半导体装置用接合线的制作方法

文档序号:6924458阅读:153来源:国知局

专利名称::半导体装置用接合线的制作方法
技术领域
:本发明涉及为连接半导体元件上的电极和线路板(引线框、基板、带等)的配线而使用的半导体装置用接合线。
背景技术
:现在,作为将半导体元件上的电极与外部端子之间进行接合的接合线,主要使用线直径2050ym左右的细线(接合线)。接合线的接合一般是超声波并用热压接方式,可使用通用接合装置、使接合线在其内部通过而用于连接的毛细管夹具等。在由电弧热输入将接合线的线端头加热熔融,借助于表面张力使之形成球后,使该球部压接接合于在150300°C的范围内加热了的半导体元件的电极上,然后,通过超声波压接使接合线直接接合在外部引线侧。近年,半导体组装的结构、材料和连接技术等在急速地多样化,例如,组装结构除了使用现行的引线框的QFP(QuadFlatPackaging;四侧引脚扁平封装)以外,使用基板、聚酰亚胺带等的BGA(BallGridArray;球栅阵列封装)、CSP(ChipScalePackaging;芯片尺寸封装)等的新形态也已实用化,需求进一步提高了环路(loop)性、接合性、大批量生产使用性等的接合线。相邻的接合线的间隔变窄的窄间距化正在进行。作为与之对应的对接合线的要求,要求细线化、高强度化、环路控制、接合性的提高等。由于半导体组装的高密度化,环路形状复杂化。作为环路形状的分类,环路高度、接合线的线长度(跨距;span)成为指标。在最新的半导体中,在一个组件内部使高环路和低环路、短跨距和长跨距等相反的环路形成混杂的情况增加。要将其用一种接合线实现,需要严格的接合线的材料设计。迄今为止,接合线的材料主要使用高纯度4N系(纯度>99.99质量%)的金。为了高强度化、提高高接合等特性,曾进行了微量的合金元素的调整。最近,出于提高接合部可靠性的目的等,使添加元素浓度增加直到1质量%以下的纯度2N(纯度>99%)的金合金线也实用化了。通过调整添加到金中的合金元素的种类、浓度,能够进行高强度化、可靠性的控制等。另一方面,通过合金化,有时产生接合性降低、电阻增加等弊端,难以综合地满足对接合线所要求的多样的特性。另外,由于金价格高,因此期望得到材料费廉价的其他种类金属的接合线,曾开发了以材料费廉价、导电性优异的铜为原材料的接合线。可是,铜接合线存在如下问题由于接合线的线表面的氧化而导致接合强度降低,在进行了树脂封装时容易引起线表面腐蚀等。这些问题也成为铜接合线未进行实用化的原因。迄今为止已实用化的接合线其特征是全部是单层结构。即使材料变化为金、铜等,在内部也均勻地含有合金元素,从接合线的线截面来观察,为线单层结构。也有时在线表面形成有薄的自然氧化膜、用于保护表面的有机膜等,但它们限于最表面的极薄的区域(约数个原子厚的层的水平)。为了适应对接合线所要求的多样的需求,曾提出了在线表面被覆了别的金属的多层结构的接合线。作为防止铜接合线表面氧化的方法,在专利文献1中提出了使用金、银、钼、钯、镍、钴、铬、钛等贵金属和/或耐腐蚀性金属被覆了铜的接合线。另外,从球形成性、防止镀液劣化等的角度出发,在专利文献2中提出了呈下述结构的接合线,所述结构具有以铜为主成分的芯材、在该芯材上形成的由铜以外的金属构成的异种金属层、和在该异种金属层上形成的由熔点比铜高的耐氧化性金属构成的被覆层。专利文献3提出了具有以铜为主成分的芯材和在该芯材上的含有成分或组成的一方或两方与芯材不同的金属和铜的外皮层、且该外皮层为厚度0.0010.02ym的薄膜的接合线。另外,即使是金接合线,也曾提出了很多的多层结构的方案。例如,专利文献4提出了在由高纯度Au或Au合金构成的芯线的外周面被覆了由高纯度Pd或Pd合金构成的被覆材料的接合线。专利文献5提出了在由高纯度Au或Au合金构成的芯线的外周面被覆了由高纯度Pt或Pt合金构成的被覆材料的接合线。专利文献6提出了在由高纯度Au或Au合金构成的芯线的外周面被覆了由高纯度Ag或Ag合金构成的被覆材料的接合线。作为在批量生产中使用的线特性,通过在接合工序中的环路控制稳定,接合性也提高,在树脂封装工序中抑制线变形,满足连接部的长期可靠性等的综合的特性,可期望能够应对最尖端的窄间距、三维配线等的高密度组装。与球接合关联,在形成球时形成圆球性良好的球,并在该球部与电极的接合部得到充分的接合强度很重要。另外,为了应对接合温度的低温化、接合线的细线化等,还要求在线路板上的配线部楔连接了接合线的部位的接合强度、抗拉强度等。使用前的接合线其组织、强度等在纵向均勻,但通过被接合,组织、硬度等发生变化。作为其代表例,在球附近的颈部受到球形成时的热影响而进行再结晶,因此,颈部的强度降低。伴随着低环路等严格的环路控制或振动等的外力等,颈部受到裂纹等损伤的情况较多。即使是多层结构的接合线,也期待由该颈部的改性带来强度提高。这样的用于半导体的多层结构的接合线,虽然实用化的期待较大,但迄今为止还没有实用化。一方面由多层结构所带来的表面改性、高附加值等受到期待,另一方面必须综合性地满足线制造的生产率、品质、和接合工序中的成品率、性能稳定性、以及半导体使用时的长期可靠性等。专利文献1日本特开昭62-97360号公报专利文献2日本特开2004-64033号公报专利文献3日本特开2007-12776号公报专利文献4日本特开平4-79236号公报专利文献5日本特开平4-79240号公报专利文献6日本特开平4-79242号公报
发明内容以往的单层结构的接合线(以下记为单层线。),为了改善抗拉强度、接合部的强度、可靠性等,添加合金化元素是有效的,但担心特性的提高存在极限。呈多层结构的接合线(以下记为多层线),可期待比单层线更加提高特性,提高附加值。作为带来高功能化的多层线,例如,为了防止铜接合线表面氧化,可在线表面被覆贵金属和/或耐氧化性的金4属。即使是金接合线,通过在线表面被覆强度高的金属或合金,也可期待得到降低树脂流动的效果。可是,考虑半导体组装的高密度化、小型化、薄型化等的要求,本发明者们进行评价的结果判明了多层线留有许多的如后所述的实用上的问题。作为多层线的不良情况,颈部的损伤、缩颈、强度降低等成为问题。当为低环路化、长跨距等时,由于在环路形成时将线拉伸,因此在受到热影响从而强度本来就降低了的颈部,容易产生〈字形的裂纹、褶皱状的疲劳不良等。多层线中的颈损伤的发生频度存在比单层线增加的倾向,成为造成线接合工序的生产率降低的一个原因。若这成为低环路化的障碍,则会限定多层线的用途。例如,在最新的闪存中,数段地重叠芯片的三维组装增加,而且要求薄型化,因此,对低环路化优异的接合线的要求更加提高。即使是多层线,对这样的低环路化的适应性也变得重要。在环路形成的过程中,向各种方向弯曲或拉伸线,因此,在颈部,压缩应力、拉伸应力等复杂地参与。另外,由于楔接合中的超声波振动在接合线中传播,也有时会导致颈部疲劳。要求颈部能够耐受这样的复杂的外力和残余应变等。在多层线中,在芯材和表皮层的材质、机械特性不同,因此,容易从对这样的外力、应变不能耐受的部位发生龟裂、缩颈等。调查颈部的龟裂、损伤的发生部位的结果,从表皮层发生的情形占一大半。作为在多层线中环路形成了时的不良情况,有时环路的直线性降低,产生接合线的倾倒、下垂、弯曲等不良情况。由于该环路的直线性降低而使制造成品率降低成为问题。作为多层线的球接合部的不良情况,代表性的是花瓣现象和偏芯现象。所谓花瓣现象是指球接合部的外周附近花瓣状地发生凹凸变形,从正圆性偏离,成为在接合于小的电极上时球突出或诱发接合强度降低的不良的原因。所谓偏芯现象是指形成于线端头的球部相对于线轴非对称地形成,成为例如高尔夫球杆状的现象,在窄间距连接中当接合了偏芯球时引起与相邻的球接触的短路不良成为问题。因为这些多层线中的花瓣现象与偏芯现象的发生频度为比单层线增加的倾向,为带来生产率的降低的一个原因,所以需要使线接合工序的管理基准严格。多层铜线与单层铜线相比能期待延迟氧化的效果,其效果根据表皮层或线表面附近中的组成、结构、厚度等而大大不同。多层铜线的结构的适当化变得重要。为确保与金线同等的作业性,就必需保障例如即使2个月左右的大气保管之后楔接合性、环路形状等也不劣化。这使得与单层铜线的保管寿命相比,需要提高数十倍的寿命,在以铜为主体的材料中要求相当严的条件。本发明的目的是解决如上所述的现有技术的问题,提供一种除了以往的基本性能之外,还谋求抑制线表面的损伤、刮伤、环路形状的稳定化、良好的球形成等的性能提高的半导体装置用接合线,。本发明者们为了解决上述颈部的损伤等的问题而研究了多层结构的接合线的结果,发现了控制作为特定的表皮层的上述表皮层的组织是有效的。本发明是基于上述见解而完成的,其要旨为以下的构成。本发明的权利要求1涉及的接合线,是具有由导电性金属形成的芯材和在上述芯材上的以与芯材不同的金属为主成分的表皮层的半导体装置用接合线,其特征在于,上述表皮层的金属为面心立方晶,在上述表皮层的表面的晶面中的纵向的晶体取向<hkl>之中,<100>所占的比例为50%以上。本发明的权利要求2涉及的接合线,在权利要求1基础上,其特征在于,在上述表皮层的表面的晶面中的纵向的晶体取向<hkl>之中,<111>和<100>所占的比例的总计为60%以上。本发明的权利要求3涉及的接合线,在权利要求1或2基础上,其特征在于,在上述芯材的截面的晶面中的线纵向的晶体取向<hkl>之中,<111>和<100>所占的比例为30%以上。本发明的权利要求4涉及的接合线,在权利要求13的任一项的基础上,其特征在于,关于上述表皮层的表面中的晶粒的平均尺寸,纵向的平均尺寸相对于圆周方向的平均尺寸的比率为3以上。本发明的权利要求5涉及的接合线,在权利要求14的任一项的基础上,其特征在于,作为上述表皮层的表面中的线纵向的晶体取向为<100>的晶粒的面积相对于线表面的总面积的比例为30%以上。本发明的权利要求6涉及的接合线,在权利要求15的任一项的基础上,其特征在于,构成上述表皮层的主成分为Pd、Pt、Ru或Ag。本发明的权利要求7涉及的接合线,在权利要求16的任一项的基础上,其特征在于,构成上述芯材的主成分是Cu或Au。本发明的权利要求8涉及的接合线,在权利要求17的任一项的基础上,其特征在于,上述表皮层的厚度在0.0050.2ym的范围。本发明的权利要求9涉及的接合线,在权利要求18的任一项的基础上,其特征在于,在上述表皮层和芯材之间具有扩散层,所述扩散层具有浓度梯度。本发明的权利要求10涉及的接合线,在权利要求69的任一项的基础上,其特征在于,构成上述芯材的主成分是Cu,且以5300ppm的范围含有B、Pd、Bi和P之中的至少一种以上。本发明的权利要求11涉及的接合线,在权利要求610的任一项的基础上,其特征在于,构成上述芯材的主成分是Cu,且以5lOOOOppm的范围含有Pd,构成上述表皮层的主成分是Pd或Ag。本发明的权利要求12涉及的接合线,在权利要求69的任一项的基础上,其特征在于,构成上述芯材的主成分是Au,且以58000ppm的范围含有Be、Ca、Ni、Pd和Pt之中的至少一种以上。本发明的权利要求13涉及的接合线,在权利要求112的任一项的基础上,其特征在于,在上述表皮层和上述芯材之间具有中间金属层,所述中间金属层由与构成上述表皮层和上述芯材的主成分不同的成分形成。根据本发明的半导体装置用接合线,可以降低颈部的损伤。另外,可以提高环路的直线性、环路高度的稳定性。另外,可以促进接合线的接合形状的稳定化。其结果,能够提供也适应于细线化、窄间距化、长跨距化、三维组装等最新的半导体组装技术的高功能的接合线。图1是多层结构的接合线(线直径25um)的EBSP测定结果(将在线纵向取向成<100>取向的区域着色。线表示晶界)具体实施例方式对于半导体装置用接合线(以下称为接合线),研究采用由导电性金属形成的芯材和在该芯材上的以与芯材不同的面心立方晶的金属为主成分的表皮层构成的线的结果判明通过在接合线的表面附近含有导电性金属,可以期待楔接合性的提高等,而另一方面,由于在线接合工序中的球形成时的热影响和复杂的环路控制等,在颈部附近的表面发生损伤成为问题;环路形状的稳定性等不充分;等等。因此,研讨了能够对应于窄间距连接、三维连接的严格环路控制等的新的要求,也能够对应于提高细线的线拉丝加工中的成品率等的多层结构的接合线的结果发现控制作为特定的表皮层的上述表皮层的组织是有效的。特别是通过着眼于迄今为止基本不为人所知的多层线的表面的织构和接合线的使用性能的关系,首次确认了通过控制特定的晶体取向,能够综合地改善可加工性、接合性、环路控制性等。更有效地发现了控制表皮层和芯材的组织的组合等是有效的。S卩,需要一种接合线,其是具有由导电性金属形成的芯材和在上述芯材上的以与芯材不同的面心立方晶的金属为主成分的表皮层的接合线,其中,在表皮层的表面的晶面中的纵向的晶体取向<hkl>之中,<100>所占的比例为50%以上。若为上述接合线,则可得到抑制颈部损伤的高的效果。损伤包含各种形态的裂纹、破损,但线表面成为起点的损伤较多。若构成表皮层的成分为面心立方晶的金属,则加工时不会屈服强度降低,可加工性也良好,容易顺应于拉丝加工、环路控制等的复杂加工、弯曲等。面心立方晶的金属的<100>取向具有提高延性的效果,通过还追随弯曲、拉伸等的变形,在环路形成时即使受到压缩、拉伸等的外力,也可抑制从颈部的表面的龟裂扩展。在这样的特殊的变形和龟裂扩展上,线表面的组织,相比于中心部影响较大,因此,提高表面中的<100>取向的取向率是有效的。为了降低颈部的损伤,线整体和颈部的组织类似是有效的。在接合线的制造中,通常在最终线直径和其附近实施热处理的情况较多。相当于由于球形成时的热影响,在颈部再被热处理到高温。在线整体和颈部的表面的晶体取向上差异小时,可减轻在颈部的表面附近的应力集中、残余应变等。在面心立方晶的金属中,作为通过热处理所形成的再结晶织构,大多取向成为<100>取向。即使在颈部也同样可确认因球形成时的热影响而生长的晶体取向为<100>取向或其类似的取向。因此可认为原本通过在接合线表面提高向<100>取向的取向可以降低与颈部的组织的差别,这也具有降低颈部的损伤的作用。另外,提高线纵向的晶体取向之中的<100>取向的取向率具有即使在颈部也使向<100>的取向率增加的效果。球熔融热在接合线中传导,在颈部超过表皮层或芯材的再结晶温度地被加热。在颈部通过再结晶而进行晶体取向的旋转等时,可助长以线自身的<100>取向为核,其周围的晶体取向向<100>转移。若在表皮层的表面的晶面中的纵向的晶体取向<hkl>之中,<100>取向所占的比例为50%以上,则可得到抑制颈部损伤的充分效果。优选该<100>取向的比例为60%以上,若这样的话,则可提高抑制颈损伤的效果,即使是线直径25ym且环路高度90ym以下的低环路,也可降低颈损伤。更为优选为70%以上,若这样的话,则可进一步提高抑制损伤的效果,例如,即使是环路高度为80ym以下的低环路,也可抑制颈损伤且可进行稳定的环路形成。在多层线中,表面和芯材用不同的成分构成,因此,分开地控制被覆着线表面的表层的组织比较容易。由该表面组织的控制所带来的特性改善效果也高。在这样的方面,与以往的单层线的组织控制不同。在单层线中,虽然能够管理线整体的织构和晶体取向,但难以只表面附近与线内部分开地进行组织控制。因此,在多层线的表层的组织控制上,要求多层线独自的想法,不能适用单层线的线截面中的织构和晶体取向的管理。若在表皮层的表面的晶面中的纵向的晶体取向<hkl>之中,<111>和<100>所占的比例的总计为60%以上,则降低环路高度的偏差,在高速动作下的环路的稳定控制变得容易。在通常的线连接工序中,进行抽出或拉回通过毛细管的孔的接合线等复杂的动作。这是以数十毫秒级的相当快的高速使接合线出入的动作。<111>和<100>各取向的具体效果、关系不明确,但可认为通过降低接合线和毛细管的滑动抗力,环路高度稳定化了。换言之,为使这样的滑动性和环路高度稳定化,将<111>和<100>以外的晶体取向抑制为低是有效的。若表皮层中的<111>和<100>所占的比例的总计为60%以上,则在线长为3mm以下的一般的跨距下,可得到使环路高度稳定化的高的效果。优选是80%以上,若这样的话,则即使为线长5mm以上的长跨距,也可得到使环路高度稳定化的高的效果。另外,作为由提高<111>和<100>所占的比例所带来的效果,通过抑制成膜后的加工、热处理的工艺中的膜厚的不均勻性,还有利于表皮层厚度的均勻化。若在芯材的截面中的线纵向的晶体取向<hkl>之中,<111>和<100>所占的比例的合计为30%以上,则会降低球接合部的外周附近发生凹凸变形的花瓣不良,可以使球接合部接近于正圆且稳定化。若正圆度良好,则变得有利于接合面积的缩小,接合工序的制造管理变得容易,或可提高窄间距接合的生产率。确认了球部的凝固组织也大大地反映芯材的组织,提高在芯材的晶体取向<hkl>之中的<111>和<100>所占的比例是有效的。确认了就这样的芯材的晶体取向的控制来说,在单层线中效果不充分,与此相对,在多层线中可得到高的效果。虽然就其要因而言还没有完全弄清楚,但可以推测是由于通过在多层线的球熔融中先表皮层、其后芯材进行阶段性的熔融,芯材的组织对球部的组织产生的影响较大。该作用效果、在通常的球尺寸的情况下,确认有更高的效果。例如,在接合初期球直径/线直径的比例为1.92.2的通常尺寸的球的情况下,可以降低球接合部中的各向异性和/或花瓣状等形状不良,提高正圆度。调查由压缩变形、施加超声波所产生的球部的变形行为的结果,确认了就球接合形状来说,与表皮层的组织的相关性小,反而是芯材的组织起支配使用。在此,若芯材中的<111>和<100>所占的比例的合计为不到30%,则球接合时发生花瓣状、椭圆状的变形的频度变高,有时变为不良。接合线的组织对球变形造成的影响,多层线一方显著,与单层线的组织的影响不同的情况较多。优选芯材中的<111>和<100>所占的比例的总计为50%以上,若这样的话,则可以使小径球的接合形状稳定化。例如,在接合初期球直径/线直径的比例处于1.51.7范围的小径球的情况下,通过提高球接合部的正圆度,由此即使是电极间隔为40ym以下的窄间距接合,也可得到良好的球接合形状。在芯材中的<111>和<100>所占的比例的合计没有特别的上限,但若为85%以下,则有制造时的控制变得比较容易的优点。通过组合这样的芯材的组织和上述的表皮层的组织,可以期待协调作用,能够同时改善环路形状的控制、球变形的稳定化。即,期望是如下多层结构的接合线在表皮层的表面的晶面中的纵向的晶体取向<hkl>之中,50%以上为<111>,并且,在芯材的截面中的纵向的晶体取向<hkl>之中,<111>和<100>所占的比例为40%以上。由此,在作为三维组装的代表例的、层叠了多个芯片的叠层芯片连接、BGA、CSP中最近使用的、相邻的接合线的环路高度处于60500iim的范围且大大不同的多段连接(Multi-TierBonding)等中,可以改善接合线的综合特性。在到此为此的说明中,以可以测定的晶体取向<hkl>为基准,对于特定的取向所占的比例所带来的作用、效果进行了说明。若为了适应于今后窄间距化而进行细线化,则通过增加表面的影响度,以接合线的表面为基准整理晶体取向所带来的效果能够准确把握实用的效果。具体来说,期望是在表皮层的表面的晶面中的纵向的晶体取向<hkl>之中50%以上为<100>的多层结构的接合线,而且,作为表皮层的表面中的线纵向的晶体取向为<100>的晶粒的面积相对于线表面的总面积的比例为30%以上。由此,使环路形状稳定化的效果提高,其中即使是细线化到直径22ym以下的接合线,环路特性也稳定化,对降低颈损伤是有效的。对于线直径22ym以下的细的接合线,由于因拉丝加工应变的增大等而测定困难的晶体取向的区域增加等,只能够测定的晶体取向之中的<100>取向的比例不能准确掌握环路特性的区域有增加的倾向。因此,如果在作为表皮层的表面中的<100>的晶粒的面积相对于线表面的总面积的比例(面积比率)设为适当的比例(适当的面积比率),则即使为细线也可得到良好的特性。该面积比率为30%以上的理由是因为即使晶体取向之中的50%以上为<100>,若面积比率不足30%,则在使用了线直径22ym以下的接合线的环路高度70pm以下的低环路连接中,有时颈损伤的不良率也会增加。优选该面积比率为40%以上,若这样的话,即使连接直径18ym以下的细线且为环路高度60ym以下的低环路,也可以降低颈损伤。更加优选该面积比率为50%上,若这样的话,可进一步提高如下效果即使连接直径18ym以下的细线且为环路高度60ym以下的超低环路,也可以抑制颈损伤,因此,例如也对层叠了3段以上的芯片的三维连接有利。若为如下特征的多层结构的接合线为在表皮层的表面的晶面中的纵向的晶体取向<hkl>之中50%以上为<100>的多层结构的接合线,而且,关于表皮层的表面中的晶粒的平均尺寸,纵向的平均尺寸相对于圆周方向的平均尺寸的比率(晶体粒径的纵横尺寸比)为3以上,则可以提高形成了环路的接合线的直线性。在通过接合线从毛细管端头的孔出来或返回而形成环路时,由于接合线与毛细管内壁的摩擦等而发生接合线倾倒、弯曲所导致的卷曲不良、由下垂所导致的接合不良,由此,成品率降低。要抑制这样的不良、提高环路直线性,发现提高表皮层的表面中的晶体粒径的纵横尺寸比是有效的。若提高纵横尺寸比,则在线纵向长的晶粒形成纤维状组织,从而变得有利于降低环路形成时残留在接合线中的应变、变形偏差。若纵横尺寸比为3以上,则可得到提高环路直线性的充分效果。优选纵横尺寸比为5以上,若这样的话,即使为直径25ym以下且线长5mm以上的长跨距,也可得到良好的环路直线性。进一步优选纵横尺寸比为10以上,若这样的话,则可提高如下效果即使为线长7mm的超长跨距,也提高环路直线性。所谓成为表皮层的主成分的面心立方晶的金属,为与作为芯材的主成分的导电性金属不同的金属,优选是如下金属对改善接合线的接合性有效果,且对防止接合线氧化也有效。具体来说,Pd、Pt、Ru、Rh、Ag为候选,而且,若重视实用性、性能价格比等,则更加优选是Pd、Pt、Ru、Ag中的至少一种金属。在此的主成分是指浓度具有50摩尔%以上的元素。Pd具有与封装树脂的粘附性、对电极的接合性都充分、品质管理也容易等优点。Pt较容易使球形状稳定化。Ru容易形成硬质且致密的膜,材料费也比较廉价。Rh耐氧化性等性能良好,材料费为高价格,因此期待薄膜化等的今后的研究。Ag为软质,因此在对形成有表皮层的线进行拉丝加工的场合,可比较容易地抑制损伤等,材料费也廉价,因此对重视成本的半导体等是有用的。S卩,表皮层优选是以Pd、Pt、Ru和Ag中的至少一种为主成分的纯金属或者以上述导电性金属为主成分的合金。如果是纯金属,则具有容易提高耐氧化性、接合性等的优点,如果是合金,则具有由于抗拉强度、弹性模量的上升而抑制树脂封装时的线变形的优点。在此,所谓上述纯金属相当于表皮层的一部分包含具有99摩尔%以上的浓度的层或者除了扩散层之外的表皮层的平均浓度为80摩尔%以上。所谓上述合金是含有50摩尔%以上的Pd、Pt、Ru和Ag中的至少一种金属的合金。构成芯材的导电性金属,Cu.Au.Ag成为候选,如果重视实用性,则优选以Cu和Au之中的至少一种为主成分。Cu的材料费便宜,导电性高,在球形成时若喷吹保护气体则也容易进行良好的球形成,上述等等的操作性都比较良好。Au耐氧化性强,在球形成时不需要保护气体等,接合时的变形也良好,具有容易确保接合性等优点。Ag导电性优异,但拉丝加工稍有困难,需要将制造技术合适化。另一方面,Cu、Au也有作为单层接合线用材料的使用实绩多的优点。如果芯材是以该导电性金属为主成分的合金,则有时利于由线强度的增加带来细线化或者提高接合可靠性等。在Cu合金的场合,通过以5300ppm的范围含有B、Pd、Bi、P中的一种以上,由于接合线的抗拉强度、弹性模量增加等,可得到提高直到跨距5mm左右的长跨距下的直线性的效果。已确认要提高上述的添加作用对于Cu单层线而言并不充分,与此相对,应用于芯材的主成分为Cu的多层线时可得到高的效果。即芯材为以5300ppm的范围含有B、Pd、Bi和P中的至少一种以上的Cu合金,表皮层以Pd、Pt或Ru为主成分,在上述表皮层的表面的晶面中的纵向的晶体取向<hkl>之中<100>所占的比例为50%以上,由此,可以进一步提高提高在长跨距下的直线性的效果。作为其理由可认为是由于控制了晶体取向的表皮层和含有合金元素的芯材的协同效应,使得直线性提高。若为如下的多层结构的接合线在上述表皮层的表面的晶面中的纵向的晶体取向<hkl>之中<100>所占的比例为50%以上,构成表皮层的主成分为Pd或Ag,构成芯材的主成分为Cu,在芯材中以5lOOOOppm的范围含有Pd,则在线的逆连接方式中,对弹回不良的降低和柱形凸块高度的稳定化有效,或者还能够使球接合部的压接高度稳定化。所谓逆连接方式是指在球接合的上方强制性使线断裂形成柱形凸块,在该柱形凸块上楔接合线的方式,被用于叠层芯片用途等。降低逆连接方式的生产率的主要原因有不稳定的柱形凸块高度和环路折曲变形的弹回不良。所谓弹回不良是指由于对连接到柱形凸块上了的线进行尾部切割时的断裂冲击而导致线折曲变形的现象。可认为若为上述线,则在线制造中的热处理工序中,在芯材/表皮层的界面附近,芯材中的Pd和表皮层中的Pd或Ag相互扩散时,通过使Pd浓度的变化均勻化且平缓的协同作用来抑制弹回不良。另外,上述的Pd添加所带来的提高环路直线性的效果,也可期待影响到弹回不良的抑制。这样的线内部的Pd浓度变化,不仅对线整体,对受到球熔融的热影响的颈部也更有效地作用,因此对柱形凸块高度的稳定化也有效。可认为这样能够使柱形凸块高度稳定化具有下述作用通过使颈部的再结晶粒径的分布在线中心部和表面附近均勻化,而使柱形凸块形成时的断裂长度稳定化。另外,对于Cu的芯材和Pd的表皮层的组合,在球熔融时,Cu和Pd、Ag的混合变得不均勻,有时发生球形状的异形,但通过使芯材中含有Pd,可提高使初期球的尺寸稳定化、使球部的压接高度稳定化的效果。在此,关于芯材中所含有的Pd浓度,如果为5ppm以上,则可确认到上述效果,优选为200ppm以上,如果这样的话能使改善效果更加显著。关于该Pd浓度的上限,如果为lOOOOppm以下,则能够抑制由球的硬化所引起的芯片损伤,优选为8000ppm以下,如果这样的话可进一步提高抑制芯片损伤的效果,对窄间距连接也有利。在Au合金的场合,如果以5800(^!11的范围含有86、〔3、附、?(1和?{之中的至少一种以上,则具有同样的效果,容易确保良好的直线性。即,优选芯材为以5SOOOppm的范围含有Be、Ca、Ni、Pd和Pt中的至少一种以上的Au合金、表皮层以Pd、Pt或Ru为主成分,在上述表皮层的表面的晶面中的纵向的晶体取向<hkl>之中<100>所占的比例为50%以上。在多层结构的接合线的构成中,通过在表皮层和上述芯材之间具有中间金属层,所述中间金属层由与构成上述表皮层和上述芯材的主成分不同的成分形成,由此,控制上述的表皮层的晶体取向的取向变得更加有利。原因是在表皮层的形成中,有时受到基底的晶体取向的影响,与控制芯材的晶体取向相比,控制形成于芯材上的中间金属层的晶体取向比较容易。具体来说,与表皮层的金属相同的面心立方晶的金属优选作为中间金属层。特别是更优选表皮层的金属的晶格常数与中间金属层的金属的晶格常数相近。S卩,优选是如下特征的多层结构的接合线,所述特征是在上述表皮层和上述芯材之间具有中间金属层,所述中间金属层由与构成上述表皮层和上述芯材的主成分不同的成分形成。作为添加中间金属层的效果,通过表皮层和芯材的粘附性的提高等,能够提高作为楔接合部的接合强度指标之一的剥离强度。在此,剥离强度的测定可采用测定楔接合附近的牵拉强度的简便方法来代用。因此,通过插入中间金属,可增加剥离强度。在此,中间金属层的成分是应该与表皮层和芯材的成分的组合来选定的,优选是如上所述的金属成分,特别更优选Au、Pd、Pt。更优选的是,在表皮层/芯材的主成分的组合为Pd/Cu的场合,中间金属层的主成分为Au,如果这样的话有利于控制表皮层的晶体取向,而且表皮层/中间金属层/芯材的各个界面处的粘附性也比较良好。另外,在表皮层/芯材的主成分的组合为Pd/Au的场合,如果中间金属层的主成分为Pt,则有利于晶体取向的控制和表皮层的组成、膜厚的均勻性。如果表皮层的厚度为0.0050.2ym的范围,则也有利于上述的表皮层的晶体取向的控制,容易综合地满足接合性、环路控制等的要求特性。原因是如果厚度为0.005um以上,则可得到控制了晶体取向的表皮层的充分效果;若超过0.2ym,则由于球部的表面平滑性降低、发生高尔夫球棒状的偏芯球的不良,有时球的形状、尺寸变得不稳定。优选是表皮层的厚度处于0.010.15ym的范围,如果这样的话即使是复杂的环路控制,也可不降低速度地稳定形成所希望的环路形状。更优选是0.0200.1ym的范围,如果这样的话,可一边维持接合线的使用性能一边提高膜形成工序的处理效率等,容易得到稳定的膜质。11如果中间金属层的厚度处于0.0050.2ym的范围,则控制表皮层的晶体取向变得容易,并且,提高与芯材的界面的粘附性,还可对应于复杂的环路控制。优选在0.010.lym的范围,如果这样的话,容易确保膜厚的均勻性、再现性。在此,表皮层与芯材的边界设为构成表皮层的导电性金属的检测浓度的总计为50摩尔%的部位。因此,本发明中所说的表皮层是从构成表皮层的导电性金属的检测浓度的总计为50摩尔%的部位到表面,即,是构成表皮层的导电性金属的检测浓度的总计为50摩尔%以上的部位。本发明中的晶体取向优选包含晶体取向相对于接合线的纵向的角度差为15°以内的晶体取向。通常,即使着眼于某个方向的晶体取向,各个晶体也具有某种程度的角度差,另外,根据样品准备、晶体取向的测定法等的实验法,也会产生少许的角度差。在此,如果角度差的范围为15°以内,则具有各自的晶体取向的特性,可有效地活用对接合线的各种特性带来的影响度。关于25ym直径程度的微细线的表面的织构,迄今为止不怎么知道,特别是与微细线的多层线的最表面的织构相关的报告例也少。要高精度地测定如接合线那样比较软质且线直径小的金属线中的织构,需要高度的测定技术。从有利于将测定区域缩小为微小或得到仅最表面的信息出发,织构的测定法可以采用最近开发的电子背散射图形(ElectronBackScatteringPattern,以下称为EBSP)法。通过用EBSP法对织构进行测定,即使为接合线那样的细线,也可高精度并且具有充分再现性地测定其表面或截面的织构。关于接合线的微细组织,采用本测定方法可以高精度且再现性良好地测定亚微米的微细晶粒的晶体取向、线表面的晶体取向的分布等。在EBSP法中,通常在试样的凹凸、曲面大的情况下,难以高精度测定晶体取向。但是,如果使测定条件适当化,则能够进行高精度的测定、解析。将接合线在平面上直线状地固定,用EBSP法测定该接合线的中心附近的平坦部。就测定区域而言,如果圆周方向的尺寸以线纵向的中心为轴是线直径的50%以下,纵向的尺寸为100ym以下,则除了能提高精度之外,还能提高测定效率。优选是圆周方向的尺寸为线直径的40%以下、纵向的尺寸为40ym以下,这样的话由于测定时间缩短从而可进一步提高测定效率。在由EBSP法进行高精度的测定时,1次可测定的区域受到限制,因此希望进行3个地方以上的测定,得到考虑了偏差的平均信息。优选选定测定场所使得测定场所不接近、并能够沿圆周方向观察不同的区域。例如,在测定线直径25ym的接合线时,使用以在平板上尽量改变线方向的方式固定了的接合线,以其线轴为中心将圆周方向Sym、纵向30i!m的尺寸作为一次的测定区域,相距1mm以上进行3个地方的测定,由此可得到线表面的晶体取向的平均信息。但是,测定的区域、场所的选定不限于此,优选对测定装置、线状态等加以考虑来进行适当化。另外,在测定芯材的晶体取向的情况下,测定接合线的纵向的垂直截面或与纵向平行且线中心附近的平行截面的任一方都是可能的。优选容易得到要求垂直截面的研磨面。在通过机械研磨制作截面时,为了减轻研磨面的残留应变,优选通过蚀刻除去表层。在解析由EBSP法得到的测定结果时,通过利用装在装置中的解析软件,能够计算出各取向的晶粒的面积相对于上述的线表面的测定面积所占的面积比,或者以在测定区域之中可识别晶体取向的晶粒或区域的总面积为分母,各晶体取向所占的比例等。在此,计12算出晶体取向的面积的最小单位也可以是晶粒或晶粒内的一部分的微小区域。关于晶粒的尺寸,还可计算在纵向和圆周方向的平均尺寸等。在制造本发明的接合线时,需要在芯材的表面形成表皮层的工序和控制表皮层、扩散层、芯材等的结构的加工-热处理工序。在芯材的表面形成表皮层的方法有镀覆法、蒸镀法、熔融法等。镀覆法可以灵活采用电解镀法、无电解镀法。电解镀的镀覆速度快,与基底的粘附性也良好。电解镀可以是一次的镀覆处理,但可以区分为被称为触击镀的薄镀和在其后使膜生长的主镀,通过分成这些复杂的工序来进行,有利于膜质更稳定化。无电解镀中所使用的溶液被分类成置换型和还原型,在膜薄的场合只利用置换型镀覆便足够,而在形成厚的膜的场合,在置换型镀覆之后阶段性地实施还原型镀覆有效。对于无电解法而言,装置等简便,且容易,但比电解法需要时间。蒸镀法可以利用溅射法、离子镀法、真空蒸镀等的物理吸附以及等离子CVD等的化学吸附。任一种方法都是干式,不需要膜形成后的洗涤,不用担心洗涤时的表面污染等。对于实施镀覆或蒸镀的阶段,按目标的线直径形成导电性金属的膜的方法、和在粗径的芯材上形成膜后,进行多次拉丝直到目标线直径的方法的任一种方法都有效。前者的在最终直径下的膜形成,制造、品质管理等简便,后者的膜形成与拉丝的组合对提高膜与芯材的粘附性有利。作为各形成法的具体例,可以采用在电解镀溶液中一边连续地对线牵引一边进行膜形成从而得到目标的线直径的细线的方法,或者将粗线浸渍在电解镀浴或无电解镀浴中形成膜后,将线拉丝达到最终直径的方法等。在此,对于在上述的最终线直径下形成表皮层的最终镀覆法而言,在成膜后只有热处理工序。另外,对于在粗径的芯材上形成膜的粗径镀覆法而言,需要组合直到目标的线直径的加工工序和热处理工序。在形成表皮层后的加工工序中,根据目的对辊轧制、模锻、模拉丝等进行选择、灵活运用。通过加工速度、压下率或模减面率等控制加工组织、位错、晶界的缺陷等也对表皮层的组织、粘附性等带来影响。只单纯地对线进行成膜、加工和加热了的话,并不能够控制表皮层的表面和内部的织构的晶体取向。即使原样地使用在通常的线制造中所使用的在最终线直径下的消除加工应力退火,也由于表皮层与芯材的粘附性降低而导致环路控制变得不稳定,或难以控制线纵向的表皮层的均质性、在线截面中的表皮层、扩散层等的分布。因此,通过综合性地组合表皮层的成膜条件、拉丝工序中的减面率、速度等的加工条件、热处理工序的定时、温度、速度、时间等的适当化等,能够稳定地控制表皮层的织构。在线的轧制、拉丝的工序中,可形成加工织构,在热处理工序中会进行回复、再结晶,可形成再结晶织构,这些织构相互关联,最终决定表皮层的织构和晶体取向。为使表层的晶体取向取向为<100>,利用再结晶织构是有效的。通过进行刚成膜之后的热处理或加工后的热处理,并使加热条件适当化,由此可提高向<100>的取向率。关于使上述的表层的<100>取向率为50%以上的制造技术,例如,在线的再结晶温度以上进行加热是有效的。优选通过在再结晶温度的0.51.5倍的温度范围进行加热,来提高在接合线整体上使<100>取向率稳定化的效果。在热处理工序中,实施1次或多次热处理是有效的。热处理工序被分类成刚形成13膜后的退火、在加工途中的退火、在最终直径下的最终退火,对它们进行选择、灵活运用很重要。最终的表皮层、在表皮层与芯材的界面的扩散行为等根据在哪个加工阶段进行热处理而变化。在一个例子中,通过采用在镀覆处理后的加工途中实施中间退火,进而对线进行拉丝,在最终直径下实施最终退火的工序来制作,与不实施中间退火的工序比较,在表皮层/芯材的界面形成扩散层,有利于提高粘附性。作为热处理法,通过对线一边连续地进行牵引一边进行热处理,而且不使作为一般的热处理的炉内温度为一定,而在炉内形成温度倾斜(温度梯度),容易批量生产具有作为本发明特征的表皮层和芯材的接合线。具体的事例有局部地导入温度倾斜的方法、在炉内使温度变化的方法等。在抑制接合线的表面氧化的场合,一边在炉内流通队和/或Ar等的惰性气体一边进行加热也有效。在用镀覆法成膜的情况下,优选利用与基底的晶体取向对应地进行膜形成的外延生长、提高向<100>的取向率。即,在多层线的制造工序中,通过控制芯材的表面组织来提高由镀覆形成的表皮层的向<100>的取向率是有效的。若表皮层的膜厚处于上述范围,则控制外延生长变得容易。另外,通过与由上述的热处理所产生的再结晶织构组合,可以进一步提高生产率、多样的取向控制。熔融法是使表皮层或芯材的某一方熔融而铸入的方法,具有下述优点通过以10100mm左右的粗径连接表皮层和芯材后进行拉丝生产率优异;与镀覆、蒸镀法相比,表皮层的合金成分设计容易,强度、接合性等的特性改善也容易;等等。在具体的工序中,可分成在预先制作的芯线的周围铸入熔融了的导电性金属来形成表皮层的方法、和通过使用预先制作的导电性金属的中空圆柱,并向其中央部铸入熔融金属从而形成芯线的方法。优选在后者的中空圆柱的内部铸入芯材,此法能够在表皮层中容易地稳定形成芯材的主成分的浓度梯度等。在此,只要使预先制作的表皮层中含有少量的铜,则容易控制在表皮层表面的铜浓度。另外,熔融法也能够省去用于使Cu向表皮层扩散的热处理作业,但通过为了调整表皮层内的Cu的分布而实施热处理,估计更加改善特性。而且,利用这样的熔融金属的场合,也可通过连铸来制造芯线和表皮层之中的至少一方。利用该连铸法,与上述的铸入法相比,可简化工序,而且还能够使线直径细、并提高生产率。使用芯材的主成分为铜的多层铜线进行接合时,需要形成球时的保护气体,使用以110%的范围含有H2的队混合气体、或者纯氮气。对于以往的单层的铜线而言,推荐由5%H2+N2所代表的混合气体。另一方面,对于多层铜线而言,即使使用廉价的纯N2气,也可得到良好的接合线,因此相比于作为标准气体的5%H2+N2气体,能够降低操作费用。优选N2气的纯度为99.95%以上。即优选是通过一边向线端头或其周围喷射纯度为99.95%以上的N2气一边产生电弧放电来形成球部,将该球部进行接合的接合方法。另外,通过在表皮层和芯材之间形成扩散层,能够提高粘附性。所谓扩散层是通过芯材和表皮层的主成分相互扩散而形成的区域,具有该主成分的浓度梯度。通过形成扩散层,提高了芯材与表皮层的粘附性,可以抑制环路控制和/或接合时的表皮层的剥离。而且,通过具有浓度梯度,与导电性金属在整个表皮层浓度均勻的情况相比,可以使受到复杂的塑性变形的环路控制中的线变形稳定化。另外,可确认有下述效果通过上述的表皮层的表面的<100>取向为50%以上且具有有浓度梯度的扩散层,在成为高段差的短跨距的低环路的情况下,使环路高度稳定化。优选<111>和<100>所占的比例的总计为60%以上,且具有有浓度梯度的扩散层,如果这样的话,则确认可以进一步提高使环路高度稳定化的效果。扩散层内的浓度梯度优选是向深度方向的浓度变化的程度为每IymlO摩尔%以上。更优选是每0.1μm5摩尔%以上,如果这样的话,则不损害表皮层和芯材的不同物性,可期待相互利用的高的效果。扩散层的厚度优选在0.0020.2μπι的范围。这是因为若扩散层的厚度小于0.002μm,则效果小,在分析中难以识别,若超过0.2μm,则会对表皮层的组织产生影响,难以稳定形成上述的晶体取向。为了控制该扩散层,利用热处理是有效的。如上所述,通过组合热处理和加工、控制扩散的进行度,可在线的圆周方向或纵向均勻形成所期望的扩散层。就表皮层、芯材等的浓度分析来说,一边从接合线的表面通过溅射等向深度方向下挖一边分析的方法,或进行线截面中的线分析或点分析的方法等是有效的。前者在表皮层薄的情况下有效,若变厚则过于花费测定时间。后者的在截面中的分析对表皮层厚的情况有效,另外,具有在截面整体的浓度分布和/或在数个部位的再现性的确认等比较容易的优点,但在表皮层薄的情况下,精度低下。也可以斜向研磨接合线,扩大扩散层的厚度来测定。在截面中,线分析比较简便,但想要提高分析的精度时,减小线分析的分析间隔、或进行缩小为界面附近的想要观察的区域的点分析也是有效的。在用于这些浓度分析的解析装置中,可以利用电子束显微分析法(ΕΡΜΑ)、能源分散型X射线分析法(EDX)、俄歇光谱分析法(AES)、透射电镜(TEM)等。特别是AES法空间分辨率高,对最表面的薄的区域的浓度分析有效。另外,对于平均组成的调查等,也可从表面部阶段性地溶解于酸等中,由在该溶液中含有的浓度求出溶解部位的组成;等等。在本发明中,不需要由上述全部的分析方法得到的浓度值都满足本发明的规定范围,只要由一种分析方法得到的浓度值满足本发明的规定范围就可得到该效果。实施例以下对实施例进行说明。作为接合线的原材料,芯材所使用的Cu、Au、Ag使用了纯度为约99.99质量%以上的高纯度的材料,表皮层或中间金属层所使用的Au、Pt、Pd、Ru、Rh的材料准备了纯度为99.9质量%以上的原料。将细到某个线直径的线作为芯材,为了在该线表面形成不同的金属的层,进行电解镀法、无电解镀法、蒸镀法、熔融法等,并实施了热处理。利用如下方法按最终线直径形成表皮层的方法、在某个线直径下形成了表皮层之后,进而通过拉丝加工拉细到最终线直径的方法。电解镀液、无电解镀液使用按半导体用途市售的镀液,蒸镀采用溅射法。预先准备线直径约151500μm的线,通过蒸镀、镀覆等对该线表面进行被覆,进行拉丝直到最终直径1550μm,最后实施了热处理使得消除加工应变且延伸率值为515%的范围。根据需要在模拉丝到线直径25200μm后,实施扩散热处理,然后进一步实施拉丝加工。拉丝用模的减面率按每1个模515%的范围来准备,通过这些模的组合来调整了线表面的加工应变的导入等。拉丝速度在20500m/分之间适当化。在利用熔融法的场合,采用了在预选制作的芯材的周围铸入熔融了的金属的方法、和在预先制作的中空圆柱的中央部铸入熔融了的金属的方法。其后进行锻造、辊轧制、模拉丝等的加工和热处理,制造出接合线。就本发明例的线的热处理而言,一边连续地对线牵引一边进行加热。利用了局部地导入温度倾斜的方式、在炉内使温度变化的方式等。例如,利用了按照能够将炉内温度分三部分进行控制的方式进行改造了的热处理炉。在温度分布的一例中,从线的插入口朝向出口获得高温一中温一低温、或中温一高温一低温的分布,对各自的加热长度也进行了管理。线牵引速度等也与温度分布一起进行了合适化。为了抑制氧化,热处理的气氛也利用了N2、Ar等的惰性气体。气体流量在0.00020.004m3/分的范围进行调节,也用于炉内的温度控制。作为进行热处理的定时,可灵活使用对拉丝后的线实施热处理后形成表皮层的情形、和将热处理在加工前、加工途中或刚形成表皮层后等之中进行1次或2次以上等的情况。关于形成表皮层后的轧制、拉丝的加工水平,可利用由成膜时的线和最终直径的面积比率算出的累计的加工率来整理。在该加工率(%)小于30%时用Rl表记,当为30%以上且小于70%时用R2表记,当为70%以上且小于95%时用R3表记,当为95%以上时用R4表记。为控制表皮层的表面组织,需要使材质、组成、厚度等的材料因子和膜形成条件、加工-热处理条件等工艺因子适当化。在实施例中,作为增加在表皮层的表面中的纵向的<100>的比率的措施,降低加工率、使初期的膜厚薄、使热处理高温化等是有效的。作为一例子,上述加工率为RlR3,在构成表皮层的材料的熔点的30%以上的温度下进行热处理等,由此,<100>比率的增加变得比较容易。在一个比较例中,为了降低<100>比率,提高加工率、在低温或短时间下实施热处理是有效的。关于线表面的组织观察,在接合线的表层中的表面的某个区域,利用EBSP法测定晶体取向。在准备测定试样时,将35根接合线固定于平板上使得相互尽可能改变线朝向。观察区域,作为包含线轴的四方形的区域,将尺寸沿圆周方向为5ομπκ沿纵向为1050μπι设为一次的测定区域。测定位置设为310个位置,相互离开0.5mm以上来选定。测定点的间隔为0.010.2μπι来实施。在芯材的组织观察中,使用研磨接合线的截面、通过化学腐蚀降低了表面的加工应变的试样,通过EBSP法测定晶体取向。关于截面,主要测定了与线纵向垂直的截面,但一边研究试样状态、再现性等,一边根据需要,在与线纵向平行且通过中心轴的截面也实施测定。EBSP测定数据的解析使用了专用软件(TSL制OIManalysis等)。解析在测定区域的晶体取向,求出其中<111>、<100>取向等的晶粒的比例。以接合线的纵向为基准决定取向,连各自的晶体取向的角度差在15°以内的取向也包括。就该晶粒的比例的计算法而言,求出以测定区域的整个面积为分母计算出的各取向的比例(以下称为面积比率)、和将仅仅以测定区域内的以可靠度为基准可鉴定的晶体取向的面积为分母计算出的各取向的比例(以下称为取向比率)这2种类的比例。在求后者的取向比率的过程中,将不能测定晶体取向的部位、或即使可测定但取向解析的可靠度低的部位等除外来计算。在此,所谓可靠度,有时在解析软件中准备参数,优选利用例如ConfidentialIndex(Cl值)、ImageQuality(IQ值)等数种的参数,根据试样状态、解析目的等选定判定基准。对线表面的膜厚测定使用AES深度分析,对晶界的浓化等元素分布的观察是采用AES、EPMA等进行面分析、线分析。在AES深度分析时,一边用Ar离子进行溅射一边沿深度方向进行测定,深度的单位按SiO2换算而表示出。接合线中的导电性金属浓度采用ICP分析、ICP质量分析等进行测定。接合线的连接使用市售的自动焊线机进行球/楔接合。由电弧放电在线端头制作球,将该球接合在硅基板上的电极膜上,在引线端子上楔接合线的另一端。为抑制球形成时氧化而使用的保护气体主要使用了纯N2气。气体流量在0.0010.Olm3/分的范围调节。作为接合对方,使用了作为硅基板上的电极膜材料的、厚度1μm的Al合金膜(Al-1%Si-O.5%Cu膜、Al-0.5%Cu膜)。另一方面,楔接合的对方使用了表面镀Ag(厚度24μπι)的引线框。另外,关于对BGA基板上的Au/Ni/Cu的电极的接合性,也使用一部分线试样,确认了可得到与上述引线框同样的效果。关于颈损伤,通过SEM观察接合了的接合线的颈部来进行评价。其中,作为在颈部容易受到损伤的部位,注意并观察与楔接合相反的方向的颈部的外侧。在损伤形态上,调查了微小龟裂、尺寸大的裂纹、褶皱状的疲劳等。在环路高度变低的情况、线直径变细的情况、线长度变长的情况下,通常颈损伤的发生率增加,因此成为更严格的评价。在线直径、线长度、环路高度不同的条件下制作试样进行了评价。具体地讲,在线直径为25μπι的情况下,按线长设在24mm的范围、环路高度设为100μm、90μm、80μm的3种来制作试样,进行观察。在线直径为22μm的情况下,按线长设在24mm的范围、环路高度设为70μm来制作试样,进行观察。在线直径为ISym的情况下,按线长设在23mm的范围、环路高度设为60μm来制作试样,进行观察。线数量设为300根。如果颈损伤为10根以上则判断为不良,用X符号表示,如果颈损伤为59根的范围则判断为是通常没有问题的水平但需要改善,用Δ符号表示,如果颈损伤为14根的范围则判断为没有问题,用〇符号表示,观察不到颈损伤时判断为稳定、良好,用◎符号表示。为了评价所接合了的环路的直线性,在线间隔(跨距)为2mm的通常跨距、5mm的长跨距、7mm的超长跨距的3种情况下进行了接合。线直径设为25μm。利用投影机从上方观察30根的接合线,将接合线相对于将球侧和楔侧的接合部连接的直线,距离最大的部位的偏移作为弯曲量进行测定。该弯曲量的平均值,如果小于1根线的直径则判断为良好,用◎符号表示。如果为2根线的直径和以上则为不良,因此用Δ符号表示,如果在其中间则通常不成问题,因此用〇符号表示。关于接合工序中的环路形状稳定性,以线长为5mm的长跨距且环路高度为200250μm的方式连接30个梯形环路,根据高度的标准偏差进行评价。将线直径设为25μm。在高度测定中使用光学显微镜,位置设为环路的最顶点的附近、以及环路中央部的2个部位,从而进行测定。环路高度的标准偏差如果为线直径的1/2以上则判断为偏差大,如果小于线直径的1/2则判断为偏差小且良好。以该基准为基础进行判断,3个部位都偏差小时判断为环路形状稳定,用◎符号表示,在偏差大的部位是1个部位时为比较良好,因此用〇符号表示,在偏差大的部位是2个部位时用Δ符号表示,3个部位都偏差大时用X符号表示。在压接球部的接合形状的判定中,观察200个接合了的球,评价形状的正圆度、尺寸精度等。线直径设为20μm。对如下两种情况分别进行评价形成初期球直径/线直径的比率为1.92.2的通常尺寸的球的情况、和形成该比率为1.51.7的范围的小径球的情况。若偏离了正圆的各向异性和花瓣状等的不良球形状为5个以上,则判断为不良,用X符号表示;若不良球形状为24个,则根据需要希望改善,因此用Δ符号表示,若不良球形状为1个以下,则为良好,因此用O符号表示。剥离接合强度的评价使用了楔接合部的牵拉试验。线直径设为25μπι,跨距设为2mm。这是使在比线长的3/4更接近于楔接合部的位置钩在环路上的钩子向上方移动,测定接合线的断裂强度。牵拉强度也被接合线的直径、环路形状、接合条件等左右,因此不是绝对值,利用了牵拉强度/线抗拉强度的相对比率(Rp)。如果Rp为20%以上,则楔接合性良好,因此用◎符号表示,如果为15%以上且小于20%则判断为没有问题,用〇符号表示,如果为10%以上且小于15%则判断为有时发生不良情况,用Δ符号表示,如果为10%以下,则在量产工序中存在问题,因此用X符号表示。在用于弹回不良的评价的线逆连接中,在接合于电极上了的球接合部的上方使线断裂,形成柱形凸块,将下一个球部连接到引线侧,控制环路后,进行将线楔接合到该柱形凸块上的连接。在弹回不良评价中,从上方用光学显微镜观察环路,调查〈字状的环路的弯曲变形的发生频度。线直径设为25μm,跨距设为4mm,芯片高度设为200μm。环路数观察了800个。若弹回不良数为1个以下则判断为良好,用◎符号表示;若为24个则判断为通常使用不成问题,用〇符号表示,若为59个则要求改善,因此用Δ符号表示,若为10个以上,则在量产工序中产生问题,因此用X符号表示,在表2的“逆连接的弹回性能”栏中示出。在AES深度分析中,在表皮层和芯材之间可确认具有浓度梯度的扩散层,在该扩散层的厚度为0.0020.2μπι的范围时,在表1中的“扩散层”栏中用〇符号表记。在芯片损伤的评价中,在电极膜上接合了球部之后,蚀刻除去电极膜,通过SEM观察了对绝缘膜或硅芯片的损伤。电极数观察了400个部位。确认不到损伤时用〇符号表示,裂纹为2个以下时判断为没有问题的水平,用Δ符号表示,裂纹为3个以上时判断为担心的水平,用X符号表示。表1和表2表示本发明所涉及的接合线的实施例和比较例。<table>tableseeoriginaldocumentpage19</column></row><table><table>tableseeoriginaldocumentpage20</column></row><table>权利要求1涉及的接合线是实施例136,权利要求2涉及的接合线相当于实施例214、16、1836,权利要求3涉及的接合线相当于实施例17、1013、1517、1936,权利要求4涉及的接合线相当于实施例19、1214、16、17、1924,2636,权利要求5涉及的接合线相当于实施例15、921、2336,权利要求6涉及的接合线相当于实施例110、1236,权利要求7涉及的接合线相当于实施例122、2436,权利要求8涉及的接合线相当于实施例130、3236,权利要求9涉及的接合线相当于实施例19、1136,权利要求10涉及的接合线相当于实施例2、8、12、27、32,权利要求11涉及的接合线相当于实施例2、3234、36,权利要求12涉及的接合线相当于实施例17、19、20、22、30,权利要求13涉及的接合线相当于实施例2530。比较例16表示不满足权利要求1的情况的结果。在图1中示出了在实施例4的接合线的表面EBSP测定结果的一例子。对线纵向的晶体取向与<100>取向角度差15°以内的区域进行着色,线表示角度差为15°以上的晶界。图1中的<100>面积比率为90%。对于各权利要求的代表例,对评价结果的一部分进行说明。实施例136的多层结构的接合线,通过本发明涉及的、表皮层的表面的晶面中的纵向的晶体取向<hkl>之中<100>所占的比例(<100>取向比率)为50%以上,确认了在作为采用线直径25μm的一般的环路高度的100μm高度中,颈损伤降低。另一方面,在涉及表皮层的表面中的<100>取向比率小于50%的多层线结构的接合线的比较例16中,即使通常的环路形成也确认出多数的颈损伤。作为优选的事例,表皮层的<100>取向比率为60%以上的实施例25、8、9、11、13、14、16、1821、23、24、26、27、29、32、33、36,降低了在环路高度90μm下的颈损伤,而且,表皮层的<100>取向比率为70%以上的实施例35、9、11、14、20、21、23、26、29、32、36,已确认提高了在环路高度80μm的低环路中的颈损伤的降低。在此,作为用于提高在表皮层的表面向<100>的取向的制造条件之一,成膜后的加工率低比较容易。实施例214、16、1836的多层结构的接合线,通过本发明所涉及的、表皮层的表面中的<111>和<100>合计的取向比率为60%以上,确认了可以抑制在以跨距3mm的通常的环路条件下的环路高度的偏差,且使其稳定。优选该取向比率为80%以上的实施例35、711、14、16、20、21、23、26、29、32、3436,即使是跨距5mm的长跨距,也可以使环路高度稳定化。实施例17、1013、1517、1936的多层结构的接合线,通过本发明所涉及的、芯材的截面中的<111>和<100>合计的取向比率为30%以上,确认了在通常的球尺寸下,降低了球接合部的花瓣不良,可以使形状稳定化。优选该取向比率为50%以上的实施例3、7、10、11、1921、23、24、26、29、30、32、33、36,确认了即使是作为严格接合条件的小径球,球接合部的正圆度也提高。实施例19、1214、16、17、1924、2636的多层结构的接合线,通过本发明所涉及的、表皮层的表面中的晶粒的平均尺寸的纵向/圆周方向的纵横尺寸比为3以上,确认了在通常条件的3mm跨距下,环路的直线性良好。优选该纵横尺寸比为5以上的实施例25、7、8、13、14、16、2024、26、27、29、30、3224、36,确认了即使在作为严格的接合条件的5mm的长跨距下,也可提高直线性。更优选该纵横尺寸比为10以上的实施例35、14、21、24、26、29、34、36,确认了即使是在作为严格的环路条件的7mm的超长跨距下,也可提高直线性。实施例15、921、2336的多层结构的接合线,通过本发明所涉及的、线纵向的晶体取向为<100>的晶粒的面积相对于线表面的总面积的比例(<100>面积比率)为30%以上,在线直径为22μm的细线且环路高度为70μm的低环路连接中,已确认降低了颈损伤。优选该<100>面积比率为40%以上的实施例35、11、14、16、18、20、21、23、26、29、30、32、33、36,确认了即使是采用直径18μm的极细线的环路高度60μm以下的超低环路,也可抑制颈损伤。更优选<100>面积比率为50%以上的实施例4、5、20、21、29、32、36,确认了可进一步提高如下效果即使是直径18μm的极细线,也可抑制颈损伤。实施例2530的多层结构的接合线,通过本发明所涉及的、表皮层的表面的<100>取向比率为50%以上,并且,在表皮层和芯材之间具有中间金属层,确认了可以提高在楔接合部的剥离强度。实施例130、3236的多层结构的接合线,通过本发明涉及的、表皮层的厚度处于0.0050.2μπι的范围,芯片损伤降低且良好。作为比较,在实施例31中,确认了由于表皮层的厚度超过0.2μm,因此芯片损伤增加。实施例19、1136的多层结构的接合线,确认了由于在表皮层和芯材之间具有本发明所涉及的具有浓度梯度的扩散层,因此跨距为0.5mm的短跨距的环路高度的稳定性良好。实施例2、8、12、27、32的多层结构的接合线,确认了通过本发明涉及的、构成芯材的主成分是Cu,且以5300ppm的范围含有B、Pd、Bi、P中的一种以上,由此,提高了跨距5mm左右的环路的直线性。同样,在实施例17、19、20、22、30中,确认了通过本发明涉及的、构成芯材的主成分是Au、且以58000ppm的范围含有Be、Ca、Ni、Pd和Pt中的至少一种以上,提高了直线性。在此,就改善跨距5mm左右的环路的直线性的作用来说,上述的纵向/圆周方向的纵横尺寸比为5以上也是有效的,有时难以识别为由上述的合金成分的添加所产生的效果。另一方面,在实施例9、12、17、19中,确认了虽然纵横尺寸比小于5,但通过含有上述合金成分,也可改善跨距5mm左右的直线性。实施例2、3234、36的多层结构的接合线,确认了如下效果通过本发明涉及的、构成上述芯材的主成分是Cu、以5IOOOOppm的范围含有Pd,构成上述表皮层的主成分是Pd或Ag,由此抑制了逆连接中的弹回不良。优选在实施例2、33、34、36中,Pd浓度为200ppm以上,因此,上述效果更加显著。另外,在实施例2、32、33、36中,确认了由于Pd含量处于5SOOOppm的范围,因此抑制了芯片损伤。本发明中表示数值范围的“以上”和“以下”均包括本数。权利要求一种半导体装置用接合线,是具有由导电性金属形成的芯材和在所述芯材上的以与芯材不同的金属为主成分的表皮层的半导体装置用接合线,其特征在于,所述表皮层的金属为面心立方晶,在所述表皮层的表面的晶面中的纵向的晶体取向<hkl>之中,<100>所占的比例为50%以上。2.根据权利要求1所述的半导体装置用接合线,其特征在于,在所述表皮层的表面的晶面中的纵向的晶体取向<hkl>之中,<111>和<100>所占的比例的总计为60%以上。3.根据权利要求1或2所述的半导体装置用接合线,其特征在于,在所述芯材的截面的晶面中的线纵向的晶体取向<hkl>之中,<111>和<100>所占的比例为30%以上。4.根据权利要求13的任一项所述的半导体装置用接合线,其特征在于,关于所述表皮层的表面中的晶粒的平均尺寸,纵向的平均尺寸相对于圆周方向的平均尺寸的比率为3以上。5.根据权利要求14的任一项所述的半导体装置用接合线,其特征在于,作为所述表皮层的表面中的线纵向的晶体取向为<100>的晶粒的面积相对于线表面的总面积的比例为30%以上。6.根据权利要求15的任一项所述的半导体装置用接合线,其特征在于,构成所述表皮层的主成分为Pd、Pt、Ru或Ag。7.根据权利要求16的任一项所述的半导体装置用接合线,其特征在于,构成所述芯材的主成分是Cu或Au。8.根据权利要求17的任一项所述的半导体装置用接合线,其特征在于,所述表皮层的厚度在0.0050.2μπι的范围。9.根据权利要求18的任一项所述的半导体装置用接合线,其特征在于,在所述表皮层和芯材之间具有扩散层,所述扩散层具有浓度梯度。10.根据权利要求69的任一项所述的半导体装置用接合线,其特征在于,构成所述芯材的主成分是Cu,且以5300ppm的范围含有B、Pd、Bi和P之中的至少一种以上。11.根据权利要求610的任一项所述的半导体装置用接合线,其特征在于,构成所述芯材的主成分是Cu,且以5IOOOOppm的范围含有Pd,构成所述表皮层的主成分是Pd或Ag。12.根据权利要求69的任一项所述的半导体装置用接合线,其特征在于,构成所述芯材的主成分是Au,且以58000ppm的范围含有Be、Ca、Ni、Pd和Pt之中的至少一种以上。13.根据权利要求112的任一项所述的半导体装置用接合线,其特征在于,在所述表皮层和所述芯材之间具有中间金属层,所述中间金属层由与构成所述表皮层和所述芯材的主成分不同的成分形成。全文摘要本发明的目的是提供可以降低颈部的损伤,并且在环路的直线性、环路高度的稳定性、接合线的接合形状的稳定化方面优异的也适应于低环路化、细线化、窄间距化、三维组装等的半导体组装技术的高功能的接合线。本发明的半导体装置用接合线,是具有由导电性金属形成的芯材和在所述芯材上的以与芯材不同的面心立方晶的金属为主成分的表皮层的接合线,其特征在于,在所述表皮层的表面中的纵向的晶体取向之中,<100>所占的比例为50%以上。文档编号H01L21/60GK101828255SQ20088011203公开日2010年9月8日申请日期2008年12月3日优先权日2007年12月3日发明者宇野智裕,山田隆,木村圭一申请人:新日铁高新材料株式会社;日铁新材料股份有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1