在半导体硅基底上催化生长ZnO纳米线的方法

文档序号:6892865阅读:263来源:国知局
专利名称:在半导体硅基底上催化生长ZnO纳米线的方法
技术领域
本发明涉及一种在半导体硅基底上利用过渡金属的独特催化作用和高分子网络络合效应 来促进ZnO纳米线自组装生长的催化生长方法。属半导体光电纳米材料制备工艺技术领域。
背景技术
氧化锌(ZnO)是重要的II-VI族直接跃迁的宽禁带氧化物半导体材料,室温下禁带宽度& 为3.37 eV,激子束缚能可达60 meV,比同类其它的半导体材料(如GaN: 21 meV, ZnSe: 20 meV) 要高很多,是室温热离化能(26meV)的2.3倍,是新型的第三代光电半导体材料的典型代表, 其优异的光电特性,使其作为短波长发光器件,在紫外和蓝紫波段发光二极管(LEDs)、激光 发射器(LDs)、紫外光探测器、光信息存储、光通信以及高性能光电显示器件等光电领域具有 很大应用潜力,是当前人们在微电子领域最感兴趣、研究最为活跃的领域之一。
特别是ZnO纳米线,作为典型的一维纳米材料,由于其结构上的独特性——径向尺寸纳 米量级而轴向尺寸微米量级,就像宏观中的导线一般,所以当利用其量子尺寸效应时,使得 被传输的微观粒子(电子或光激子等)限制在一个方向上传输,因此这对于纳米器件的功能和 同一性非常重要。 一维纳米材料是发光二极管、激光器、传感器以及介质存储器中尤其有用 的结构。这些准一维纳米材料是理想的研究电子输运、光学和力学性质的尺寸和维度依赖关 系的体系,同时也将作为纳米连接和功能组元在纳米电子、光电器件中发挥核心作用。它们 具有极高的力学韧性、更高的发光效率、增强的热电性能、更灵敏的气敏性质、更卓越的场 发射性能、低的激光发射阈值等。利用准一维半导体材料来组建电子器件,不但有可能突破 目前在电路小型化上碰到的困难,而且由于纳米线本身的优良特性,其构建的纳米器件也将 可能具有更好的性能。
相比于ZnO零维和二维纳米材料, 一维纳米线的发展比较晚,这是由于一维纳米材料特 殊的结构使得其制备工艺复杂,进展缓慢。目前,ZnO纳米线的制备方法大致有气相法、液 相法、模板法以及自组装法。气相法是人们应用最为普遍、工艺最成熟的制备方法,但是高 昂的成本和较严格的制备条件制约了其大规模的应用与发展。液相法反应条件相对温和,设 备简单,但产物的组分较复杂、形貌(如纳米线长度和径向尺寸等)易受溶液环境(如pH值、 浓度、温度)的影响。模板法和自组装法是随后发展起来的工艺,由于模板和自组装分子的网 络孔道作用,对纳米线生长方向和尺寸可进行调节,所制得的纳米线形貌较好;但模板法中 使用较多的是无机氧化物(如多孔氧化铝模板),模板的除去等后处理困难,会存留一定的杂质。

发明内容
本发明的目的是提供一种在半导体硅(Si)基底上利用过渡金属的催化作用和高分子网络 络合效应来促进ZnO纳米线自组装生长的催化生长方法。
本发明采用化学镀镍(Ni)工艺和高分子自组装生长相结合的工艺方法。通过一定的工艺 条件,并适当控制反应条件,在硅基底上得到形貌和性能良好的ZnO纳米线薄膜。
本发明是一种在半导体硅基底上催化生长ZnO纳米线的方法,其特征在于具有以下的工 艺过程和步骤
a、 半导体硅基底单晶硅片的准备按传统常规的方法将作为半导体硅基底的单晶硅片进 行酸洗、水洗、磨光,洗涤干净干燥后待用;
b、 硅基底的化学镀镍预处理将摩尔比为1:1的化学镀镍盐和络合剂混合配成络合稳定 的镀液,并调节pH值在9.0 11.0范围内;所述的化学镀镍盐为硫酸镍、硝酸镍、氯化镍中 的任一种;所述的络合剂为柠檬酸钠;在反应容器内将混合溶液进行加热,加热温度选60 90°C,恒温保持30 50分钟;并在不断搅拌条件下以5.0 mL/min的速率滴加浓度为0.4 0.8 mol/L的还原剂亚磷酸氢钠,其加入量为化学镀镍盐的4倍,即两者的摩尔质量比为4:1;然 后迅速放入事先准备好的单晶硅片;在反应过程中缓慢滴加入加速剂乙酸钠溶液,并适时补 充OH",以提高镀速;然后取出巳镀覆的硅片,经浸洗后室温放置;
c、 ZnO纳米线的生长将一定浓度的可溶性锌盐与高分子聚丙烯酰胺亚浓水溶液混合, 调节该混合溶液的pH值至U.0 12.0;然后将经化学镀镍预处理的硅基底单晶硅片投入该混 合液中,在常压加热条件下使其反应,加热温度范围为60 100。C,常压下反应时间为2 6小 时;取出硅片,在150。C温度下热处理0.5 2.0小时,然后室温固化;最终得到生长有白色 ZnO纳米线薄膜的硅片。
本发明方法的理论依据和机理
1、硅基底上的化学镀Ni的机理和作用
硅基底上的化学镀Ni的作用是通过所镀的Ni颗粒层来增强ZnO纳米线薄膜与Si基底 的结合力,使之在Si片上固定生长;另外,可实现Ni对ZnO纳米线生长的催化作用,使线 性生长的ZnO纳米线的长度达数微米甚至十几微米;此外,还具有使生长的ZnO纳米线均 匀分布的作用,因ZnO纳米线就在化学镀镍均匀光洁表面的催化剂上生长;再者,还具有限 制径向尺寸的作用,因化学镀镍颗粒尺度在纳米量级,这样作为ZnO纳米线的生长晶种,可以将纳米线初期形成和生长的径向尺寸控制在纳米范围内。 2、 ZnO纳米线在溶液中的自组装络合生长
利用高分子溶液在亚浓度时所特有的纳米孔洞的网络特性,在Si基底上络合形成高分子 溶液网络层;而后Zr^+在生长晶种上不断沉积生长,同时利用高分子链上的活性极性基团 -NH2与沉积的Zr^+进行络合,将沉积的Zi^+稳定地络合于纳米孔洞中;而纳米孔洞在纳米线 生长阶段起到了限制线径尺寸的作用,最终形成了高分子纳米网络络合生长的ZnO纳米线。 本发明的特点和优点
本发明采用化学镀与高分子网络络合相结合的新型高分子自组装法,在半导体Si基底上 制备了ZnO纳米线,采用了与现有技术(如气相法、液相法等)不同的原理与技术,因而本发 明具有如下的特点和优点
(1) 、 一般的溶液法制备的产物以纳米棒或是纳米颗粒居多,直径几百纳米至几微米不等,纳 米棒长度也在几个微米之间(长度很少超过5 pm),长径比<10;而本发明所制备的ZnO纳米 线在基底Si片上分布较为均匀而浓密,径向尺寸在50nm左右,长度至少数微米至十几微米, 长径比更是远远大于10;
(2) 、制备生长工艺路线简易,操作简单,生长温度低,设备成本低;
(3) 、化学镀Ni层的出现,在催化纳米线生长的同时,作为Si/ZnO的过渡缓冲层,降低了Si 和ZnO直接接触所造成的晶格失配度;而且将ZnO纳米线集成在半导体Si基底上,与Si基 底结合牢靠,便于实现集成化和规模化的生产。


图1为本发明所得ZnO纳米线在Si基底上的FE-SEM图(经化学镀Ni)。
图2为ZnO颗粒样品的FE-SEM图(未经化学镀Ni)。
具体实施例方式
现将本发明的具体实施例叙述于后。 实施例1
本实施例的具体制备步骤如下
(1) 、半导体硅基底单晶硅片的准备按传统常规的方法将作为半导体硅基底的单晶硅片 进行酸洗、水洗、磨光,洗涤干净干燥后待用;
(2) 、 Si基底的化学镀Ni预处理将摩尔浓度均为0.1mol/L的硫酸镍(NiSO4)和柠檬酸钠 (Na3C6Hs07)以等体积比配成络合稳定的镀液,调节pH值在9.0;加热至60°C,恒温保持分钟,在搅拌条件下以5.0 mL/min的速率滴加0.4 mol/L的还原剂亚磷酸氢钠(NaH2P02),加 入量为化学镀主盐NiS04的4倍(以摩尔质量计)。然后迅速放入单晶Si片,在反应中逐滴加 入浓度为0.2 mol/L乙酸钠(CH3COONa)溶液,适时补充OH—,以提高镀速。最后取出已镀覆 Si片,浸洗后室温放置;
(3)、 ZnO纳米线的生长将O.l mol/L醋酸锌Zn(CH3COO)2与己配好的高分子聚丙烯酰 胺(PAM)亚浓溶液(0.45 wt。/。)按体积配比为1:1混合,调节pH值至11.0;而后将经化学镀Ni 预处理的Si基底投入混合液中,体系温度为90。C,常压反应2小时;取出Si片,在150。C 下热处理0.5小时,最后室温固化,得到生长有白色薄膜状ZnO纳米线的硅片。 实施例2
本实施例的具体制备步骤如下
(1) 、半导体硅基底单晶硅片的准备按传统常规的方法将作为半导体硅基底的单晶硅片 进行酸洗、水洗、磨光,洗涤干净干燥后待用;
(2) 、 Si基底的化学镀Ni预处理将摩尔浓度均为0.1 mol/L的硫酸镍(NiS04)和拧檬酸钠 (1^3<:611507)以等体积比配成络合稳定的镀液,调节pH值在11.0;加热至80°C,恒温保持50 分钟,在搅拌条件下以5.0 mL/min的速率滴加0.8 mol/L的还原剂亚磷酸氢钠(NaH2P02),加 入量为化学镀主盐NiS04的4倍(以摩尔质量计)。然后迅速放入单晶Si片,在反应中逐滴加 入浓度为0.2mol/L乙酸钠(CH3COONa)溶液,适时补充OBT,以提高镀速。最后取出已镀覆 Si片,浸洗后室温放置;
(3) 、 ZnO纳米线的生长将0.1 mol/L醋酸锌Zn(CH3COO)2与已配好的高分子聚丙烯酰 胺(PAM)亚浓溶液(1.0wtQ/。)按体积配比为1:1混合,调节pH值至12.0;而后将经化学镀预处 理的Si基底投入混合液中,体系温度为60°C,常压反应6小时;取出Si片,在150°C下热 处理2小时,最后室温固化,得到生长有白色薄膜状ZnO纳米线的硅片。 实施例所得样品的检测
通过场发射扫描电子显微镜(FE-SEM), X射线能谱仪(EDS)等对本发明实施例一进行形 貌结构表征,结果表明ZnO纳米线在Si基底上分布较为均匀而致密,直径在40nm左右, 长度至少达到数微米甚至十几微米,长径比远大于10;样品中Zn、 O元素的化学计量比接近 1:1。
通过场发射扫描电子显微镜(FE-SEM), X射线能谱仪(EDS)等对本发明实施例二进行形 貌结构表征,结果表明ZnO纳米线在Si基底上分布较为均匀而致密,直径在40 100nm左右,长度至少达到数微米至十微米左右,长径比大于10;样品中Zn、 O元素的化学计量比接 近1:1。
本发明所得具有ZnO纳米线的Si基底与未经化学镀Ni的具有ZnO颗粒的Si基底两者 形貌的比较
参见图l和图2。图1为本发明所得ZnO纳米线在Si基底上的FE-SEM图(经化学镀Ni); 图2为ZnO颗粒样品的FE-SEM图(未经化学铍Ni)。
从图1和图2可看出,两者的形貌完全不相同。本发明Si基底上的ZnO晶态为线性的 纳米线,而ZnO颗粒样品的晶态为不规则花生或腰果形。
权利要求
1. 一种在半导体硅基底上催化生长ZnO纳米线的方法,其特征在于具有以下的工艺过程和步骤a、半导体硅基底单晶硅片的准备按传统常规的方法将作为半导体硅基底的单晶硅片进行酸洗、水洗、磨光,洗涤干净干燥后待用;b、硅基底的化学镀镍预处理将摩尔比为1∶1的化学镀镍盐和络合剂混合配成络合稳定的镀液,并调节pH值在9.0~11.0范围内;所述的化学镀镍盐为硫酸镍、硝酸镍、氯化镍中的任一种;所述的络合剂为柠檬酸钠;在反应容器内将混合溶液进行加热,加热温度选60~90℃,恒温保持30~50分钟;并在不断搅拌条件下以5.0mL/min的速率滴加浓度为0.4~0.8mol/L的还原剂亚磷酸氢钠,其加入量为化学镀镍盐的4倍,即两者的摩尔质量比为4∶1;然后迅速放入事先准备好的单晶硅片;在反应过程中缓慢滴加入加速剂乙酸钠溶液,并适时补充OH-,以提高镀速;然后取出已镀覆的硅片,经浸洗后室温放置;c、ZnO纳米线的生长将一定浓度的可溶性锌盐与高分子聚丙烯酰胺亚浓水溶液混合,调节该混合液的pH值至11.0~12.0;然后将经化学镀镍预处理的硅基底单晶硅片投入该混合液中,在常压加热条件下使其反应,加热温度范围为60~100℃,常压下反应时间为2~6小时;取出硅片,在150℃温度下热处理0.5~2.0小时,然后室温固化;最终得到生长有白色ZnO纳米线薄膜的硅片。
全文摘要
本发明涉及一种在半导体硅基底上利用过渡金属的独特催化作用和高分子网络络合效应来促进ZnO纳米线自组装生长的催化生长方法。属于半导体光电纳米材料制备工艺技术领域。本发明采用化学镀镍工艺和高分子自组装生长相结合的工艺方法,通过一定的工艺条件,并适当控制反应条件,在硅基底上得到形貌和性能良好的ZnO纳米线薄膜。本发明方法的制备步骤包括①半导体硅基底的准备;②硅基底的化学镀镍预处理;③ZnO纳米线的生长。本发明方法所得到的ZnO纳米线在硅基底上分布均匀而致密,直径为40~100nm,长度为10μm左右,长径比大于10,形态均匀。
文档编号H01L31/18GK101286453SQ20081003782
公开日2008年10月15日 申请日期2008年5月22日 优先权日2008年5月22日
发明者周利寅, 张文飞, 谌小斑, 英 贺, 高利聪 申请人:上海大学
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1