Mea衬垫接合体及使用该接合体的高分子电解质型燃料电池的制作方法

文档序号:6866932阅读:234来源:国知局
专利名称:Mea衬垫接合体及使用该接合体的高分子电解质型燃料电池的制作方法
技术领域
本发明涉及MEA(Membrane-Electrode-Assembly)衬垫接合体以及高分子电解质型燃料电池,特别是涉及具有歧管(manifold)孔的MEA衬垫接合体以及使用该MEA衬垫接合体的高分子电解质型燃料电池。
背景技术
图16是将已有的高分子电解质型燃料电池的结构的一部分分解表示的立体图。
如图16所示,高分子电解质型燃料电池100是将电池单元10迭层构成的。
还有,在电池单元10的两端的最外层安装有集电板、绝缘板、端面板(未图示),电池单元10形成从两端用插通螺杆孔4的紧固螺杆(未图示)与螺帽紧固的结构。
电池单元10用一对阳极隔离层2和阴极隔离层(两者总称隔离层)3夹着MEA衬垫接合体1构成。
MEA衬垫接合体1用一对氟橡胶制造的衬垫60夹着向MEA5的周边部扩展的高分子电解质膜构成。MEA5具有在高分子电解质膜的两个主面上形成催化剂层以及气体扩散层的5C的结构。这种MEA5的高分子电解质膜向催化剂层以及气体扩散层5C的外侧延伸,夹着该延伸的部分的高分子电解质膜接合衬垫60。从而形成在MEA衬垫接合体1的衬垫60的中央开口部的两个面上露出气体扩散层5C的结构。
而且在隔离层2、3以及MEA衬垫接合体1的周边部,形成在组装电池单元10的状态下流通还原剂气体和氧化剂气体的各一对歧管,打通还原剂气体孔歧管孔12、22、32以及氧化剂气体歧管孔13、23、33。又,也打通形成水流通的一对歧管的水歧管孔14、24、34。
然后,在阳极隔离层2的内侧主面上,连结于一对还原剂歧管孔22、22之间形成槽状的还原剂气体流路21。
在阴极隔离层3的内侧主面上,连结于一对氧化剂歧管孔33、33之间形成槽状的氧化剂气体流路31。
又在隔离层2、3的外侧主面、即背面上,与还原剂气体流路21或氧化剂气体流路31一样,连接于一对水歧管孔24、34之间形成形成槽状的水流路。
借助于这些手段,在电池单元10迭层时这些歧管孔分别迭层,形成氧化剂气体、还原剂气体、以及水的一对歧管。而且,氧化剂气体、还原剂气体以及水的流路分别形成一边从一歧管、即供给侧的歧管向形成于隔离层的流路21、31、水流路(未图示)分叉,一边流向各另一歧管、即排出侧的歧管的结构。而且,在MEA衬垫接合体1的中央部露出的MEA分别利用还原剂气体流路21或氧化剂气体流路31将其一面曝露于氧化剂气体,另一面曝露于还原剂气体,从而引起电化学反应。又,由于在隔离层2、3的背面、即相邻的电池单元10之间有水流通,利用水的传热能力能够将高分子电解质型燃料电池100保持于适合电化学反应的规定温度。
图17是图16的XVII-XVII线断面的放大立体图。如图17所示,在MEA衬垫接合体1的还原剂气体歧管孔12以及阳极隔离层2的还原剂气体歧管孔22之间形成有通往还原剂气体流路21的分叉部。而且如图中的实线箭头所示,形成还原剂气体能够流向还原剂气体流路21的结构。在这里,还原剂气体流路21的分叉部分的MEA衬垫接合体1只接合于阴极隔离层3,形成没有来自阳极隔离层2一侧的按压的结构。而且MEA衬垫接合体1的周边部由弹性物质衬垫60构成,因此MEA衬垫接合体1的周边部容易变形。因此阴极隔离层3与MEA衬垫接合体1之间的密封性能差,所以还原剂气体有可能如图中的虚线箭头所示,从该分叉部向阴极隔离层3与MEA衬垫接合体1之间侵入。或阴极隔离层3与MEA衬垫接合体1之间构成的氧化剂气体流路31通过的氧化剂气体有可能向该分叉部漏出来。这样一来,就有可能发生氧化剂气体与还原剂气体混合的所谓交叉泄漏(cross leak)现象,使得高分子电解质型燃料电池100的性能下降,高分子电解质型燃料电池100的内部发生损伤。又,在通往阴极隔离层3的氧化剂气体歧管孔33和MEA衬垫接合体1的氧化剂气体歧管孔13之间形成的氧化剂气体流路31的分叉部也相同(未图示)。也就是说,阳极隔离层2与MEA衬垫接合体1之间的密封性能下降,因此氧化剂气体侵入阳极隔离层2与MEA衬垫接合体1之间,或还原剂气体泄漏,有可能发生氧化剂气体与还原剂气体交叉泄漏的现象。
因此,有专利文献提出了或在隔离层2、3与MEA衬垫接合体1之间设置覆盖构件(参照例如专利文献1),或在该部分利用通过隔离层2、3的体内的孔部构成隔离层2、3的氧化剂气体流路31和还原剂气体流路21(参照例如专利文献2),抑制这些分叉部中的交叉泄漏的燃料电池。
又,沿着衬垫60的内缘与气体扩散层5C的外缘之间的高分子电解质膜5A上形成的环状间隙、即气体扩散层5C的外周侧间隙,在一对还原剂气体歧管孔22之间以及一对氧化剂气体歧管孔33之间流通的还原剂气体和氧化剂气体流使氧化剂气体和还原剂气体的利用效率下降,导致高分子电解质型燃料电池100的效率下降。
专利文献1日本特公平1-60899号公报专利文献2日本特开2002-83614号公报发明内容但是,在专利文献1的发明中,有必要在各电池单元中追加设置覆盖构件。而在专利文献2中有必要在各隔离层形成孔部。这些发明都要求对隔离层进行复杂的加工,在电池单元的迭层数目通常达到数十个到数百个的高分子电解质型燃料电池中,存在组装工序复杂化、成本上升的问题,有改善的余地。
而且为了抑制氧化剂气体和还原剂气体的利用效率的下降,需要有能够简便地切断气体扩散层外围的还原剂气体和氧化剂气体的气流的结构。
因此,本发明是为了解决上述存在问题而作出的,其目的在于提供能够利用简便的结构一边抑制隔离层加工的复杂化和零部件的增加,一边抑制从歧管孔流向各隔离层内表面的流路的,分叉部的氧化剂气体与还原剂气体的交叉泄漏以及气体扩散层外围的还原剂气体和氧化剂气体的流动,以此进一步抑制高分子电解质型燃料电池的气体利用效率的下降的MEA衬垫接合体及使用该接合体的高分子电解质型燃料电池。
为了实现这一目的,第1本发明的MEA衬垫接合体具备由高分子电解质膜、催化剂层、以及气体扩散层形成的MEA、包围着所述MEA地接合于所述MEA的周边部的高分子电解质膜,而且形成多个流体歧管孔的板状的框体、以及形成于所述框体的两个面上的弹性体构成的环状衬垫,形成于所述环状衬垫的内缘与所述气体扩散层的外缘之间的环状间隙至少部分封闭。形成这样的结构时,MEA衬垫接合体由于框体具有刚性,因此在电池单元组装状态时,即使是在从隔离层一侧的歧管孔到各隔离层内表面的流路的分叉部,也利用框体产生的按压力将环状衬垫按压于阴极隔离层和阳极隔离层上。从而,发生还原剂气体或氧化剂气体向阴极隔离层或阳极隔离层与MEA衬垫接合体的接合面之间的侵入的可能性,或发生阴极隔离层中形成的氧化剂气体流路通过的氧化剂气体或阳极隔离层中形成的还原剂气体流路通过的还原剂气体向该分叉部分的泄漏的可能性,也就是说,氧化剂气体与还原剂气体的混合,所谓交叉泄漏现象的可能性能够得到抑制,而且能够抑制隔离层加工的复杂化和零部件的增加,也就是说,能够利用简便的结构对其加以抑制。又由于环状衬垫的内缘以及气体扩散层的外缘之间形成的环状间隙至少部分封闭,因此能够利用简便的结构抑制气体扩散层外围侧间隙的还原剂气体和氧化剂气体的流动。从而,能够抑制氧化剂气体和还原剂气体的利用效率的下降,能够抑制高分子电解质型燃料电池的气体利用效率的下降。
第2本发明的MEA衬垫接合体,所述环状衬垫的内缘与所述气体扩散层的外缘至少部分接触,所述环状间隙至少部分封闭。这样构成时,不要增加零部件数目就能够得到第1本发明的效果。
第3本发明的MEA衬垫接合体,具备配置于所述环状衬垫与所述气体扩散层之间的弹性体构成的环状构件,该环状构件的外缘至少部分与所述环状衬垫的内缘接触,而且该环状构件的内缘至少部分与所述气体扩散层的外缘接触,所述环状间隙至少部分封闭。这样构成时,形成于气体扩散层的外缘与环状衬垫的内缘之间的环状间隙借助于环状构件缩小,因此氧化剂气体或还原剂气体向气体扩散层外围的泄漏能够得到抑制,能够进一步抑制高分子电解质型燃料电池的气体利用效率的下降。而且环状构件由于将形成于气体扩散层的外缘与环状衬垫的内缘的周围的环状间隙分割为两个在相同的平面上的环状间隙,因此在该分割的环状间隙,能够使环状构件的外缘与环状衬垫的内缘、以及环状构件的内缘与气体扩散层的外缘的部分接合容易进行。
第4本发明的MEA衬垫接合体,所述环状衬垫的内缘被加热熔化,熔入所述气体扩散层的外缘。这样构成时,环状衬垫的内缘与气体扩散层的外缘可靠接合,因此能够更加可靠地得到第2本发明的效果。
第5本发明的MEA衬垫接合体,所述环状构件的内缘被加热熔化,熔入所述气体扩散层的外缘,而且所述环状构件的外缘与所述环状衬垫的内缘部分热熔敷。这样构成时,环状构件的内缘和气体扩散层的外缘、以及环状构件的外缘与环状衬垫的内缘可靠接合,因此能够更加可靠地得到第3本发明的效果。
第6本发明的MEA衬垫接合体,所述框体由热可塑性树脂构成,所述环状衬垫由热可塑性弹性物质构成,所述框体与所述环状衬垫具有共同的可塑成分,所述环状衬垫分别热熔敷于所述框体的两个面上。如果采用这样的构成,在框体上成型形成环状衬垫时,环状衬垫热粘接于框体上形成一体,因此不需要两者接合用的特别结构,就能够容易地得到接合结构。
第7本发明的MEA衬垫接合体,所述框体,其压缩弹性模量为2000MPa以上,200000MPa以下,所述环状衬垫,其压缩弹性模量大于0MPa,200MPa以下。通过这样选择框体的刚性和环状衬垫的弹性,能够很好地抑制氧化剂气体和还原剂气体的利用效率的下降。还有,所谓压缩弹性模量是指利用日本工业标准JIS-K7181规定的压缩弹性模量测定方法测定的压缩弹性模量。
第8本发明的高分子电解质型燃料电池,迭层一个以上的,具有第1~7发明的MEA衬垫接合体、以及夹着该MEA衬垫接合体配设的阳极隔离层及阴极隔离层的电池单元形成,所述阳极隔离层及阴极隔离层分别在与所述MEA衬垫接合体的各流体孔对应的位置上设置流体歧管孔,而且在阳极隔离层和阴极隔离层的内表面上形成流体流路槽,使其连结至少一对所述流体歧管孔。这样构成时,MEA衬垫接合体由于框体具有刚性,所以即使是在从隔离层一侧的歧管孔到各隔离层的内表面的流路的分叉部,由于框体产生的按压力,环状衬垫也被压向阴极隔离层和阳极隔离层。从而,发生还原剂气体或氧化剂气体向阴极隔离层或阳极隔离层与MEA衬垫接合体的接合面之间的侵入的可能性,或发生阴极隔离层中形成的氧化剂气体流路通过的氧化剂气体或阳极隔离层中形成的还原剂气体流路通过的还原剂气体向该分叉部分的泄漏的可能性,也就是,氧化剂气体与还原剂气体的混合,所谓交叉泄漏现象发生的可能性能够得到抑制,而且能够抑制隔离层加工的复杂化和零部件的增加,也就是说,能够利用简便的结构对其加以抑制。又由于环状衬垫的内缘以及气体扩散层的外缘之间形成的环状间隙至少部分封闭,因此能够利用简便的结构抑制气体扩散层外围侧间隙的还原剂气体和氧化剂气体的流动。从而,能够抑制氧化剂气体和还原剂气体的利用效率的下降,能够抑制高分子电解质型燃料电池的气体利用效率的下降。本发明的上述目的、特征、以及优点从参照附图进行的下述最佳实施形态的说明中能够更清楚了解。
如上所述,本发明的MEA衬垫接合体以及使用这种接合体的高分子电解质型燃料电池能够得到这样的效果,即能够以简单的结构一边抑制隔离层加工的复杂化和零部件的增加,一边抑制从歧管孔到各隔离层的内表面的流路的分叉部的氧化剂气体和还原剂气体的交叉泄漏和气体扩散层外围的还原剂气体和氧化剂气体的流动。


图1表示实施形态1的MEA衬垫接合体的结构,(a)为平面图(阴极隔离层一侧),(b)为表示I-I线断面的剖面图。
图2是表示图1的I-I线断面的电池单元10的迭层断面的剖面图。
图3表示图1的MEA衬垫接合体的基本结构、即框体-高分子电解质膜接合体的结构,(a)为平面图,(b)为III-III线断面的剖面图。
图4是表示在图3的IV-IV线剖面图中框体-高分子电解质膜接合体的成型工序的概略情况的工序图。
图5是表示形成第1衬垫的,图4的框体-高分子电解质膜接合体的结构的结构图,(a)为平面图,(b)为V-V线断面的剖面图。
图6是表示在高分子电解质膜的两个主面上形成催化剂层和气体扩散层的,图5的框体-高分子电解质膜接合体的结构的结构图,(a)为平面图,(b)为VI-VI线断面的剖面图。
图7是表示第2衬垫与接合第2衬垫的MEA衬垫接合体的结构的平面图。
图8是与图16相同的断面的断面放大表示的立体图。
图9表示压力损失试验结果。
图10表示还原剂气体利用率试验结果。
图11是表示实施形态2的MEA衬垫接合体的结构的(阳极隔离层一侧的)平面图。
图12是表示实施形态3的阳极隔离层的结构的(MEA衬垫接合体一侧的)平面图。
图13是表示实施形态3的阴极隔离层的结构的(MEA衬垫接合体一侧的)平面图。
图14是表示图11、图12、图13的XIV-XIV线断面的,电池单元10的迭层结构的剖面图。
图15是表示实施形态4的MEA衬垫接合体的结构,(a)为平面图(阴极隔离层一侧),(b)为XV-XV线断面的剖面图。
图16是将已有的高分子电解质型燃料电池的结构的一部分分解表示的立体图。
图17是图16的XVII-XVII线断面的放大立体图。
符号说明1MEA衬垫接合体2阳极隔离层3阴极隔离层4螺杆孔5MEA5A 高分子电解质膜5B 催化剂层5C 气体扩散层6框体6A 接合用贯通孔6B 成型用贯通孔6C 第1成型构件6D 第2成型构件6E 凹坑部7第1衬垫7A 主体部7B 连结部7C 肋部8第2衬垫9密封构件10 电池单元11 接合部11A 外侧接合部11B 内侧接合部12、22、32 还原剂歧管孔13、23、33 氧化剂歧管孔14、24、34 水歧管孔21 还原剂气体流路31 氧化剂气体流路40 外侧间隙41 内侧间隙
60 衬垫100 高分子电解质型燃料电池ΔP 压力损失Q 还原剂气体流量R 还原剂气体利用率V 平均电池单元电压具体实施方式
下面参照附图对实施本发明的最佳形态进行说明。
实施形态1图1表示实施形态1的MEA衬垫接合体1的结构,(a)为平面图(阴极隔离层一侧),(b)为表示I-I线断面的剖面图。
如图1所示,实施形态1的MEA衬垫接合体1具有MEA5。MEA5在除高分子电介质膜5A的周边部以外的部分(内侧部分)的两面上分别依序迭层催化剂层5B和气体扩散层5C。
而且,夹着MEA5的高分子电解质膜5A的周边部并且包围着该高分子电解质膜5A的外缘配置环状(在这里,是中空的大致为正方形的板状)的框体6。框体6在这里用可塑性树脂构成。又,框体6配置为使其内缘与MEA5的催化剂层5B以及气体扩散层5C的外缘之间分别具有环状的间隙。框体6的厚度在这里大致与形成MEA5的催化剂层5B以及气体扩散层5C的部分的厚度相同。在框体6上形成多个歧管孔使其在厚度方向上贯通该框体6,在这里,是形成一对还原剂歧管孔12、一对氧化剂歧管孔13、以及两对水歧管孔14。
而且在框体6上配设由弹性体构成的第1衬垫(环状衬垫)7。第1衬垫7由覆盖框体6的两个主面的规定部分的一对板状的主体部7A、7A以及将这一对主体部7A、7A相互连接的柱状的连接部7B构成。各主体部7A围着一对还原剂歧管孔12、一对氧化剂歧管孔13、两对水歧管孔14在框体6的周长方向上环状延伸形成。在这里,在主体部7A上沿着其延伸方向延伸地形成肋7C。借助于此,该肋7C在MEA衬垫接合体1与阳极隔离层2和阴极隔离层3接合的状态下、即电磁单元组装状态下,与该阳极隔离层2和阴极隔离层3接触,能够更可靠地将各歧管孔12~14以及气体扩散层5C密封。又,主体部7A形成为与框体6的内缘保持间隔。而且在框体6的以第1衬垫7的主体部7A覆盖的部分的适当地方形成贯通厚度方向的连结孔6A,利用填埋该连结孔6A形成的连结部7B使一对主体部7A、7A相互连结。
然后,在MEA衬垫接合体1的两个主面上,分别配设在气体扩散层5C的外围侧间隙、在这里是第1衬垫7的主体部7A的内侧露出的环状的框体6、以及覆盖露出于框体6的内缘与气体扩散层5C的外缘之间的环状的高分子电解质膜5A的两面上形成的环状间隙形成的一对第2衬垫(环状构件)8、8。第2衬垫8在这里用弹性体构成。又,第2衬垫8形成为环状(在这里是中空的大约为正方形的形状)的板状,而且配设得具有第1衬垫7的主体部7A的内缘侧的环状间隙(以下称为外侧间隙)40以及气体扩散层5C的外缘侧的环状间隙(以下称为内侧间隙)41。借助于此,第1衬垫7与气体扩散层5C之间的环状间隙被第2衬垫8缩小并分割。
而且环状的外侧间隙40以及内侧间隙41分别由外侧接合部11A以及内侧接合部11B部分封闭。外侧接合部11A以及内侧接合部11B通过使第2衬垫8部分熔化分别流入外侧间隙40和内侧间隙41形成。
这样构成的MEA衬垫接合体1,框体6以及衬垫7存在的外侧部分比MEA5的气体扩散层5C存在的其内侧部分厚得多。而且,MEA衬垫接合体1在这里具有大致正方形的平面形状,分别在4个角上形成螺杆孔。
在这里,使用这种MEA衬垫接合体1的电池单元10与已有的高分子电解质型燃料电池一样地(参照图16)通过将MEA衬垫接合体1、阳极隔离层2、阴极隔离层3迭层构成。而且将电池单元10迭层构成高分子电解质型燃料电池。
图2是表示图1的I-I线断面的电池单元10的迭层断面的剖面图。
阳极隔离层2和阴极隔离层3为平板状,与MEA衬垫接合体1接触的一侧的面具有MEA衬垫接合体1的形状,更具体地说,与框体6和MEA5的厚度不同造成的阶梯相应,中央部具有台状的级差。阳极隔离层2和阴极隔离层3使用日本东海碳素(carbon)株式会社制造的Glassy Carbon(厚度3mm)。隔离层2、3的各种歧管孔22、23、24、32、33、34、螺杆孔4、槽状的还原剂气体流路21、槽状的氧化剂气体流路31等利用切削加工方法形成。
而且,电池单元10用60个迭层,利用插通螺杆孔4的螺杆和螺帽以10KN的紧固力紧固。
在电池单元10的组装状态下,由于第2衬垫8是弹性体,借助于MEA衬垫接合体1和隔离层2、3的按压,第2衬垫8在与框体6和隔离层2、3接触的同时一边发生变形,而且延伸,使外侧间隙40和内侧间隙41变得狭窄。
第1衬垫7被压接于隔离层2、3,分别将水歧管孔14、24、34各自的周围加以密封。在还原剂歧管孔12、22、32以及氧化剂歧管孔13、23、33也同样,第1衬垫7分别将各歧管孔的周围加以密封(未图示)。
又,第1衬垫7和第2衬垫8将气体扩散层5C的周围密封。
在阳极隔离层2和阴极隔离层3的外表面上,在各种歧管孔的各孔的周围配设耐热材料构成的挤压密封圈等一般的密封构件9。借助于此,能够防止在相邻的电池单元10之间发生从各种歧管孔的连接部分泄漏还原剂气体、氧化剂气体、以及水的情况发生下面对MEA衬垫接合体1的制造方法进行说明。
首先在高分子电解质膜5A的周边部接合框体6。
图3表示图1的MEA衬垫接合体的基本结构、即框体-高分子电解质膜接合体的结构,(a)为平面图,(b)为III-III线断面的剖面图。
框体6夹着高分子电解质膜5A的周边部的两面接合于高分子电解质膜5A。也就是说,框体6形成具有中央开口部的矩形平板状的形态。而且在框体6上,贯通厚度方向分别形成一对还原剂歧管孔12、氧化剂气体歧管孔13、两对水歧管孔14、以及在框体6的角部近旁的4个螺杆孔。又,框体6上形成下述第1衬垫7成型使用的接合用贯通孔6A以及成型用贯通孔6B。在本实施形态中,框体6是外形尺寸为200mm×180mm、方形的开口部26的尺寸为124mm×124mm的矩形平板状框体。又,框体6的厚度为0.8mm。
框体6使用在高分子电介质型燃料电池的运行温度以下在化学上干净而且稳定,具有合适的弹性模量和比较高的载荷挠曲温度的材料。具体地说,隔离层2、3的还原剂气体流路21和氧化剂气体流路31的宽度为1~2mm左右,而且框体6的厚度大概为1mm以下为前提的情况下,最好是框体6的材料的压缩弹性模量至少为2000MPa以上。在这里,所谓压缩弹性模量是指利用日本工业标准JIS-K7181规定的压缩弹性模量测定方法测定的压缩弹性模量。又,高分子电解质型燃料电池的运行温度通常在90℃以下,因此框体6的挠曲载荷温度最好是120℃以上。更具体地说,在框体6使用树脂材料的情况下,从化学稳定性的观点出发,最好不采用非晶态树脂,而采用结晶树脂,其中也与机械强度大而且耐热性高的材料为理想。例如所谓超工程塑料级的材料是合适的材料。例如PPS(聚苯撑硫醚)、PEEK(聚醚醚酮)、液晶聚合物(LCP)、PEN(聚醚腈)压缩弹性模量有数千到数万MPa,挠曲载荷温度为150℃以上,是合适的材料。又,即使是通用的树脂材料,例如充填玻璃填料的聚丙烯(GFPP)等,具有未充填的聚丙烯(压缩弹性模量为1000~1500MPa左右)的数倍的弹性模量,而且具有接近150℃的挠曲载荷温度,也是合适的材料。在本实施形态中,使用作为热可塑性树脂的添加玻璃填料的PPS(大日本油墨化学工业株式会社制造的DIC-PPSFZ1140-B2)。
高分子电解质膜5A使用外形尺寸为140mm见方、厚度50微米的全氟碳磺酸膜(DUPONT Nafionl17(注册商标))。
图4是表示在图3的IV-IV线剖面图中框体-高分子电解质膜接合体的成型工序的概略情况的工序图。
框体6与高分子电解质膜5A的接合利用采用二重成型法的插入成型法进行。也就是如图4所示,首先只形成框体6的厚度方向的一半(第1成型构件6C)。这时,如图4所示,在第1成型构件6C,在开口部的周边的整个周边成型形成高度0.2mm、宽度0.5mm、间距1mm的凹坑部6E。
接着,如图4所示,覆盖着第1成型构件6C的开口部配置高分子电解质膜5A。这时,高分子电解质膜5A的周边部覆盖着凹坑部6E配置。
然后如图4所示,注塑成型形成厚度方向的另一半(第2成型构件6D)。
这时,高分子电解质膜5A的周边部利用第2成型构件6D的热量熔敷于第2成型构件6D和第1成型构件6C的树脂上,而且利用第2成型构件6D的注塑压力,使高分子电解质膜5A沿着第1成型构件6C的凹坑部变形。以此将高分子电解质膜5A接合于框体6。还有,在图4以外的附图中,为了说明方便,省略高分子电解质膜5A与框体6的接合形态。
又,在本实施形态中,在第1成型构件6C成型后将第1成型构件6C移到另一模具上进行注塑成型。但是通过使用滑动模具或旋转模具,能够用一个模具连续进行第1成型构件6C和第2成型构件6D的成型。借助于此,可以简化工序,提高MEA衬垫接合体1的批量生产效率。
接着在框体6的两个主面上接合第1衬垫7。
第1衬垫7采用在高分子电解质型燃料电池的运行温度以下,化学上稳定,特别是不发生加水分解等情况的具有高耐热水性的材料。又,最好是第1衬垫7的压缩弹性模量为200MPa以下。这样可以确保在高分子电解质型燃料电池的紧固载荷下有良好的密封性能。在本实施形态中,采用热可塑性弹性物质、具体地说,采用作为聚烯(烃)系热可塑性弹性物质的santoprene 8101-55(Advanced Elasotomer System公司制造)。
在这里,框体6最好是其压缩弹性模量为2000MPa以上,200000MPa以下,第1衬垫7其压缩弹性模量为0MPa以上,200MPa以下。根据经验,通过这样构成框体6的刚性和第1衬垫7的弹性,能够抑制氧化剂气体与还原剂气体混合、即所谓交叉泄漏现象。
在本实施形态中,采用第1衬垫7成型用的模具,在第1衬垫7的两个主面上同时注塑成型形成一对第1衬垫7。如图2所示,在成型形成第1衬垫7的部分的框体6的表面打多个接合用贯通孔6A。又打出4个成型用贯通孔6B。然后将框体6的成型用贯通孔6B作为成型时的门,通过适当调整注塑压力、注塑速度、模具温度等成型条件,充填无不足地,而且对框体6的主面的变形进行抑制地在框体6的两个主面上成型形成一对第1衬垫7。
图5是表示形成第1衬垫的,图3的框体-高分子电解质膜接合体的结构的结构图,(a)为平面图,(b)为V-V线断面的剖面图。
在框体6的两个主面上,形成热可塑性弹性物质构成的第1衬垫7与框体6接合的结构。具体地说,如图5所示,第1衬垫7流入设置于框体的框体6的接合用贯通孔6A成型。借助于此,配设于框体6的两个表面上的一对第1衬垫7在接合用贯通孔6A连接,因此第1衬垫7与框体6得以牢固连接。例如在本实施形态中,使用于第1衬垫7的弹性物质(santoprene 8101-55)的成型收缩率比较大,为20/1000,但是能够实现牢固的接合。或是也可以第1衬垫7的物质具有与框体6的材料共同的可塑成分。在这种情况下,框体6与第1衬垫7热熔敷,能够得到牢固的接合,因此也可以没有接合用贯通孔6A。
接着在高分子电解质膜5A的两主面上形成催化剂层5B和气体扩散层5C。
图6是表示在高分子电解质膜5A的两个主面上形成催化剂层5B和气体扩散层5C的,图5的框体-高分子电解质膜接合体的结构的结构图,(a)为平面图,(b)为VI-VI线断面的剖面图。
在本实施形态中,首先如下所述形成催化剂层5B。
使灶黑EC(KETJENBLACK INTERNATIONAL公司制造的炉黑,比表面积800m2/g,DBP吸油量360ml/100g)以重量比1∶1的比例承载白金。接着在10g的该催化剂粉末中混合35g水和氢离子导电性高分子电解质的乙醇分散液(旭硝子株式会社制造的9%FSS)59g,用超声波搅拌机使其分散制作,制作催化剂层墨液。然后将该催化剂层墨液用喷射方法在高分子电解质膜5A的两个主面上喷涂20微米的厚度,然后在115℃的温度下进行20分钟的热处理,形成催化剂层5B。还有,在喷射涂布时,在高分子电解质膜5A上覆盖具有120mm×120mm的开口部的掩模,然后进行喷射涂布。
接着,接合于催化剂层5B形成气体扩散层5C。气体扩散层5C利用具有许多孔的多孔质体构成。借助于此,气体能够侵入孔中,因此气体容易扩散,达到催化剂层5B。在本实施形态中,将123mm见方的碳纤维布(JAPAN GORE-TEX株式会社制造的Carbel CL400、厚度400微米)覆盖于涂布催化剂层5B的高分子电解质膜5A上。然后将该碳纤维布在压力0.5MPa、135度、5分钟的条件下热压,以使其接合于高分子电解质膜5A的两个主面的催化剂层5B上,形成气体扩散层5C。
接着,在气体扩散层5C与框体6之间的高分子电解质膜5A的两个主面上接合第2衬垫8。
图7是表示第2衬垫与接合第2衬垫的MEA衬垫接合体的结构的平面图。
第2衬垫8使用具有与第1衬垫7共同的可塑成分的热可塑性树脂或热可塑性弹性物质。又可以使用包含与第1衬垫7同种热可塑性弹性物质的热可塑性树脂。具体地说,在第1衬垫7使用聚烯(烃)系热可塑性弹性物质的情况下,第2衬垫8可以使用包含聚乙烯的热可塑性树脂。因此,第2衬垫8与第1衬垫7具有共通的可塑成分,因此能够使双方熔敷。
在本实施形态中,第2衬垫8使用与第1衬垫7同种的热可塑性弹性物质、即santoprene 8101-55(Advanced Elasotomer System公司制造)。
然后,第2衬垫8形成为与第1衬垫7和气体扩散层5C之间的环状间隙相应的形状。在本实施形态中,将santoprene 8101-55的挤压成型片(厚度0.32mm)冲孔形成。第2衬垫8的形状是中央部具有123.5mm见方的开口部的环状形状。也就是说,123mm见方的气体扩散层5C的外缘部与第2衬垫8的内缘部形成约0.25mm宽度的内侧间隙41。而且第2衬垫8的外缘部形成在第1衬垫7的内周部空出约0.5mm宽度的外侧间隙40的形状。
然后,在第1衬垫7和气体扩散层5C之间的高分子电解质膜5A的两个主面上配置,第1衬垫7的内缘与第2衬垫8的外缘、以及第2衬垫8的内缘与气体扩散层5C的外缘至少部分接合,也就是环状的外侧间隙是40以及内侧间隙41分别部分封闭,制作MEA衬垫接合体MEA1。在本实施形态中,第2衬垫8的外缘部通过与第1衬垫7的内缘部热熔敷,形成外侧接合部11A。又,气体扩散层5C由于是具有微孔的多孔质体,因此第2衬垫8的内缘部熔入气体扩散层5C的外缘部的孔中。借助于此,形成内侧接合部11B。具体地说,用钎焊烙铁使第2衬垫8和第1衬垫7熔化。还有,第2衬垫8的熔化工序可以利用焊接机等自动设备进行。借助于此,使外侧间隙40在外侧接合部11A封闭,内侧间隙41在内侧接合部11B封闭。
如上所述进行,第1衬垫7的内缘与第2衬垫8的外缘、以及第2衬垫8的内缘与扩散层5C的外缘至少部分接触,因此在电池单元10处于组装状态时,迂回通过还原剂气体流路21,沿着第2衬垫8的周围、即沿着在气体扩散层5C的外围形成的外侧间隙40或内侧间隙41,从一对还原剂气体歧管22、22之间通过的还原剂气体的气流可以切断。同样进行,迂回通过氧化剂气体流路31,沿着第2衬垫8的周围、即沿着在气体扩散层5C的外围形成的外侧间隙40或内侧间隙41,从一对氧化剂歧管33、33之间通过的氧化剂气体的气流也可以切断。利用这些手段,可以进一步抑制高分子电解质型燃料电池的氧化剂气体或还原剂气体的利用效率下降,可以进一步抑制高分子电解质型燃料电池的气体利用效率的下降。
又,气体扩散层5C与第1衬垫7之间的环状间隙在MEA衬垫接合体1的厚度方向上变形,换句话说,形成立体结构,因此其封闭是不容易的。但是,通过配设第2衬垫8,在电池单元10处于组装状态时在气体扩散层5C的外缘与第1衬垫(环状衬垫)7的内缘之间形成的环状间隙被第2衬垫(环状构件)8缩小,因此氧化剂气体或还原剂气体向气体扩散层5C外围的泄漏得到抑制,能够进一步抑制高分子电解质型燃料电池的气体利用效率的下降。又,第2衬垫8将气体扩散层5C的外缘与第1衬垫7的内缘的周围形成的环状间隙分割为两个同一平面上的环状间隙40、41,因此在该分割的环状间隙40、41中,能够容易地将第2衬垫8的外缘与第1衬垫7的内缘、以及第2衬垫8的内缘与气体扩散层5C的外缘部分接合。也就是说,平面的而且是狭窄的外侧间隙40以及内侧间隙41借助于第2衬垫的熔化等能够容易地实现部分接合。
而且,第1衬垫7的内缘与第2衬垫8的外缘、以及第2衬垫8的内缘与气体扩散层5C的外缘分别利用熔敷可靠地焊接,因此能够更可靠地得到本发明的效果。
下面对本实施形态的高分子电解质型燃料电池运行时的作用进行说明。
图8是与图17相同的断面的断面放大表示的立体图。如图8所示,提供给高分子电解质型燃料电池的还原剂气体通过一方的还原剂歧管流通,从阳极隔离层2的还原剂歧管孔22向还原剂气体流路21分流,曝露于MEA5,在还原剂气体歧管孔22向另一还原剂气体歧管排出,通过还原剂歧管流动,从高分子电解质型燃料电池排出。对于氧化剂气体,也通过一方的氧化剂气体歧管流动,同样从另一氧化剂气体歧管排出。
而且,在这一过程中,MEA衬垫接合体1由于框体6具有刚性,所以在从还原剂歧管孔22到还原剂气体流路21的分歧部,也由于框体6产生的按压力,将第1衬垫7向阴极隔离层3按压。这样能够抑制还原剂气体侵入阴极隔离层3与MEA衬垫接合体1之间、或阴极隔离层3与MEA衬垫接合体1之间形成的氧化剂气体流路31通过的氧化剂气体向该分歧部漏出,也就是能够抑制氧化剂气体与还原剂气体的混合、即所谓交叉泄漏现象的发生可能性。又,对于通向阴极隔离层3与MEA衬垫接合体1之间形成的还原剂气体流路21的分叉部也相同。也就是说,阳极隔离层2与MEA衬垫接合体1之间的密封性能得到维持,因此氧化剂气体侵入或还原剂气体泄露出阳极隔离层2与MEA衬垫接合体1之间的可能性得以抑制,发生氧化剂气体与还原剂气体的交叉泄漏现象的可能性得以抑制。
下面对使用本实施形态的高分子电解质型燃料电池的实施例进行说明。
实施例1用实施形态1的高分子电解质型燃料电池进行以下的性能试验。
1.交叉泄漏耐压试验将实施形态1的高分子电解质型燃料电池的氧化剂气体歧管的开口封闭,用干燥氮气将还原剂气体歧管加压到0~200KPa,测定向氧化剂气体歧管漏出的干燥氮气的流量。
该结果表明,即使是将还原剂气体歧管加压到200KPa,也没有检测出干燥氮气向氧化剂气体歧管泄漏。
2.阳极压力损失试验使3~20NL的干燥氮气流入实施形态1的高分子电解质型燃料电池的还原剂气体歧管,测定压力损失。
又,作为比较例1采用结构与实施形态1相同的,MEA衬垫接合体1采用以往的结构的MEA衬垫接合体的高分子电解质燃料电池。也就是说,使用以弹性体,在这里,是以氟橡胶构成的衬垫60,代替框架6,一对衬垫60夹着高分子电解质膜5A的周边部两面,与高分子电解质膜5A接合构成的MEA衬垫接合体(参照图16)。
作为比较例2,采用比较例1的高分子电解质型燃料电池,而且是与高分子电解质膜5A的周边部接合的衬垫的内缘与气体扩散层5C之间形成的环状间隙用含氟润滑脂(大金工业株式会社制造的DEMNUM L200)封闭的高分子电解质型燃料电池。通过涂布这种含氟润滑脂,切断氧化剂气体和还原剂气体的交叉泄漏的泄漏路径,同时也切断氧化剂气体和还原剂气体的迂回流路,因此能够谋求提高氧化剂气体和还原剂气体的利用效率。但是,含氟润滑脂会熔化,因此这种效果不能够持续到高分子电解质型燃料电池的使用年限。
对于比较例1和比较例2的高分子电解质型燃料电池也用同样手段测定压力损失。
图9表示压力损失试验结果。如图9所示,实施例1的压力损失ΔP与比较例1相比高2成左右。又,实施例1与比较例2显示出大致相同的压力损失ΔP。这表示提供给还原剂歧管的气体的流出、即从还原剂气体歧管孔12、22、32以及还原剂气体流路21来,向氧化剂气体一侧或外部泄漏的情况在实施例1中受到抑制。
3.燃料利用率试验一边使还原剂气体利用率从50%变到95%一边使实施形态1的高分子电解质型燃料电池运行,测定作为每一电池单元的平均电压的平均电池单元电压V。运行条件是,氧化剂气体采用加湿到露点65℃的加湿空气,提供给高分子电解质型燃料电池,使空气利用率为40%。还原剂气体采用摩尔比调整为氢∶二氧化碳=4∶1,加湿到露点65℃的模拟重整气体,将其对高分子电解质型燃料电池提供,使还原剂气体利用率R为50%~95%。高分子电解质型燃料电池的温度借助于通过水歧管的水调整为65℃。又,以电流密度0.2A/cm2运行。
对于比较例1也以同样方法进行燃料利用率试验。
图10表示还原剂气体利用率试验结果。如图10所示,比较例1在还原剂利用率R高的领域平均电池单元电压V下降。这可推断为是由于随着使还原剂气体利用率提高,还原剂气体的流量减小,还原剂气体流路21内的压力损失下降,因此在还原剂气体流路21内还原剂气体推动结露的水分流动有困难,引起所谓溢流。与其相比,实施例1中,还原剂气体利用率R即使达到95%左右,平均电池单元电压V也不下降,能够维持稳定的输出。这被推断为,实施例1与比较例1相比,还原剂气体的泄漏以及还原剂气体的利用效率的下降受到抑制,因此在还原剂气体流路21中也能够确保比比较例1高的压力损失所以溢流现象得到抑制。
实施形态2实施形态2的高分子电解质型燃料电池除了MEA衬垫接合体1的框体的材料、MEA衬垫接合体1、阳极隔离层2及阴极隔离层3的主面的形状和各种歧管孔的配置位置外,与实施形态1的高分子电解质型燃料电池相同。因此在实施形态2中,只说明与实施形态1不同的部分。
图11是表示实施形态2的MEA衬垫接合体1的结构的(阳极隔离层一侧的)平面图。
框体6的材料采用添加玻璃纤维填料的聚丙烯(出光石油化学株式会社R350G)。而第1衬垫7与实施形态1一样采用作为热可塑性弹性物质的santoprene 8101-55(Advanced Elasotomer System公司制造)。这样,由于第1衬垫7与框体6都将聚丙烯作为可塑成分共有,因此在第1衬垫7成型时,第1衬垫7与框架6熔敷形成一体(通常称为二色成型)能够得到接合结构。从而,在实施形态2中,不需要实施形态1的接合用贯通孔6A(参照图3),框体6成型时没有形成接合用贯通孔6A(未图示)。
又,框体6具有长方形的主面,主面周边部上形成的还原剂歧管孔12、氧化剂歧管孔13以及水歧管孔14各一对形成于框体6主面长度方向的两旁。
而且与MEA衬垫接合体1的形状对应,形成阳极隔离层2和阴极隔离层3,形成各种歧管孔(未图示)。
使用实施形态2的高分子电解质型燃料电池,与实施例1一样进行性能试验,与实施例1相同,得到比比较例1优异的试验结果。可知在实施形态2中,也与实施形态1一样,高分子电解质型燃料电池的性能得到提高。
实施形态3实施形态3的高分子电解质型燃料电池,除了隔离层2、3的材料是金属这一点外,与实施形态2的高分子电解质型燃料电池一样。因此在实施形态3中,只说明与实施形态2不同的部分。
图12是表示实施形态3的阳极隔离层的结构的(MEA衬垫接合体一侧的)平面图。又,图13是表示实施形态3的阴极隔离层的结构的(MEA衬垫接合体一侧的)平面图。
这些隔离层2、3是将SUS复合材料(住友金属工业株式会社试制产品)冲压加工成型制成的。如这些附图所示,在隔离层2、3利用冲压加工方法形成还原剂气体流路21和氧化剂气体流路31。
图14是表示图11、图12、图13的XIV-XIV线断面的,电池单元10的迭层结构的剖面图。如图14所示,电池单元10是隔离层2、3夹着MEA衬垫接合体1构成的。
采用实施形态3的高分子电解质型燃料电池与实施例1一样进行性能试验,与实施例1相同,得到比比较例1优异的试验结果。可知在实施形态3中,也与实施形态1一样,高分子电解质型燃料电池的性能得到提高。
如实施形态1~实施形态3所示,本发明的MEA衬垫接合体1具有在作为刚性体的框架6的表面配设具有密封功能的第1衬垫7的结构,因此,MEA衬垫接合体1本身不容易变形,能够抑制从歧管孔12、13周围泄漏气体、即所谓交叉泄漏现象的发生。
又,配设于框体6表面的第1衬垫7的内缘与气体扩散层5C的外缘之间的环状间隙由于第2衬垫8而减小,因此还原剂气体和氧化剂气体向气体扩散层5C内部、还原剂气体流路21、以及氧化剂气体流路31的泄漏得到抑制。
而且,由于第1衬垫7的内缘与第2衬垫8的外缘、以及第2衬垫8的内缘与气体扩散层5C的外缘至少部分接合,因此迂回还原剂气体流路21和氧化剂气体流路31,沿着第2衬垫8的周围、即沿着气体扩散层5C外围形成的外侧间隙40或内侧间隙41,流过一对还原剂气体歧管22、22之间的还原剂气体的流动以及流过一对氧化剂气体歧管33、33之间的氧化剂气体的流动被切断,进一步抑制了氧化剂气体和还原剂气体的利用效率。根据以上所述,本实施形态的发明能够抑制交叉泄漏现象,提高还原剂气体和氧化剂气体的利用效率,以此能够改善高分子电解质型燃料电池的性能。
实施形态4实施形态4的高分子电解质型燃料电池除了在MEA衬垫接合体1中省略第2衬垫和框体6的材料不同这两点以外,其他与实施形态1的高分子电解质型燃料电池相同。因此对于实施形态4只说明其不同于实施形态1、2的不同部分。
图15是表示实施形态4的MEA衬垫接合体的结构,(a)为平面图(阴极隔离层一侧),(b)为XV-XV线断面的剖面图。框体6的材料采用添加玻璃纤维填料的聚丙烯(出光石油化学株式会社R350G)。而第1衬垫7与实施形态1一样采用作为热可塑性弹性物质的santoprene 8101-55(Advanced Elasotomer System公司制造)。这样,由于第1衬垫7与框体6都将聚丙烯作为可塑成分共有,因此在第1衬垫7成型时,第1衬垫7与框架6熔敷形成一体(通常称为二色成型)能够得到接合结构。从而,与实施形态2一样,在实施形态4中,不需要实施形态1的接合用贯通孔6A(参照图3),框体6成型时没有形成接合用贯通孔6A(未图示)。
又,形成第1衬垫7的内缘,使其在气体扩散层5C的外缘的整个一周上与其接触。这样,气体扩散层外围侧间隙被完全封闭,因此能够抑制还原剂气体和氧化剂气体从气体扩散层5C外缘向其外围泄漏,因此利用比实施形态1~3更简单的结构能够进一步抑制还原剂气体和氧化剂气体的利用效率的下降。
而且第1衬垫7的内缘在气体扩散层5C的整个一周上熔入气体扩散层5C的外缘部形成接合部11。借助于此,第1衬垫7的内缘在气体扩散层5C的整个一周上与气体扩散层5C的外缘部接合,因此能够更可靠地抑制还原剂气体和氧化剂气体从气体扩散层5C的外缘漏出。
还有,在这里,是在气体扩散层5C的整个一周上接合第1衬垫7,但是也可以第1衬垫7的内缘至少部分与气体扩散层5C接触,形成熔入其外缘的结构。这样能够与实施形态1和2一样抑制高分子电解质型燃料电池的氧化剂气体或还原剂气体的利用效率的下降。如上所述进行,在实施形态4中,与实施形态1一样,不需要对隔离层进行复杂的加工,也不需要追加第2衬垫8、即不需要增加零部件,就能够抑制还原剂气体或氧化剂气体侵入隔离层2、3与MEA衬垫接合体1的接合面之间,或发生交叉泄漏现象的可能性。又,形成于第1衬垫7的内缘和气体扩散层5C的外缘之间的环状间隙由于至少部分封闭,能够利用简便的结构抑制气体扩散层5C的外围的还原剂气体和氧化剂气体的流动。
在这里,在实施形态4中,在形成气体扩散层5C后形成第1衬垫7并使其与气体扩散层5C接触的制造工序中有其特征。通常,在气体扩散层5C形成后,形成第1衬垫7,使其与气体扩散层5C接触这样的方法在所谓本行业的普通技术人员中被认为是困难的。也就是说,由于第1衬垫7进行成型工作时使用的模具与气体扩散层5C接触,扩散层5C的损伤不可避免这一点、在框体6的内缘与气体扩散层5C的外缘之间的环状间隙中露出的高分子电解质膜在进行第1衬垫7的成型工作时发生破损这一点、以及成型时的通风、所谓排气变得不充分,在第1衬垫7的内缘与气体扩散层5C的外缘之间残留间隙这一点至少被认为是存在问题。本发明者着眼于气体扩散层5C具有多孔性结构,MEA5对厚度方向来的压缩力具有某种程度的复原力这一点以及如果利用气体扩散层5C的通气性,就能够充分排气这一点,锐意进行研究实现了本发明。下面对实施形态4的MEA衬垫接合体1的制造方法进行说明。
首先,在高分子电解质膜5A的中央部形成催化剂层5B,再形成气体扩散层5C,制作MEA5。在这里,采用日本戈尔特斯株式会社制造的「PRIMEA」(注册商标),也就是说,气体扩散层5C以碳布为基体的厚度400微米、MEA5的厚度为约850微米的材料。而且,形成框体6,使其与MEA5的周边部的高分子电解质膜5A接合。在这里,将MEA5的外缘部的高分子电解质膜1A切为规定形状后,利用添加玻璃纤维填料的聚丙烯(出光石油化学株式会社制造的R350G)在MEA5的外缘部形成框体6。接着,在框体6的内缘与气体扩散层5C之间的环状间隙上形成第1衬垫7。作为第1衬垫7,与实施形态1一样,用santoprene 8101-55(Advanced Elasotomer System公司制造),利用注塑成型方法形成。
在这里,本发明人对在环状间隙中露出的高分子电解质膜1A的注塑成型作业时的压力造成破损的机制进行锐意研究,根据结果推断来自高分子电解质膜1A的一个面的成型压力比另一面大的状况是破损发生的原因。而且发现,通过使高分子电解质膜1A的表面和背面在注塑成型时的射出物体的流动速度一致,能够防止损伤发生。具体地说,第1衬垫7注塑成型时使用的模具采用射出物容易脱离的模具结构。也就是说,利用一般的模具加工技术,形成第1衬垫7的框架6一侧、即外围侧被充填后,射出物体能够向高分子电解质膜5A、即内周侧流入的模具结构。
又,在该模具上,在与气体扩散层5C的中央部相对的位置上设置排气孔(通风孔)。借助于此,在进行成型时由于射出物体的侵入而被推出的模具内的气体通过多孔性的气体扩散层5C从通气孔向外部排出,因此射出物体能够一直推进到气体扩散层5C的外缘部。
而且,该模具形成为在气体扩散层5C的外缘部的整个一周的2mm左右的宽度上约100微米左右的厚度被压碎。借助于此,阻碍射出物体在气体扩散层5C外缘部侵入气体扩散层5C中央部,而且在气体扩散层5C外缘部的整个一周上形成接合部11。气体扩散层5C由于具有多孔质结构,在成型结束后会使厚度有某种程度上的恢复,而且在电池单元处于组装状态时形成被隔离层2、3压碎的状态,因此在该注塑成型时气体扩散层5C的按压不会招致燃料电池性能下降。根据以上所述,在框体6的两个主面上与实施例1一样接合第1衬垫7。而且第1衬垫7的内缘热熔融于气体扩散层5C的外缘,熔入气体扩散层5C的外缘。
使用实施形态4的高分子电解质型燃料电池,与实施例1一样进行性能试验时,得到与实施例1相同,比比较例1优异的试验结果。可知在实施形态4中,也与实施形态1一样,高分子电解质型燃料电池的性能得到提高。
根据上面说明中,本行业的普通技术人员能够了解本发明的许多改良和其他实施形态。从而,上述说明只应该作为例示解释,是为执行本发明而将最佳实施形态向本行业的普通技术人员示教而提供的。在不脱离本发明的精神的情况下,能够在实质上对其结构以及/或功能进行变更。
工业应用性本发明的MEA衬垫接合体以及高分子电解质型燃料电池作为既能够抑制隔离层的加工的复杂化和零部件的增加,又能够利用简便的结构抑制从分歧孔到隔离层内表面的流路的分歧部的氧化剂气体和还原剂气体的交叉泄漏和衬垫以及气体扩散层外围的还原剂气体和氧化剂气体的流动的MEA衬垫接合体以及使用该接合体的高分子电解质型燃料电池是有用的。
权利要求
1.一种MEA衬垫接合体,其特征在于,具备由高分子电解质膜、催化剂层、以及气体扩散层形成的MEA、包围着所述MEA地接合于所述MEA的周边部的高分子电解质膜,而且形成多个流体歧管孔的板状的框体、以及形成于所述框体的两个面上的弹性体构成的环状衬垫,形成于所述环状衬垫的内缘与所述气体扩散层的外缘之间的环状间隙至少部分封闭。
2.根据权利要求1所述的MEA衬垫接合体,其特征在于,所述环状衬垫的内缘与所述气体扩散层的外缘至少部分接触,所述环状间隙至少部分封闭。
3.根据权利要求1所述的MEA衬垫接合体,其特征在于,所述MEA衬垫接合体具备配置于所述环状衬垫与所述气体扩散层之间的弹性体构成的环状构件,该环状构件的外缘至少部分与所述环状衬垫的内缘接触,而且该环状构件的内缘至少部分与所述气体扩散层的外缘接触,所述环状间隙至少部分封闭。
4.根据权利要求2所述的MEA衬垫接合体,其特征在于,所述环状衬垫的内缘被加热熔化,熔入所述气体扩散层的外缘。
5.根据权利要求3所述的MEA衬垫接合体,其特征在于,所述环状构件的内缘被加热熔化,熔入所述气体扩散层的外缘,而且所述环状构件的外缘与所述环状衬垫的内缘部分热熔敷。
6.根据权利要求1~5中的任一项所述的MEA衬垫接合体,其特征在于,所述框体由热可塑性树脂构成,所述环状衬垫由热可塑性弹性物质构成,所述框体与所述环状衬垫具有共同的可塑成分,所述环状衬垫分别热熔敷于所述框体的两个面上。
7.根据权利要求1~6中的任一项所述的MEA衬垫接合体,其特征在于,所述框体,其压缩弹性模量为2000MPa以上,200000MPa以下,所述环状衬垫,其压缩弹性模量大于0MPa,在200MPa以下。
8.一种高分子电解质型燃料电池,其特征在于,迭层一个以上的,具有权利要求1~7中的任一项所述的MEA衬垫接合体、以及夹着该MEA衬垫接合体配设的阳极隔离层及阴极隔离层的电池单元形成,所述阳极隔离层及阴极隔离层分别在与所述MEA衬垫接合体的各流体孔对应的位置上设置流体歧管孔,而且在阳极隔离层和阴极隔离层的内表面上形成流体流路槽,使其连结至少一对所述流体歧管孔。
全文摘要
本发明的MEA衬垫接合体(1)具备高分子电解质膜(5A)、催化剂层以及气体扩散层(5C)形成的MEA(5)、包围着MEA(5)地接合于MEA(5)的周边部的高分子电解质膜(5A),而且形成多个流体歧管孔(12、13、14)的板状的框体(6)、以及形成于框体(6)的两个面上的环状衬垫(7),形成于环状衬垫(7)的内缘与气体扩散层(5C)的外缘之间的环状间隙至少部分封闭。
文档编号H01M8/10GK1977412SQ20058002203
公开日2007年6月6日 申请日期2005年10月6日 优先权日2004年10月8日
发明者小林晋, 关安宏 申请人:松下电器产业株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1