铁氧体烧结体的制造方法

文档序号:6865150阅读:216来源:国知局
专利名称:铁氧体烧结体的制造方法
技术领域
本发明涉及铁氧体烧结体的制造方法,尤其涉及能够得到高磁特性的W型铁氧体烧结体的制造方法。
背景技术
具有显示超过M型铁氧体磁体的磁特性的可能性的W型铁氧体磁石受到关注。例如在专利文献1中曾经公开为了使组成式为SrO·2(FeO)·n(Fe2O3)的n为7.2~7.7,在混合SrCO3和Fe2O3的原料粉末中添加C(碳)、预烧后分别添加CaO、SiO2和C(碳),粉碎成平均粒径为0.06μm或以下,通过在磁场中成形,并于非氧化性气氛中进行烧结,由此能够容易且便宜地提供W型铁氧体。
在文献1中公开有,如果成形前的微粉碎粉末的平均粒径超过0.06μm,则矫顽力降低;反之,如果平均粒径过小,则剩余磁通密度降低。因此,专利文献1中提出,成形前的微粉碎粉末的平均粒径优选为0.04~0.06μm。并且提出球磨机和磨碎机(attriter)适于该微粉碎。
专利文献1特开平9-260124号公报根据本发明者等的研讨,微粉碎粉末的平均粒径设定为0.04~0.06μm的范围尽管从磁特性的观点出发是优选的,但在制造工序上发现并不合适。即可以确定,平均粒径为0.04~0.06μm的这一范围,粒子过分微细,在进行湿式的磁场中成形的场合会发生脱水性变差,不能成形,或者成形体上产生裂纹和破裂的问题。并且,在使用球磨机、磨碎机进行微粉碎时,虽然其平均粒径能够控制在上述的0.04~0.06μm的范围,但实际上会生成不足0.04μm的粒径的粒子,湿式成形时的脱水不良变得显著。

发明内容
本发明是鉴于这样的技术课题而提出的,其目的在于提供一种通过减低由于粒子过分微细产生的成形时的成形不良来制造磁特性高的W型铁氧体的方法。
本发明者认为,通过使微粉碎生成的例如0.04μm或以下的粒径的超微粒子之间、或者使超微粒子与超过0.04μm的粒径的微粒子发生反应,使超微粒子长大,借以使超微细粒子消失、或者减少超微细粒子的数量。超微粒子之间等的反应,可以通过进行将微粉碎的粉末保持在规定温度的热处理来实现。但是,在W型铁氧体的场合需要注意的是,经过该热处理后也需要保持预烧生成的Fe2+。即,在氧化性气氛中进行该热处理时Fe2+会消失或者减少,所得到的W型铁氧体烧结体的磁特性变差。因此,本发明是具有下述式(1)的主组成的铁氧体烧结体的制造方法,其特征在于该制造方法具备从原料组合物得到预烧体的预烧工序、将预烧体粉碎至规定粒度的第1粉碎工序、将第1粉碎工序得到的微粉末在氧浓度为10体积%或以下的气氛中在规定温度范围保持规定时间的热处理工序、将经过热处理工序的微粉末粉碎至规定粒度的第2粉碎工序、将经过第2粉碎工序的微粉末在磁场中进行湿式成形的工序、以及将湿式成形得到的成形体进行烧成的烧成工序。
AFe2+aFe3+bO27式(1)(其中,1.5≤a≤2.1、14≤a+b≤18.5,而且A为从Sr、Ba以及Pb之中选择的至少1种元素)此外,由本发明得到的W型铁氧体烧结体,不局限于由W相单相构成的场合,也包括以摩尔比计含有50%或以上的W相的场合。
在上述热处理工序中,优选于600~1200℃的范围保持规定时间。
另外,优选第2粉碎工序的粉碎条件比第1粉碎工序缓和。
此外,本发明中,经过第1粉碎工序的微粉末以及经过第2粉碎工序的微粉末的平均粒径优选为0.08~0.8μm。该平均粒径更优选为0.1~0.2μm。
本发明中,优选从实施预烧工序之后至实施上述第2粉碎工序之前,添加含碳组合物,例如碳粉末。
本发明如上述那样,以不使预烧工序生成的Fe2+消失而使超微粉长大作为要旨。因此,本发明提供一种铁氧体烧结体的制造方法,其特征在于该制造方法具备将含有Fe2+以及Fe3+的预烧体粉碎成平均粒径为0.08~0.80μm的粉碎粉末的第1粉碎工序、在保持Fe2+以及Fe3+的同时使构成粉碎粉末的一部分粒子之间发生反应,从而使粒子长大的粒子长大工序、将经过粒子长大工序的粉碎粉末粉碎成平均粒径为0.08~0.8μm的第2粉碎工序。
本发明的粒子长大工序,为了保持Fe2+以及Fe3+,优选在非氧化性气氛中进行。
根据本发明,可以减低湿式成形时的成形不良,且能够制造磁特性高的W型铁氧体。


图1是表示针对实施例1制作的烧结体,其热处理条件与磁特性的关系的图表。
图2是表示针对实施例2制作的烧结体,其热处理时的氧浓度与磁特性的关系的图表。
图3是表示针对实施例3制作的烧结体,其热处理条件与磁特性的关系的图表。
具体实施例方式
以下,根据实施方案,详细说明本发明。
<组成>
本发明以铁氧体烧结体、特别以W型铁氧体烧结体作为对象。作为该烧结体的组成,能够广泛适用众所周知的组成,但优选具有下述式(1)的主组成。
AFe2+aFe3+bO27式(1)其中,1.5≤a≤2.1、14≤a+b≤18.5。另外,作为A,优选是Sr、Ba以及Pb之中的至少1种。还有,在上式(1)中的a和b分别表示摩尔比。
在上式(1)中,表示Fe2+的比例的a设定为1.5≤a≤2.1。当a不足1.5时,生成比W相的饱和磁化(4πIs)低的M相和Fe2O3(赤铁矿)相,饱和磁化(4πIs)降低。另一方面,当a超过2.1时,生成尖晶石相,矫顽力(HcJ)降低。因此将a设定为1.5≤a≤2.1的范围。a的优选范围为1.6≤a≤2.1,更优选的范围为1.6≤a≤2.0。
此外,表示Fe2+以及Fe3+的比例的a+b,设定为14≤a+b≤18.5的范围。当a+b不足14时,生成尖晶石相,矫顽力(HcJ)降低。另一方面,当a+b超过18.5时,生成M相和Fe2O3(赤铁矿)相,饱和磁化(4πIs)降低。因此将a+b设定为14≤a+b≤18.5的范围。a+b的优选范围为14≤a+b≤18,更优选的范围为14≤a+b≤17。
铁氧体烧结体的组成,能够用荧光X射线定量分析等进行测定。并且,本发明并不排除含有A元素(从Sr、Ba以及Pb之中选择的至少1种元素)以及Fe以外的元素。
本发明的铁氧体烧结体可以经过配合工序、预烧工序、粗粉碎工序、微粉碎工序、磁场中成形工序以及烧成工序来制造。
在此,微粉碎工序分为第1微粉碎工序和第2微粉碎工序,且在第1微粉碎工序和第2微粉碎工序之间进行热处理工序,这是本发明的特征。
以下,就各工序进行说明。
<配合工序>
将各原料称量后,用湿式磨碎机等进行1~3小时左右的混合和粉碎处理。作为原料粉末,能够使用氧化物或者可经过烧结成为氧化物的化合物。另外,在这里说明使用SrCO3粉末、BaCO3粉末以及Fe2O3(赤铁矿)粉末的例子,A元素除了作为碳酸盐进行添加的形态以外,也能够作为氧化物进行添加。关于Fe,也同样能够作为Fe2O3以外的化合物来添加。并且,可以使用含有A元素和Fe的化合物。
<预烧工序>
将配合工序得到的混合粉末在1100~1350℃进行预烧。通过在氮气和氩气等非氧化性气氛中进行该预烧,Fe2O3粉末中的Fe3+被还原而生成Fe2+,从而构成W型铁氧体。在该阶段,如果不能充分确保Fe2+的量,则除了W相以外,还会存在M相或H相。而且,为了得到W相单相的铁氧体,调整氧分压是有效的。这是因为降低氧分压时,Fe3+被还原,生成Fe2+。
<粗粉碎工序>
预烧体一般是颗粒状,因此为了将其解碎,优选进行粗粉碎。在粗粉碎工序中,利用振动式球磨机等粉碎至平均粒径为0.5~10μm。
<第1微粉碎工序>
在第1微粉碎工序中,利用磨碎机和球磨机、或者喷磨机等将粗粉碎粉末进行湿式或干式粉碎,粉碎成平均粒径为0.08~0.8μm,优选为0.1~0.4μm,更优选为0.1~0.2μm。进行该第1微粉碎工序的目的在于去掉粗粉,进而为了提高磁特性,使烧结后的组织变得微细,作为比表面积(采用BET法)优选设定为20~25m2/g的范围。其中,在第1微粉碎工序中得到的微粉碎粉末中,含有粒径为0.05μm或以下的超微粒子。如果该超微粒子的量增多,则如后述的那样,对成形性有不利的影响。当比表面积(采用BET法)在20~25m2/g的范围时,则存在会对成形性产生影响这种程度的量的超微粒子。
尽管取决于粉碎方法,在采用球磨机对粗粉碎粉末进行湿式粉碎的场合,每200g粗粉碎粉末处理60~100小时即可。
为了提高矫顽力和调整晶粒直径,在第1微粉碎工序之前可以添加CaCO3和SiO2、或者再添加SrCO3、BaCO3、Al2O3、Cr2O3等粉末。
<热处理工序>
第1微粉碎工序会大量生成0.05μm或以下的超微粒子,在超微粒子存在时,有可能在后续的磁场中成形工序中产生不适宜的情况。例如,在湿式成形时如果超微粉多,则产生脱水性不良、不能成形等不适宜的情况。于是,本实施方案中,在磁场中成形工序之前进行热处理。即,进行该热处理的目的在于使第1微粉碎工序产生的粒径为0.05μm或以下的超微粒子之间、或者使超微粒子和具有大于超微粒子的粒径的微粒子(例如粒径为0.08~0.8μm的粒子)发生反应,使超微粒子消失或减少。
在热处理工序中,优选将微粉碎粉末保持在600~1200℃的温度范围。这是由于在不足600℃时,粒子之间的反应不能充分进行,而在超过1200℃时,粒子之间的反应显著,以至粒子的长大超过必要量。优选的保持温度为700~1000℃。并且,保持时间从1秒钟~100小时的范围适宜选择即可,优选的保持时间为1秒钟~10小时,更优选的保持时间为1秒钟~5小时。
此时的热处理气氛,为了避免预烧生成的Fe2+氧化成Fe3+,设定为非氧化性气氛。本发明中所谓的非氧化性气氛,包括氮气、Ar气等不活泼气体气氛。并且,本发明中的非氧化性气氛,容许含有10体积%或以下的氧。这种程度的氧的含有,在上述温度的保持中,Fe2+的氧化程度可以忽略不计。热处理气氛的氧含量优选为1体积%或以下,更优选为0.1体积%或以下。
<第2微粉碎工序>
在接着的第2微粉碎工序中,利用磨碎机和球磨机、或者喷磨机等将经过热处理的微粉碎粉末进行湿式或干式粉碎,粉碎成0.8μm或以下,优选为0.1~0.4μm,更优选为0.1~0.2μm。进行该第2微粉碎工序的目的在于调整粒度和去除颈缩,并使添加剂的分散性提高,作为比表面积(采用BET法),优选为10~20m2/g的范围,更优选为10~15m2/g的范围。将比表面积调整在该范围时,即使存在超微粒子,其量也很少,对成形性没有不利影响。即,经过第1微粉碎工序、热处理工序以及第2微粉碎工序,则对成形性不会产生不利影响,且能够满足使烧结后的组织微细化的要求。
尽管取决于粉碎方法,在用球磨机进行湿式粉碎的场合,每200g微粉碎粉末处理10~40小时即可。如果以与第1微粉碎工序相同程度的条件进行第2微粉碎工序,则超微粉再度生成、加之在第1微粉碎工序已经基本上得到所要求的粒径,因此第2微粉碎工序通常比第1微粉碎工序的粉碎条件缓和一些。在此,粉碎条件是否已经缓和,不限于粉碎时间,以粉碎时投入的机械能为基准进行判断即可。
为了矫顽力的提高和晶体粒径的调整,在第2微粉碎工序之前可以添加CaCO3和SiO2、或者再添加Al2O3、Cr2O3等粉末。
在烧成工序,发挥还原效果的碳粉末可以在第2微粉碎工序之前添加。碳粉末的添加,对于以近于单相状态(或者单相)使W型铁氧体生成是有效的。在此,碳粉末的添加量(以下称“碳量”)相对于原料粉末设定为0.05~0.7wt%的范围。通过将碳量设定在这一范围,能够充分获得后述的烧成工序中的碳粉末作为还原剂的效果,同时比不添加碳粉末的场合能够得到更高的饱和磁化(σs)。本发明中优选的碳量为0.1~0.65wt%,更优选的碳量为0.15~0.6wt%。此外,作为添加的碳粉末,能够使用碳黑等众所周知的物质。
在本发明中,为了抑制添加的碳粉末在成形体中偏析,优选添加通式Cn(OH)nHn+2表示的多元醇。在此,于上述通式中,碳数n设为4或以上。如果碳数n为3或以下时,则碳粉末的偏析抑制效果不充分。碳数n的优选值为4~100,更优选为4~30,再优选为4~20,进一步优选为4~12。还有,多元醇也可以并用2种或更多种。并且,除了本发明使用的多元醇以外,可以再使用其它的众所周知的分散剂。
上述通式,是骨架完全是链状、且不含有不饱和键时的公式。多元醇中的羟基数、氢数,比通式中表示的数量稍微少一些也可以。在上述通式中,不限于饱和键,含有不饱和键也可以。而且,基本骨架可以是链状也可以是环状,但优选为链状。另外,在羟基数为碳数n的50%或以上时可实现本发明的效果,但优选羟基数多者,最优选羟基数与碳数一致。作为该多元醇的添加量,相对于添加的粉末可设为0.05~5.0wt%,优选为0.1~3.0wt%,更优选为0.3~2.0wt%。还有,所添加的多元醇在磁场中成形工序后进行的成形体热处理工序中基本上被分解去除。在成形体热处理工序中未被分解去除而残留的多元醇,在接着的烧成工序中也会被分解去除。
<磁场中成形工序>
磁场中成形工序,无论进行干式成形或湿式成形都可以,为了提高磁力取向度,优选进行湿式成形。以下,就湿式成形用浆料的调制进行说明,此外对接下来的磁场中成形工序进行说明。
在采用湿式成形的场合,以湿式方式进行第2微粉碎工序,将得到的浆料进行浓缩,调制湿式成形用浆料。浓缩时使用离心分离器或压滤机等进行即可。此时,优选铁氧体磁石粉末占湿式成形用浆料中的30~80wt%。并且,在作为分散剂的水中,优选添加葡糖酸(盐)、山梨糖醇等界面活性剂。其次,使用湿式成形用浆料进行磁场中成形。成形压力为0.1~0.5ton/cm2左右、施加的磁场为5~15kOe左右即可。而且,分散剂不限于水,非水系的分散剂也可以。在使用非水系的分散剂的场合,能够使用甲苯和二甲苯等有机溶剂。作为非水系的分散剂,在使用甲苯或二甲苯的场合,优选添加油酸等界面活性剂。
<烧成工序>
在接着的烧成工序中,将成形体在1100~1270℃、优选为1160~1240℃的温度下保持0.5~3小时,进行烧成。基于与预烧工序同样的理由,在烧成气氛为非氧化性气氛中进行烧成。并且在该工序中,于第2微粉碎工序之前使添加的碳粉末消失。
经过以上的工序,能够得到本发明的W型铁氧体烧结体。根据该W型铁氧体烧结体,能够得到4500G或以上、进而4600G或以上的剩余磁通密度(Br)。而且,能够得到3000Oe或以上、进而3600Oe或以上的矫顽力(HcJ)。
如以上说明的那样,通过将微粉碎分成第1微粉碎工序和第2微粉碎工序来进行,同时在第1微粉碎工序和第2微粉碎工序之间实施热处理工序,能够得到显示高的磁特性的W型铁氧体烧结体。
实施例1以下,根据具体的实施例,说明本发明。
首先,作为原料粉末,准备Fe2O3粉末(一次粒径0.3μm)、SrCO3粉末(一次粒径2μm)以及BaCO3粉末(一次粒径0.05μm)。将这些原料粉末进行称量后,用湿式磨碎机混合和粉碎2小时。
其次,进行预烧。预烧使用管状炉,以在N2气气氛中保持1小时的条件进行。另外,加热保持温度设为1300℃,到达加热保持温度之前的升温以及从加热保持温度的降温的速度设为5℃/分钟。
接着,由振动式球磨机进行粗粉碎,用振动式球磨机进行的粗粉碎是,就200g预烧体而言进行10分钟处理。
下面的微粉碎用球磨机分2个阶段进行。第1微粉碎是指相对于210g粗粉碎粉末添加水400ml并进行88小时处理。其中,对图1中的No.1所示的例子,处理了40小时(比表面积(采用BET法)=13.5m2/g)。在该阶段的平均粒径,No.1为0.65μm、No.2~14为0.18μm。
第1微粉碎后,将微粉碎粉末按照在N2气气氛中于700、800、900以及1000℃下保持10分钟(0.167小时)、1小时以及6小时的条件进行热处理。另外,到达加热保持温度之前的升温以及从加热保持温度的降温的速度设为5℃/分钟。接着,使用球磨机进行湿式粉碎的第2微粉碎,得到湿式成形用浆料。此外,第2微粉碎的条件调整为使第2微粉碎后的微粉碎粉末的比表面积(根据BET法)成为13~14m2/g的范围。另外,在第2微粉碎时,对经过第1微粉碎以及上述热处理的微粉碎粉末,分别添加0.6wt%的SiO2粉末(一次粒径0.01μm)、0.7wt%的CaCO3粉末(一次粒径1μm)、0.35wt%的SrCO3粉末(一次粒径2μm)、1.4wt%的BaCO3粉末(一次粒径0.05μm)、以及0.4wt%的碳粉末(一次粒径0.05μm),同时作为多元醇,添加1.2wt%的山梨糖醇(一次粒径10μm)。
将施以第2微粉碎得到的浆料用离心分离器浓缩,用被浓缩的湿式成形用浆料进行磁场中成形。还有,施加的磁场(纵磁场)为12kOe(1000kA/m),成形体是直径为30mm、高度为15mm的圆柱体。另外,对于任何的成形均未发生不适宜情况。将该成形体于300℃在大气中进行3小时的热处理后,于氮气中以5℃/分钟的升温速度在最高温度为1190℃下烧成1小时,得到烧结体。所得到的烧结体的组成,在上述组成式(1)中,Sr∶Ba=0.66∶0.34、a=1.7以及a+b=15.52。再者,组成分析用理学电机株式会社的荧光X射线定量分析装置SIMULTIX3550进行。
其次,对得到的烧结体测定矫顽力(HcJ)、剩余磁通密度(Br)、以及矩形比(Hk/HcJ)。其中,矫顽力(HcJ)以及剩余磁通密度(Br),是对得到的烧结体的上下面加工后用最大施加磁场为25kOe的B-H描绘器进行评价。另外,Hk是在磁滞回线的第2象限中,磁通密度为剩余磁通密度(Br)的90%时的外部磁场强度。在Hk较低时,不能得到较高的最大能积。Hk/HcJ是磁石性能的指标,表示磁滞回线的第2象限的角度张开的程度。
其结果示于图1。另外,在图1中,也一同表示出了除了微粉碎工序不划分为第1以及第2微粉碎工序以外,以与上述同样的方法获得的烧结体、以及除了在第1微粉碎以及第2微粉碎工序之间于大气中(氧浓度20体积%)进行热处理以外,以与上述同样的方法获得的烧结体的测定结果。还有,以上的例子是使第2微分碎后的比表面积(BET值=13~14m2/g)一致,其平均粒径,No.1为0.293μm、No.2~14为0.1~0.2μm。这样,平均粒径不同,是因为No.2~14的第1微粉碎的粉碎时间较长的缘故。
如图1所示那样可以知道,如果在第1微粉碎以及第2微粉碎之间不进行热处理,则矫顽力(HcJ)不足3000Oe。这是因为在第1微粉碎以及第2微粉碎之间不进行热处理的场合,第2微粉碎后的粉末的比表面积(采用BET法)尽管与进行了热处理后的粉末的比表面积相同,但平均粒径较大的缘故。而且知道,即使在第1微粉碎以及第2微粉碎之间进行了热处理,当热处理的气氛是大气(氧含量为20体积%)的场合,则与第1微粉碎以及第2微粉碎之间不进行热处理的场合相比较,矫顽力(HcJ)以及矩形比(Hk/HcJ)显著降低。这是因为通过该热处理Fe2+被氧化成Fe3+,烧结体内含有的W相的存在比率降低的缘故。
与此相对照,在第1微粉碎以及第2微粉碎之间于氮气气氛中进行热处理时,能够得到3000Oe或以上的矫顽力(HcJ)、4500G或以上的剩余磁通密度(Br)以及85%或以上的矩形比(Hk/HcJ)这种磁特性优良的W型铁氧体烧结磁体。观察热处理的温度,在800℃以及900℃的场合的磁特性优良。而且,就热处理时间而言,保持1小时的烧结体与保持6小时的烧结体的磁特性相同,因此保持1小时左右足够。
对于以上的数种烧结体,用X射线衍射装置鉴别相状态。其结果示于图1,可以确认,在大气中进行热处理得到的烧结体,其W相的存在比率比其它的烧结体低。此外,X射线衍射的条件如下。本实施方案中的摩尔比是,按照规定的比率混合W型铁氧体、M型铁氧体、赤铁矿、尖晶石各自的粉末试样,并根据它们的X射线衍射强度通过比较计算而算出。
X射线发生装置3kW管电压45kW管电流40mA取样幅宽0.02deg扫描速度4.00deg/分钟发散狭缝1.00deg散射狭缝1.00deg受光狭缝0.30mm实施例2除了如图2所示那样设定热处理时的氧浓度以外,以与试样No.8同样的条件制作烧结体(试样No.15~20)。另外,热处理时的氧浓度通过大气气体与氮气的混合来使其变化。
对得到的烧结体,以与实施例1同样的条件测定矫顽力(HcJ)、剩余磁通密度(Br)、以及矩形比(Hk/HcJ),同时用X射线衍射装置鉴定各烧结体的相状态。其结果示于图2。为了便于比较,在大气中进行了热处理的试样No.2(热处理时的氧浓度20体积%)的磁特性以及W相摩尔比也示于图2。
如图2所示那样,伴随氧浓度的降低,W相的比率增高,能够得到较高的磁特性。特别根据氧浓度为10体积%以下的试样No.15~19,能够兼备3000Oe以上的矫顽力(HcJ)、4500G以上的剩余磁通密度(Br)、以及85%以上的矩形比(Hk/HcJ)。
实施例3除了使原料粉末的配合比变化以外,以与实施例1同样的条件制作烧结体。得到的烧结体的组成如下。
组成X在上述组成式(1)中,Sr∶Ba=0.60∶0.40、a=1.6以及a+b=14.1组成Y在上述组成式(1)中,Sr∶Ba=0.70∶0.30、a=2.0以及a+b=18.4组成Z在上述组成式(1)中,Sr∶Ba=1.00∶0、a=1.7以及a+b=16.4对得到的烧结体,以与实施例1同样的条件测定矫顽力(HcJ)、剩余磁通密度(Br)以及矩形比(Hk/HcJ),同时用X射线衍射装置鉴定各烧结体的相状态。其结果示于图3。
如图3所示那样,可以确认,在本发明推荐的范围内使组成变化的场合,也会有与实施例1同样的倾向。
权利要求
1.一种具有下述式(1)的主组成的铁氧体烧结体的制造方法,其特征在于该制造方法具备从原料组合物得到预烧体的预烧工序、将所述预烧体粉碎至规定粒度的第1粉碎工序、将所述第1粉碎工序得到的微粉末在氧浓度为10体积%或以下的气氛中在规定温度范围保持规定时间的热处理工序、将经过所述热处理工序的所述微粉末粉碎至规定粒度的第2粉碎工序、将经过所述第2粉碎工序的所述微粉末在磁场中进行湿式成形的工序、以及将所述湿式成形得到的成形体进行烧成的烧成工序,AFe2+aFe3+bO27式(1)其中,1.5≤a≤2.1、14≤a+b≤18.5,而且A为从Sr、Ba以及Pb之中选择的至少1种元素。
2.根据权利要求1所述的铁氧体烧结体的制造方法,其特征在于所述热处理工序在600~1200℃的范围进行。
3.根据权利要求1所述的铁氧体烧结体的制造方法,其特征在于所述热处理工序在700~1000℃的范围进行。
4.根据权利要求1所述的铁氧体烧结体的制造方法,其特征在于所述规定时间为1秒钟~10小时。
5.根据权利要求1所述的铁氧体烧结体的制造方法,其特征在于所述氧浓度为1体积%或以下。
6.根据权利要求1所述的铁氧体烧结体的制造方法,其特征在于所述气氛是氮气气氛。
7.根据权利要求1所述的铁氧体烧结体的制造方法,其特征在于所述第2粉碎工序的粉碎条件比所述第1粉碎工序缓和。
8.根据权利要求1所述的铁氧体烧结体的制造方法,其特征在于经过所述第1粉碎工序的所述微粉末以及经过第2粉碎工序的所述微粉末的平均粒径为0.08~0.8μm。
9.根据权利要求8所述的铁氧体烧结体的制造方法,其特征在于所述平均粒径为0.1~0.2μm。
10.根据权利要求1所述的铁氧体烧结体的制造方法,其特征在于从实施所述预烧工序之后至进行所述湿式成形之前,添加含有碳的组合物。
11.根据权利要求1所述的铁氧体烧结体的制造方法,其特征在于在所述热处理工序中,0.05μm或以下的超微粒子消失或减少。
12.一种铁氧体烧结体的制造方法,其特征在于该制造方法具备将生成了Fe2+以及Fe3+的预烧体粉碎成平均粒径为0.08~0.8μm的粉碎粉末的第1粉碎工序、在保持所述Fe2+以及Fe3+的同时使构成所述粉碎粉末的一部分粒子之间发生反应,从而使所述粒子长大的粒子长大工序、将经过所述粒子长大工序的所述粉碎粉末粉碎成平均粒径为0.08~0.8μm的第2粉碎工序。
13.根据权利要求12所述的铁氧体烧结体的制造方法,其特征在于所述粒子长大工序在非氧化性气氛中进行。
14.根据权利要求1或12所述的铁氧体烧结体的制造方法,其特征在于所述铁氧体烧结体是W型铁氧体烧结体。
15.根据权利要求14所述的铁氧体烧结体的制造方法,其特征在于所述铁氧体烧结体以摩尔比计含有50%或以上的W相。
全文摘要
提供一种通过减低湿式成形时的成形不良来制造磁特性高的W型铁氧体的方法。该方法是具有下述式(1)的主组成的铁氧体烧结体的制造方法,其具备从原料组合物得到预烧体的预烧工序、将预烧体粉碎至规定粒度的第1粉碎工序、将第1粉碎工序得到的微粉末在氧浓度为10体积%或以下的气氛中在规定温度范围保持规定时间的热处理工序、将经过热处理工序的微粉末粉碎至规定粒度的第2粉碎工序、将经过第2粉碎工序的微粉末在磁场中进行湿式成形的工序、以及将湿式成形得到的成形体进行烧成的烧成工序。AFe
文档编号H01F1/11GK1898181SQ200580001299
公开日2007年1月17日 申请日期2005年1月18日 优先权日2004年1月28日
发明者皆地良彦, 长冈淳一, 村濑琢, 伊藤升, 仓泽俊佑, 梅田秀信 申请人:Tdk株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1