.7mm以上。此外,在线径为150μm的键合引线36的情况下,长度方向的板尺寸(电极尺寸)需要大约0.6mm。
另外,在将上述信号用的电极35(即,栅电极20、温度检测用电极21、电流检测用电极22或发射极用电极23)设置成从散热装置块15离开1.0mm以上的同时,直线排列配设在半导体芯片12的上表面中的一边部上(参照图1)。该情况下,在信号用的电极35的周围不配置主单元区域19。
此外,如图3所示,在半导体芯片12中的主单元区域19的右方形成着电流检测区域37。该电流检测区域37与上述主单元区域19同样地构成,但其面积成为主单元区域19的大约1/10000。这样,例如在主单元中流过了400A的主电流时,能够监视大约1/10000的40mA的小电流信号。
另外,在实际的系统电路结构中,构成为还通过传感器电阻来监视上述小电流信号,因此,实际使用上就流过上述分流比1/10000进一步减半的1/20000左右的电流。因此,电流检测区域37的单位面积的发热量(发热密度)是主单元区域的1/2左右就够了。从而,电流检测区域37的散热量小到不需要从上下两个面进行散热,因此,能够配置在离开散热装置块15的部位上,有效地利用了元件面积。
此外,设置在半导体芯片12上的温度传感器24,在元件表面的PolySi上形成PN结,利用二极管的Vf(正向电压)的温度依从关系监视着半导体芯片12的温度。将上述温度传感器24配置成位于元件温度上升的散热装置块15的下面。再有,在本实施例中,温度传感器24配置在偏离主单元区域19的中心部位的位置上,但最好配置在中心部位上。
下面,参照图5,对于构成为在距散热装置块15的端部小于1.0mm的范围中的部位上形成主单元区域19的根据进行说明。图5中示出的图表示出了尺寸d(散热装置块15的端部与主单元区域19的端部之间的距离)与半导体芯片12上的温度最高的部位的温度的关系,是由模拟求出的数据。
在该图5中,d在1mm以下的各点(测定点)是半导体芯片12上的散热装置块15的下面部分的中心部位的温度,d在1mm以上的各点是半导体芯片12上的散热装置块15的外侧部分(半导体芯片12的端部)的温度。即,从图5的图表可知,在d大致是1mm以下的情况下,半导体芯片12上的温度上升最大的部分是散热装置块15的下面,因此,该发热后的热量就被从元件的上下两个面充分地散热。对其相对,在d是大致1mm以上的情况下,由于半导体芯片12上的温度上升最大的部分是散热装置块15的外侧,因此,该发热后的热量就仅从元件的下面进行散热,散热性不好。
根据这样结构的本实施例,由于在将半导体芯片12的上表面中的主单元区域19(主单元的沟道形成区域或主单元的流过沟道电流的区域)配置在散热装置块15的下面的同时,形成在距散热装置块15的端部大致小于1.0mm的范围中的部位上,因此,主单元区域19中产生的热量的散热路径就成为半导体芯片12的上下方向,能得到充分的散热性能,因此,能够有效地防止元件温度的上升。
在此,最好在将半导体芯片12的上表面中的主单元的沟道形成区域或主单元的流过沟道电流的区域配置在散热装置块15的下面的同时,形成在距用于与散热装置块15接合的软钎焊接合用的主单元部保护膜开口部40的端部大致小于1.0mm的范围中的部位上。
此外,上述上侧散热装置14和散热装置块15是独立的,但也可以一体地形成。
(第二实施例)图6是示出本发明的第二实施例的半导体装置的一部分的图。该半导体装置中,在将主单元区域19配置在散热装置块15的下面的同时,形成在距用于与散热装置块15接合的焊锡层16的端部大致小于1.0mm的范围中的部位上。具体地说,图6中示出的尺寸d1(焊锡层16的端部与主单元区域19的端部的距离)为1.0mm以下。再有,在图6中,标记39示出的层是例如由TiNiAu构成的表面焊锡层用电极。
通过这样地构成,实现了在将半导体芯片12的上表面中的主单元区域19、即主单元的沟道形成区域或主单元的流过沟道电流的区域配置在散热装置块15的下面的同时,形成在距用于与散热转置块15接合的焊锡层16的端部大致小于1.0mm的范围中的部位上的结构。
即,该情况下构成为,在将半导体芯片12的上表面中的主单元的沟道形成区域或主单元的流过沟道电流的区域配置在散热装置15的下面的同时,形成在距用于与散热装置块15接合的软钎焊接合用的电极39(参照图6)的端部大致小于1.0mm的范围中的部位上。
根据这样结构的本实施例,主单元区域19中产生的热量的散热路径成为半导体芯片12的上下方向,能得到充分的散热性能,因此,能够有效地防止元件温度的上升。
另外,最好在将半导体芯片12的上表面中的主单元的沟道形成区域或主单元的流过沟道电流的区域配置在散热转置块15的下面的同时,形成在距用于与散热装置块15接合的软钎焊接合用的主单元部保护膜开口部40的端部大致小于1.0mm的范围中的部位上。
(第三实施例)图7是示出本发明的第三实施例的半导体装置中的半导体元件的图。在该半导体元件中,使信号线连接用板和电流镜部集中配置在半导体芯片12的上表面中的一个地方。
具体地说,使信号用的电极20、21、22、23(信号线连接用板)和电流检测区域37(电流镜部)集中配置在半导体芯片12的上表面的下边部的左半部。
这样,主单元区域19中产生的热量的散热路径就成为半导体芯片12的上下方向,能得到充分的散热性能,因此,能够有效地防止元件温度的上升。
另外,由于使信号线连接用板和电流镜部集中配置在半导体芯片12的上表面中的一个地方,因此能够增大主单元的区域,并能够相应地提高散热性。
(第四实施例)图8是示出本发明的第四实施例的半导体装置中的半导体元件的图。在该半导体元件中,当使信号线连接用板和电流镜部集中配置在半导体芯片12的上表面中的一个地方时,使信号用的电极20、21、22、23(信号线连接用板)和电流检测区域37(电流镜部)集中配置在半导体芯片12的上表面的一个角部(左下角部)。
这样,主单元区域19中产生的热量的散热路径就成为半导体芯片12的上下方向,能得到充分的散热性能,因此,能够有效地防止元件温度的上升。另外,能够增大主单元的区域,能够相应地提高散热性。
(第五实施例)另外,发明者们预先关于具有上下面冷却构造的半导体装置进行了研究。即,在具有一对散热片的封装型半导体装置中,在形成在半导体元件表面上的电极上软钎焊接合了兼用作散热装置和电极的金属体的情况下,可知产生如下的问题点。
(1)熔融后的焊锡从元件外周溢出,与和半导体元件的背面接合的金属体短路,导致工作不良。
(2)金属体和附着其上的粘结剂外伸,与引线键合部分接触,导致工作不良。
(3)为了确保与引线键合部、保护环部的绝缘性,需要增大芯片尺寸到必要的程度以上。
(4)为了确保防止引线键合用工具与金属体的干扰的距离,芯片尺寸变大。
(5)由于由进入到金属体的外伸部和半导体元件间的模制树脂而产生的剥离应力,元件的耐久性降低。
鉴于上述问题点,本发明者们对上述问题产生的原因进行了锐意探讨,知道了金属体相对于表面电极的大小与这些问题有关系。具体地说,确认了若金属体的大小相对于表面金属的大小过大,则会产生上述问题。
这样,图10中示出了应用了本发明的第五实施例的封装型半导体装置的剖面结构。此外,图11A、11B中示出了图1中示出的封装型半导体装置中封装前的部件的俯视图和侧视图。以下,基于这些图,对于封装型半导体装置的结构进行说明。
如图10所示,封装型半导体装置100成为由树脂部17密封了形成了作为半导体元件的IGBT的半导体芯片12、成为下侧散热装置的第一金属体13、成为上侧散热装置的第二金属体14、配置在第二金属体14与半导体芯片12之间的第三金属体15的结构。此外,通过引线107,与半导体芯片12中的IGBT的栅电极(第二区域)电气性地连接的栅电极用板20a与导线端子18连接,第一和第二金属体13、14各自的一个表面和导线端子18的端部,从相当于封装部的树脂部17露出。
在第一金属体13的上表面与半导体芯片12的下表面之间、半导体芯片12的上表面与第三金属体15的下表面之间、第三金属体15的上表面与第二金属体14的下表面之间,由作为接合部件的焊锡层16a、16b、16c接合。因此,如图11A所示,与形成在半导体芯片12表面上的IGBT的发射极区域(第一区域)电气性连接的发射极电极19,通过第二、第三金属体14、15,与外部电气性连接。此外,在半导体芯片12的背面侧形成了与IGBT的集电极区域电气性连接的集电极电极(无图示),该集电极电极通过第一金属体13与外部电气性连接。
再有,在第一或第二金属体13、14上分别连接有无图示的导线端子,通过这些导线端子就能实现与外部配线电气性连接。
此外,第一和第二金属体13、14还具有作为用于放出从半导体芯片12发出的热量的散热片的功能。因此,由导热良好、电阻低的Cu等构成。另外,第三金属体15是成为用于从第二金属体14侧散掉从半导体芯片12发出的热量的部分,例如由Cu等构成。
在这样构成的封装型半导体装置100中,如图11B所示,半导体芯片12构成为长方形,发射极电极19和第三金属体15的上表面形状构成为大致四边形。然后,用焊锡层16b覆盖发射极电极19的全部表面,在从上面看半导体芯片12时,第三金属体15收容在发射极电极19的外框内,成为不溢出地接合的结构。
此外,若将平行于半导体芯片12的长边的方向上的发射极电极19和第三金属体15的尺寸分别设为Wc1、Wb1,则将发射极电极19的尺寸与第三金属体15的尺寸的关系设定为Wc1≥Wb1。此外,若将平行于半导体芯片12的短边的方向上的发射极电极19和第三金属体15的尺寸分别设为Wc2、Wb2,则将发射极电极19的尺寸与第三金属体15的尺寸的关系设定为Wc2≥Wb2。此外,考虑散热性,焊锡层16b设定得与发热区域相同或小于它。
如上所述构成的封装型半导体装置100中,将第三金属体15的纵横各方向的边的长度Wb1、Wb2的长度,设定为在相对的发射极电极19的纵横各方向的边的长度Wc1、Wc2以下。因此,在用焊锡层16b将第三金属体15与发射极电极19接合时,就能够使焊锡层16b不从发射极电极19的范围溢出。
这样,能够充分确保第三金属体15与需要与其绝缘的部分之间的绝缘性。例如,能够防止焊锡层16b转入到半导体芯片12的背面侧,防止发射极电极19与在半导体芯片12的背面所具有的集电极短路,能够避免由此产生的工作不良。
此外,能够避免第三金属体15和附着其上的焊锡层16b外伸而从发射极电极19象帽沿儿似地伸出,能够防止引线107与第三金属体15接触,从而能够避免由此产生的工作不良。
然后,象现有技术这样地,在没规定第三金属体15与发射极电极19的尺寸的情况下,为了即使第三金属体15从发射极电极19溢出,也能确保与引线107以及形成在半导体元件外周部的保护环部的绝缘性,就需要芯片尺寸的大型化。此外,在键合引线107时,为了防止引线键合用工具与第三金属体15接触,必须要设置连接引线107的地方与第三金属体15之间的距离,从而要求芯片尺寸的大型化。
但是,若象本实施方式这样地规定尺寸,则既能与确保引线107以及形成在半导体元件外周部的保护环部的绝缘性,又能防止引线键合用工具与第三金属体15接触,因此,还得到了不需要增大芯片尺寸到必要程度以上的效果。
另外,在第三金属体15和附着其上的焊锡层16b外伸的情况下,有时模制树脂进入到了外伸部与半导体芯片12的之间,由于由模制树脂产生的剥离应力,半导体元件的耐久性降低。但是,根据本实施方式,还能够防止第三金属体15和与其附着的焊锡层16b外伸,因此,能够防止半导体元件的耐久性的降低。
作为半导体元件,以IGBT为例进行了说明,但也可以应用于任何一种元件(例如MOSFET)。此外,即使不是如图10所示那样需要引线107的元件,若金属体与电极的各边的长度关系或者面积的关系成立,就也能得到上述效果。作为这样的元件,例如有二极管等。
此外,上述金属体14和15是独立的,但也可以一体地形成。
(第六实施例)图12A、12B示出了本发明的第六实施例中的封装型半导体装置的封装前的部件的俯视图和侧视图。在本半导体装置中,不是如第五实施例的半导体装置100这样对构成发射极电极19和第三金属体15的各边的尺寸关系进行设定,而是设定发射极电极19和第三金属体15的面积。具体地说,若将从上面看第三金属体15和发射极电极19时的面积分别设为A1、A2,则成为A1≤A2。换言之,设定它们的面积比、即第三金属体15与焊锡层16b的接合面积相对于发射极电极19与焊锡层16b的接合面积的比(A1/A2)小于等于1。
这样地,通过规定发射极电极19与第三金属体15的面积比,能够使焊锡层16b不从发射极电极19的范围溢出。此外,能够防止发射极电极19与在半导体芯片12的背面所具有的集电极短路,从而能够避免由此产生的工作不良。另外,也能防止引线107与第三金属体15接触,从而能避免由此产生的工作不良。此外,若象本实施方式这样地规定尺寸,则由于既能够确保与引线107以及形成在半导体元件外周部的保护环部的绝缘性,又能够防止引线键合用工具与第三金属体15接触,因此,也得到了不需要增大芯片尺寸到必要程度以上的效果。此外,由于也能够防止第三金属体15和附着其上的焊锡层16b外伸,因此,能够防止半导体元件的耐久性的降低。
在上述实施方式中,对于相当于形成在半导体芯片表面上的电极的发射极电极19和搭载在其上面的第三金属体15都是在大致四边形的情况进行了说明,但也可以是其他形状(例如多边形)。此外,在这些部件是四边形以外的形状情况下,第三金属体15中的与电极连接的部分的面积也小于等于进行接合的表面电极的面积。
上述的改良例和变形例可以理解为都在由附加的权利要求所规定的本发明的范畴内。
权利要求
1.一种半导体装置,其特征在于,由半导体元件(12)、一对上下散热片(13、14)和散热块(15)构成,这些部件按照下侧散热片(13)、半导体元件(12)、散热块(15)、上侧散热片(14)的顺序配置,散热块(15)具有小于半导体元件(12)的平面形状,半导体元件(12)具有面向散热块(15)的发热部(19),发热部(19)具有外周缘,发热部(19)的外周缘与散热块(15)的外周缘的距离(d)在1.0mm以下。
2.如权利要求1所述的半导体装置,其特征在于,发热部(19)是半导体元件(12)的主单元的流过沟道电流的区域。
3.如权利要求1所述的半导体装置,其特征在于,发热部(19)是半导体元件(12)的主单元的沟道形成区域。
4.如权利要求1至3的任一项所述的半导体装置,其特征在于,还具有焊锡层(16),焊锡层(16)分别配置在上侧散热片(14)与散热块(15)之间、散热块(15)与半导体元件(12)之间和半导体元件(12)与下侧散热片(13)之间。
5.如权利要求4所述的半导体装置,其特征在于,配置在散热块(15)与半导体元件(12)之间的焊锡层(16)具有外周缘,焊锡层(16)的外周缘与发热部(19)的外周缘的距离(dl)在1.0mm以下。
6.如权利要求4所述的半导体装置,其特征在于,半导体元件(12)具有与焊锡层(16)接合用的电极(39),电极(39)具有外周缘,电极(39)的外周缘与发热部(19)的外周缘的距离(d1)在1.0mm以下。
7.如权利要求4所述的半导体装置,其特征在于,发热部(19)是半导体元件(12)的主单元的沟道形成区域,半导体元件(12)具有用于保护主单元的保护膜(32),保护膜(32)具有用于与焊锡层(16)接合的开口部(40),开口部(40)具有外周缘,开口部(40)的外周缘与发热部(19)的外周缘的距离在1.0mm以下。
8.如权利要求1至3的任一项所述的半导体装置,其特征在于,还具有电极板(20-23、35),用于连接半导体元件(12)和外部电路,电极板(20-23、35)与外部电路用引线(36)电气性地连接,发热部(19)是半导体元件(12)的主单元的沟道形成区域,电极板(20-23、35)在散热块侧的半导体元件(12)的表面中,配置在没有配置主单元的部分上,并且,配置在散热块(15)的外侧,不面向散热块(15)。
9.如权利要求8所述的半导体装置,其特征在于,半导体元件(12)具有四边形状,沿着四边形状的一边配置电极板(20-23、35)。
10.如权利要求1至3的任一项所述的半导体装置,其特征在于,还具有温度传感器(24),检测半导体元件(12)的温度,温度传感器(24)配置在散热块侧的半导体元件(12)的表面,并且,配置在散热块(15)的内侧,面向散热块(15)。
11.如权利要求10所述的半导体装置,其特征在于,温度传感器(24)配置在半导体元件(12)的中央部。
12.如权利要求1至3的任一项所述的半导体装置,其特征在于,还具有焊锡层(16);电流检测部(37),检测半导体元件(12)的电流,焊锡层(16)分别配置在上侧散热片(14)与散热块(15)之间、散热块(15)与半导体元件(12)之间和半导体元件(12)与下侧散热片(13)之间,电流检测部(37)配置在散热块侧的半导体元件(12)的表面,并且,配置在散热块(15)与半导体元件(12)之间配置的焊锡层(16)的外侧。
13.如权利要求12所述的半导体装置,其特征在于,电流检测部(37)是电流镜。
14.如权利要求12所述的半导体装置,其特征在于,还具有电极板(20-23、35),用于连接半导体元件(12)和外部电路,电极板(20-23、35)与外部电路用引线(36)电气性地连接,发热部(19)是半导体元件(12)的主单元的沟道形成区域,电极板(20-23、35)在散热块侧的半导体元件(12)的表面中,配置在没有配置主单元的部分上,并且,配置在散热块(15)的外侧,不面向散热块(15),电极板(20-23、35)和电流检测部(37)汇集在半导体元件(12)的一部分上。
15.一种半导体装置,其特征在于,由下述部分构成具有配置在半导体元件(12)的主面上的主电极(19)的半导体元件(12);配置在半导体元件(12)的主面侧的与主电极(19)接合的金属板(15);保护半导体元件(12)、主电极(19)和金属板(15)的封装部件(17),主电极(19)具有多边形状的外形,此外,金属板(15)具有多边形状的外形,金属板(15)的多边形状与对应的主电极(19)的多边形状的边相等或短于它。
16.如权利要求15所述的半导体装置,其特征在于,金属板(15)的多边形状不具有凹部,此外,主电极(19)的多边形状不具有凹部。
17.如权利要求15至16的任一项所述的半导体装置,其特征在于,具有配置在半导体元件(12)的主表面上的引线(107),引线(107)控制施加给半导体元件(12)的电压。
18.如权利要求15至16的任一项所述的半导体装置,其特征在于,金属板(15)通过接合部件(16a-16c)与主电极(19)接合,接合部件(16a-16c)覆盖着主电极(19)的全部。
19.如权利要求15至16的任一项所述的半导体装置,其特征在于,金属板(15)的多边形状配置在主电极(19)的多边形状中。
20.一种半导体装置,其特征在于,由下述部分构成具有配置在主面上的主电极(19)的半导体元件(12);配置在半导体元件(12)的主面侧的与主电极(19)接合的金属板(15);保护半导体元件(12)、主电极(19)和金属板(15)的封装部件(17),主电极(19)具有多边形状,此外,金属板(15)具有多边形状,金属板(15)的多边形状的面积小于等于主电极(19)的多边形状的面积。
21.如权利要求20所述的半导体装置,其特征在于,具有配置在半导体元件(12)的主表面上的引线(107),引线(107)控制施加给半导体元件(12)的电压。
22.如权利要求20至21的任一项所述的半导体装置,其特征在于,金属板(15)通过接合部件与主电极(19)接合,接合部件(16a-16c)覆盖着主电极(19)的全部。
23.如权利要求20至21的任一项所述的半导体装置,其特征在于,金属板(15)的多边形状配置在主电极(19)的多边形状中。
全文摘要
半导体装置由半导体元件(12)、一对上下散热片(13、14)和散热块(15)构成。散热块(15)具有小于半导体元件(12)的平面形状。半导体元件(12)具有面向散热块(15)的发热部(19)。发热部(19)具有外周缘,发热部(19)的外周缘与散热块(15)的外周缘的距离(d)在1.0mm以下。
文档编号H01L21/28GK1619799SQ20041010383
公开日2005年5月25日 申请日期2004年11月19日 优先权日2003年11月21日
发明者三浦昭二, 尾关善彦, 中濑好美, 加藤信之, 近藤彻次, 手岛孝纪, 平泽直树 申请人:株式会社电装
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1