芯片在薄膜上的半导体器件的制作方法

文档序号:6853641阅读:152来源:国知局
专利名称:芯片在薄膜上的半导体器件的制作方法
技术领域
本发明涉及COF(芯片在薄膜上)半导体器件和该半导体器件的制造方法,其中,半导体元件被安装在柔性印刷电路上并与该柔性印刷电路相结合。
背景技术
可自由折叠的薄膜绝缘带由于其性能上的优点已被用于COF半导体器件。设置在这种薄膜绝缘带的表面上的各构制成图形的布线与半导体元件的相应的端子电连接。构制成图形的布线的外部连接器与液晶面板、印刷电路板等连接。对构制成图形的布线的除上述之外的暴露部分施加了阻焊剂,因此,可以确保绝缘条件。
诸如近年来引人注目的MBB(微凸点键合)、NCP(非导电膏),以及ACP(各向异性导电膏)的连接和模塑方法已知是作为现有技术被有效地应用于有多管脚、窄间距和边沿接触的元件的一种COF半导体器件的制造方法。
这些方法是将绝缘的树脂成分介于半导体元件与柔性印刷电路之间的制造方法,以便能将半导体元件的突出电极与柔性印刷电路的布线图形连接,同时能将该电极和该布线图形模塑在树脂中。这里,不指定绝缘树脂成分的涂敷方法。
在图5(a)至图5(d)中示出了采用上述MBB的现有例1的COF半导体器件的制造方法(例如特开昭60(1985)-262430号公报)。按照该现有例1,首先,如图5(a)和5(b)所示,在树脂喷嘴8移动时绝缘树脂成分22被涂敷到柔性印刷电路的布线图形2上的、半导体元件的多个突出电极(凸点)与之结合的部分。对上述绝缘树脂成分22可使用光固化或热固化树脂。这里,图5(a)至5(d)中的标号1表示薄膜绝缘带,标号5表示阻焊剂。然后,如图5(c)所示,半导体元件3的多个突出电极9被置于布线图形2上。对被置于绝缘树脂成分22上的半导体元件3施加压力,使在突出电极9与布线图形2之间的绝缘树脂成分22扩展,从而使突出电极9与布线图形2之间仅由于加压工序而被电连接。同时,绝缘树脂成分22被压出到半导体元件3的周围。这里,标号21所指的箭头表示压力,而标号12所指的箭头表示流向半导体元件的外围的树脂流。此后,如图5(d)所示,绝缘树脂成分22在此条件下借助于光或热进行固化,以便将半导体元件3固定到柔性印刷电路上。这里,标号23所指的箭头表示光的照射或热的施加。
在图6(a)至图6(d)中示出了采用上述MBB的现有例2的COF半导体器件的制造方法(例如特开昭63(1988)-151033号公报)。这里,与现有例1的图5(a)和5(b)中的标号相同的标号系于图6(a)至图6(d)中的相同的元件之下。按照该现有例2,首先,如图6(a)和6(b)所示,当树脂喷嘴8移动时绝缘树脂成分22被涂敷到柔性印刷电路的布线图形2上的、半导体元件的多个突出电极(凸点)与之结合的部分。对上述绝缘树脂成分22可使用热固化树脂。然后,如图6(c)所示,半导体元件3的各突出电极9被置于布线图形2上。其后,利用脉冲加热装置(未示出)将被置于绝缘树脂成分22上的半导体元件3压到柔性印刷电路上,使布线图形2上的绝缘树脂成分22被压出到外围。其后,如图6(d)所示,对上述的脉冲加热装置供给能量,以便在半导体元件3被压至柔性印刷电路上的条件下对半导体元件3加热,因此,绝缘树脂成分22被热固化,以便将半导体元件3固定到柔性印刷电路上。同时,各突出电极9与布线图形2得到电连接。这里,图6(d)中的标号24所指的箭头表示在加压的条件下的脉冲加热。
现有例1的一个问题是在绝缘树脂成分22被涂敷到通过加压工序(参照图5(d))使半导体元件3与之接触的薄膜绝缘带1上后,绝缘树脂成分22被固化时会发生气泡13(如白点所示)。下面对上述情形进行更详细的说明。气泡13的发生是由于如下的三个因素a)由于利用树脂喷嘴8涂敷的呈脊形的绝缘树脂成分22的树脂线之间的间隙,或者由于因在具有布线图形2和不具有布线图形2的区域涂敷绝缘树脂成分22所致的树脂表面的不平坦性(参照图5(b)),在借助于加压工序使半导体元件3与之接触时封入的空气(充填失效);b)在绝缘树脂成分22固化时发生的除气作用;以及c)在吸附了湿气的薄膜绝缘带1被干燥时产生的湿气。如上所述,依赖于气泡13发生的程度,或者依赖于在固化后的绝缘树脂成分22中存在气泡13的COF半导体器件的使用条件,例如会产生突出电极9之间的电流漏泄和半导体元件的铝电极被腐蚀之类的缺点。
另外,当在现有例2中使用被恒定加热的加压装置或被脉冲加热的加压装置时,以与现有例1的相同方式涂敷后的绝缘树脂成分22的表面是不平坦的(参照图6(b))。因此,存在如图6(d)中的白点所示的气泡13残留在固化后的绝缘树脂成分22中的问题。

发明内容
本发明解决了上述问题,并且提供了在半导体元件与薄膜绝缘带上的布线图形结合和树脂模塑时,在绝缘树脂成分中发生的气泡和/或充填失效被减少的高可靠性的COF半导体器件和该半导体器件的制造方法。
为解决上述问题,本发明的COF半导体器件的制造方法包括步骤(A),对在其表面上设置了多个布线图形的绝缘带的表面涂敷绝缘树脂成分;步骤(B),在绝缘树脂成分尚未固化的条件下可通过加压使半导体元件与布线图形接触;以及步骤(C),借助于使绝缘树脂成分固化,将半导体元件固定到布线图形上,从而进行电连接,上述方法还包括步骤(D),在涂敷绝缘树脂成分之前、之中和/或之后,从背面一侧对绝缘带进行预热。
即,按照本发明,在涂敷绝缘树脂成分之前、之中和/或之后,该绝缘树脂成分被预热至一定的温度,使气泡可以经由从没有布线图形的绝缘带的背面一侧进行了预热的绝缘带除去。因此,被绝缘带吸附的湿气和树脂固化时的除气作用预先被消除,并且绝缘树脂成分变得平滑,减少了树脂脊的不平坦性,故在对被置于绝缘树脂成分上的半导体元件加压时空气能够容易地逸出到外部。据此,在将半导体元件结合到绝缘带上的布线图形和用绝缘树脂成分模塑时,可以大幅度地减少绝缘树脂成分中的气泡和/或充填失效。因此,能够得到具有高可靠性的COF半导体器件,其中,当将半导体元件结合到绝缘带上的布线图形和用绝缘树脂成分模塑时,绝缘树脂成分中的气泡和/或充填失效能够大幅度地减少,因而不发生半导体元件的电极之间的电流漏泄和对半导体元件的铝电极的腐蚀。
本申请的这一目的和其它目的从下面给出的详细说明中变得更加明显。但是,应该被理解为,详细说明和具体例子尽管示出了本发明的优选实施例,但只是以示例方式被给出,显然,业内人士可以根据该详细说明在本发明的宗旨和范围内进行各种变更和修改。


图1(a)至图1(e)是示出按照本发明实施例1的COF半导体器件的制造方法的步骤的图。
图2(a)至图2(e)是示出按照本发明实施例2的COF半导体器件的制造方法的步骤的图。
图3是示出按照本发明实施例2的树脂涂敷工序的树脂涂敷线的图。
图4(a)至图4(e)是示出按照本发明实施例3的COF半导体器件的制造方法的图。
图5(a)至图5(d)是示出按照采用MBB的现有例1的COF半导体器件的制造方法的图。
图6(a)至图6(d)是示出按照采用MBB的现有例2的COF半导体器件的制造方法的图。
具体实施例方式
虽然对本发明的薄膜绝缘带的类型没有特别的限制,只要它具有绝缘性能,并且能够在该薄膜绝缘带的表面上形成布线图形(以下在某些场合仅称为布线)即可。但是,薄膜绝缘带最好是可自由折叠的,并且最好使用诸如聚酰亚胺或Kapton这样的聚酰亚胺基绝缘带。对聚酰亚胺基绝缘带的厚度虽无特别限制,但为了确保高的柔性,最好使用薄型的,具体地说,最好在15μm至40μm的范围内,更具体地说,最好采用15μm、20μm、25μm、38μm或40μm的厚度。
虽然对布线图形的类型没有特别的限制,只要它们依据半导体器件的结构和用途以合适的图形形成,并且具有导电性即可,但是,可以列举出例如由金属薄膜构成的布线。对用于这种布线的金属的类型虽无特别限制,但最好使用铜。布线可以是薄膜形式,其中最好使用厚度在5μm至18μm的范围内的铜箔,更具体地说,采用5μm、8μm、9μm、12μm或18μm的厚度为宜。另外,当布线用铜箔形成时,最好对铜箔表面镀一层金属,以阻止布线变坏。对所镀金属的类型虽无限制,但最好是镀锡、镀金等。
对在上述聚酰亚胺基绝缘带上形成布线图形的方法的类型和镀覆布线图形表面的方法的类型没有特别的限制,最好采用现有技术中的熟知的方法。通过对例如附有5μm至18μm厚的铜箔的聚酰亚胺基绝缘带进行刻蚀,可以形成任意的布线图形,然后可以在布线的表面上镀锡或镀金。另外,具有绝缘性能的聚酰亚胺、氨基甲酸乙酯等被涂敷到布线图形的规定的露出部分以外的区域,诸如布线图形的供与半导体元件结合用的区域和供外部连接器用的区域,从而形成将各布线相互绝缘的阻焊剂。这样,例如可以形成30μm至80μm厚的柔性印刷电路。
对安装在该柔性印刷电路上的半导体元件的类型没有特别的限制,只要它具有按照半导体器件的用途而包含各种集成电路的结构即可。例如,可以列举出液晶显示驱动器、功率IC、控制器等,特别是可以使用具有大量窄间距的突出电极(凸点)的半导体元件,其中,与布线图形电连接的电极以突出的形状被形成。
这里,设置在半导体元件上的突出电极将半导体元件与布线进行电连接。虽然最好例如用凸点作为突出电极,但对突出电极的类型并无特别限制。另外,虽然对凸点的材料没有特别限制,只要它是导电的,并且能够适当地与布线连接即可,但最好使用金。
对使半导体元件经突出电极固定在布线上以便进行电连接的绝缘树脂成分可以使用诸如环氧树脂或丙烯酸基树脂这样的热固化树脂或光固化树脂。当使用这些树脂时,仅通过光照或通过加热就能够容易地将绝缘树脂成分固化。
借助于对绝缘带表面涂敷绝缘树脂成分的步骤(A)中的真空抽吸装置,绝缘带的背面可以被排空和抽吸。这样,能够在绝缘带以平坦方式被支撑、无起伏的条件下将绝缘树脂成分涂敷到绝缘带上。因此,可以减小树脂的不平坦性,使得在对被置于绝缘树脂成分上的半导体元件加压时空气能更加容易地逸出到外部,并且能进一步减小因空气封入而发生的充填失效的程度。
另外,在本发明的COF半导体器件的制造方法的上述步骤(A)中涂敷到绝缘带的半导体元件结合区的绝缘树脂成分的在半导体元件结合区的中心部分的涂敷厚度可以大于在半导体元件结合区的周边部分的涂敷厚度。这样,能够进一步减少充填失效。
另外,当树脂喷嘴在绝缘带的半导体元件结合区移动时,绝缘树脂成分可以以脊形被涂敷到绝缘带的表面上,其中,在按照本发明的COF半导体器件的制造方法的上述步骤(A)中进行该树脂涂敷时,可以使用具有宽或大的喷射口的树脂喷嘴。这样,被涂敷成脊形的绝缘树脂成分的线宽能够加宽,使得线的总数减少,从而被涂敷的树脂线之间的凹陷数目可以减少,因此,能够进一步减少因这些树脂凹陷引起的充填失效。这里,在树脂涂敷时选择了树脂喷嘴的移动过程(轨迹),以使被涂敷的树脂线的数目成为最少,另外,当将树脂喷嘴固定时,也可以选择绝缘带移动过程,以使被涂敷的树脂线的数目成为最少。
另外,按照本发明,在对柔性印刷电路涂敷绝缘树脂成分时,可以预先在作为绝缘树脂成分的热固化树脂中掺入规定量的树脂固化阻滞剂。对这种树脂固化阻滞剂没有特别的限制,可以适当地采用现有工艺中的熟知的阻滞剂。这样,从对柔性印刷电路涂敷绝缘树脂成分到通过加压将半导体元件安装在布线图形上的时间变长。因此,即使在涂敷绝缘树脂成分后对绝缘带预热的时间较长,也不会发生半导体元件的电极(突出电极)与绝缘带上的布线图形之间的电连接的失效。
另外,按照本发明,在涂敷绝缘树脂成分时可以预先将导电粒子散布在绝缘树脂成分中。例如可以使用粒子直径为3μm至10μm的镀金的树脂粒子、镍粒子等作为这些导电粒子。这时,例如在5μm厚的树脂中将导电粒子的粒子密度设定在2000/mm3至12000/mm3。这样,在树脂模塑后一些导电粒子被介于半导体元件的电极与绝缘带的布线图形之间,因而可以成功地阻止不良连接。这里,当导电粒子的粒子密度低于上述范围时,容易发生上述的不良连接;当导电粒子的粒子密度超出上述范围时,用于将布线图形的各部分以及半导体元件的电极相互绝缘的绝缘树脂成分的绝缘性能降低。
按照本发明的COF半导体器件的制造方法,在涂敷绝缘树脂成分之前、之中和/或之后,利用从背面一侧对绝缘带进行预热的方法对绝缘树脂成分进行预热以使气泡能经由绝缘带除去的步骤(D)中的预热温度可以被设定为60℃到150℃,最好为80℃到100℃。这样,树脂的粘度可以降低,并且既不在热学方面影响柔性印刷电路,又不使热固化树脂固化,因而树脂能够变得充分平坦,被绝缘带吸附的湿气或树脂固化时的除气作用能被预先消除。这里,当该预热温度低于60℃时,被绝缘带吸附的湿气或树脂固化时的除气作用预先不能充分消除,树脂也不能变平,因而容易发生树脂充填失效和残留的气泡;而当该预热温度超过150℃时,绝缘树脂成分的固化就有可能取得进展的风险,很可能在半导体元件对布线图形的电连接部位引起缺陷。
另外,按照本发明,通过在绝缘树脂成分尚未固化的条件下利用加压使半导体元件与布线图形接触的加压工序步骤(B),在加热条件下半导体元件能够与布线图形接触。这时,对绝缘树脂成分采用了热固化树脂。为了借助于在现有技术中熟知的加压工序将半导体元件安装到柔性印刷电路上,可以利用在加热中的传送半导体元件的单元。该步骤(B)中的加热温度是能够使热固化树脂充分固化的温度,例如,在环氧树脂的场合,该温度可设定在约250℃。
按照本发明的另一方面,提供了一种COF半导体器件,该COF半导体器件包括在其表面上设置了多个布线图形的薄的绝缘带;半导体元件;以及在该半导体元件与布线图形电连接并且能够装配高可靠性的COF半导体器件的条件下将该半导体元件固定到布线图形上的、包含树脂固化阻滞剂的绝缘树脂成分,其中,在半导体元件与薄的绝缘带上的布线图形结合和树脂模塑时在绝缘树脂成分中发生的气泡和充填失效得到减少。
另外,在该COF半导体器件中,绝缘树脂成分中还可以包含在散布条件下的导电粒子。
下面,参照附图对按照本发明实施例的COF半导体器件和该COF半导体器件的制造方法进行详细说明。这里,本发明不限于这些实施例。
实施例1
图1(a)至图1(e)是示出按照本发明实施例1的COF半导体器件的制造方法的步骤的图。这里,在说明实施例1的图1(a)至图1(e)中,对与上述的现有实施例1和2(图5(a)至图5(e)和图6(a)至图6(d))中的元件相同的元件标以相同的标号。
如图1(e)所示,本实施例1的COF半导体器件包括如下四个部分1)其表面上设置了多个布线图形2的薄的绝缘带1;2)为了绝缘,涂敷在除了诸如布线图形2上的半导体元件结合区和外部连接器部分的规定区域外的布线图形2上的阻焊剂5;3)具有多个突出电极9的半导体元件3;以及4)在半导体元件3的突出电极9进行了电连接条件下将该半导体元件3固定到该布线图形2上的绝缘树脂成分7,其中,在布线图形2的表面上设置了未示出的金属镀层。另外,包括绝缘带1、布线图形2和阻焊剂5的柔性印刷电路的平面结构示于图3。
下面说明本实施例1的COF半导体器件的制造方法。图1(a)和图1(b)示出了涂敷树脂的步骤(A),图1(c)示出了在涂敷树脂后的树脂变平和气泡逸出,图1(d)示出了通过加压工序使半导体元件进行接触的步骤(B),图1(e)示出了树脂固化的步骤(C)。
按照实施例1的制造方法,首先,如图1(a)和图1(b)所示,将柔性印刷电路安装在未示出的平台上。该平台可以是加热平台。其后,如标号6标明的箭头所示,利用加热平台或加热装置将绝缘带1的背面(未安装半导体元件并且半导体元件不与之连接的面)预热至80℃至100℃。然后,将预先对其添加了树脂固化阻滞剂的绝缘树脂成分7涂敷到绝缘带1上的半导体元件3安装在其表面上并与其表面连接的结合区4。这时,对绝缘树脂成分7使用了热固化树脂。当为了涂敷绝缘树脂成分7,由金属制成的树脂喷嘴8借助于例如未示出喷嘴移动装置来回移动时,绝缘树脂成分7的规定的流量被散布到结合区4。
这样,在安装和连接半导体元件前从绝缘带1的背面一侧进行了预加热,因此,如图1(c)中的标号10标明的箭头所示,被绝缘带1吸附的湿气和在绝缘树脂成分7固化时的除气作用被消除,并且上述被涂敷的绝缘树脂成分7变平滑,从而减小了树脂表面的不平坦性。
然后,如图1(d)和1(e)所示,半导体元件3被压向绝缘树脂成分7,如标号11标明的箭头所示,同时,在对已涂敷了绝缘树脂成分7的柔性印刷电路进行预热的条件下用未示出的加热装置将半导体元件3加热至约250℃。因此,半导体元件3的各突出电极9被压向绝缘带1的表面上的各布线图形2,并与之电连接,以便将半导体元件3安装到柔性印刷电路上。同时,如上所述,如标号12标明的箭头所示,将一些绝缘树脂成分7从半导体元件3的下面挤压到外面,从而在半导体元件3的侧面形成条带。
借助于来自被加热的半导体元件3的热量和来自被预热的绝缘带1的热量,绝缘树脂成分7被热固化,从而使半导体元件3模塑并固定。这里,在以后的处理中,液晶面板、印刷电路板等被连接到布线图形2的外连接器。
按照本发明的实施例1被绝缘带1吸附的湿气和在绝缘树脂成分7固化时的除气作用预先被消除;被涂敷的绝缘树脂成分7变平滑,从而减小了树脂表面的不平坦性;以及绝缘树脂成分7与树脂固化阻滞剂一起被使用,因此,在半导体元件3的突出电极9与绝缘带1的布线图形2结合,用绝缘树脂成分模塑时发生的气泡和充填失效能被减少到现有技术的30%或其以下。还有,即使绝缘树脂成分7的预热时间较长,半导体元件3的突出电极9也能成功地被电连接到布线图形2上。
实施例2图2(a)至图2(e)是示出按照本发明实施例2的COF半导体器件的制造方法的步骤的图,图3是示出按照本发明实施例2的树脂涂敷工艺的树脂涂敷线的图。这里,在说明实施例2的图2(a)至图2(e)和图3中,对与实施例1(图1(a)至图1(e))中的元件相同的元件标以相同的标号。
本实施例2的COF半导体器件被形成为具有与实施例1相同的成分和相同的结构,如图2(e)所示,而制造实施例2的COF半导体器件时的树脂涂敷工艺却不同于实施例1的涂敷工艺。即,在热固化绝缘树脂成分7与树脂固化阻滞剂一起被涂敷到绝缘带1上的半导体元件3与之连接、并安装在其上的结合区4时,从外侧(如标号15标明的箭头所示)开始并向中心(如标号16标明的箭头所示)移动地将绝缘树脂成分7涂敷到结合区4,因此,涂敷到中心的绝缘树脂成分7的量大于涂敷到边缘的量,在中心,涂敷的厚度最大,如实施例2中的图2(a)、2(b)和图3所示,因此,在将半导体元件3安装到绝缘带1上时,空气更容易逸出。另外,由于在涂敷绝缘树脂成分7之前,如标号17标明的箭头所示,借助于用未图示的真空抽吸装置从绝缘带1的背面进行真空抽吸,绝缘带1以平坦的方式被支撑,所以绝缘带1上的起伏减少。其后,使用具有宽的喷射口的树脂喷嘴18涂敷绝缘树脂成分7,因此,在被宽的喷嘴18涂敷成脊形的树脂线的数目(这里为3条)减少、从而树脂凹陷数目减少的同时,由绝缘带1的起伏引起的树脂表面的不平坦性也减小。
因此,如图2(c)所示,当绝缘树脂7变平滑时,涂敷到柔性印刷电路上的绝缘树脂成分7呈中心部分最高的平缓丘状。然后,如图2(d)和2(e)所示,当对被置于绝缘树脂成分上的半导体元件3加压时,间隙中的空气容易逸出到外部。因此,在热固化后,绝缘树脂成分7中的气泡和绝缘树脂成分7的充填失效能进一步减少。这里,除上述之外,被绝缘带1吸附的湿气和绝缘树脂成分7热固化时的除气作用预先被消除,并且以与实施例1中的相同方式,绝缘树脂成分与树脂固化阻滞剂一起被使用。因此,在突出电极9与绝缘带1上的布线图形2结合和用绝缘树脂成分7模塑时发生的气泡和充填失效能被减少到现有技术的30%或其以下。即使绝缘树脂成分7的加热时间较长,半导体元件3的突出电极9也能成功地被电连接到布线图形2上。
实施例3图4(a)至图4(e)是示出按照本发明实施例3的COF半导体器件的制造方法的图。这里,在说明实施例3的图4(a)至图4(e)中,对与实施例1(图1(a)至图1(e))以及实施例2(图2(a)至图2(e)和图3)中的元件相同的元件标以相同的标号。
本实施例3的COF半导体器件被形成为与按照实施例2的制造方法的实施例2的COF半导体器件有相同的结构,如图4(e)所示,而在制造COF半导体器件时使用的绝缘树脂成分19却与在实施例1和2中使用的不同。即,在按照实施例3涂敷绝缘树脂成分19时,预先在热固化绝缘树脂成分19中散布了导电粒子20。这时,使用了直径为5μm的镀金的树脂粒子作为该导电粒子20,其中,5μm厚的树脂中的导电粒子20的粒子密度为约3000/mm3。这里,图4(a)至图4(e)示出的绝缘树脂成分19中的所有白点代表导电粒子20。
使用其中散布了上述的导电粒子20的绝缘树脂成分19,在对被置于绝缘树脂成分19上的半导体元件3施加压力时,半导体元件3的突出电极9经导电粒子20压向布线图形2,由此,半导体元件3被安装到柔性印刷电路上,如图4(a)至图4(e)所示。因此,能够成功地阻止在半导体元件3与布线图形2之间连接部位中的缺陷。这里,在本实施例3中,同样地,被绝缘带1吸附的湿气和绝缘树脂成分19热固化时的除气作用预先被消除;被涂敷到柔性印刷电路上的绝缘树脂成分19变平,形成中心部分最高的平缓丘状;以及以与实施例1和2中的相同方式,绝缘树脂成分与树脂固化阻滞剂一起被使用。因此,在突出电极9与绝缘带1上的布线图形2结合和用绝缘树脂成分19模塑时发生的气泡和充填失效能被减少到现有技术的30%或其以下,并且即使绝缘树脂成分19的预加热时间较长,半导体元件3的突出电极9也能成功地被电连接到布线图形2上。
其他实施例1、虽然在上述的实施例1至3中例示了用热固化树脂作为绝缘树脂成分的情形,但也可以使用光固化树脂。这时,在对被置于涂敷到柔性印刷电路上的树脂上的半导体元件加压时不再对半导体元件加热。另外,绝缘带可以是透明的,以至于在用光照射光固化树脂使之固化时可以从绝缘带的背面一侧用光照射光固化树脂。
2、虽然在上述实施例1至3中例示的情形中,对绝缘树脂成分的预热是从树脂预涂敷步骤到树脂固化步骤连续进行的,但也可以在涂敷树脂之前、之中或之后,或者将其组合有选择地进行预热。
3、按照本发明,减少气泡和充填失效的效果随以下情形的各种组合而略有差异对绝缘树脂成分的预热温度和预热时间;绝缘树脂成分的类型和对绝缘树脂成分的固化方法;以及有无真空抽吸。因此,为获得最佳效果,最好根据待制造的制品的尺寸、样式和涂敷方法选择上述组合。
按照本发明,在将绝缘树脂成分涂敷到半导体元件与之结合的区域的布线图形之前、之中和/或之后,对没有设置布线图形的绝缘带的背面部分进行预热。因此,被绝缘带吸附的湿气和树脂固化时的除气作用预先被消除,并且绝缘树脂成分变平(平滑),因而减少了被涂敷的线之间的树脂凹陷,使得在对被置于绝缘树脂成分上的半导体元件加压时,空气能够容易地逸出到外部。因此,能够获得高可靠性的COF半导体器件,其中,当半导体元件与绝缘带上的布线图形结合和用树脂模塑时,绝缘树脂成分中的气泡和充填失效能够大幅度减少,从而不发生半导体元件的电极之间的电流漏泄和对半导体元件的铝电极的腐蚀。
权利要求
1.一种COF半导体器件,它包括在其表面上设置了多个布线图形的薄的绝缘带;半导体元件;以及在使该半导体元件与布线图形电连接的条件下将该半导体元件固定到布线图形上的、包含树脂固化阻滞剂的绝缘树脂成分。
2.如权利要求1所述的器件,其中,在绝缘树脂成分中还包含在散布条件下的导电粒子。
全文摘要
按照本发明,COF半导体器件的制造方法包括步骤(A),对在其表面上设置了多个布线图形的绝缘带的表面涂敷绝缘树脂成分;步骤(B),在绝缘树脂成分尚未固化的条件下可通过加压使半导体元件与布线图形接触;以及步骤(C),借助于使绝缘树脂成分固化,将半导体元件固定到布线图形上,从而进行电连接,其中,COF半导体器件的制造方法还包括步骤(D),在涂敷绝缘树脂成分之前、之中和/或之后,从背面一侧对绝缘带进行预热。
文档编号H01L21/56GK1738040SQ20051009271
公开日2006年2月22日 申请日期2003年9月30日 优先权日2002年10月4日
发明者濑古敏春 申请人:夏普株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1