半导体装置及其制造方法

文档序号:6986642阅读:265来源:国知局
专利名称:半导体装置及其制造方法
技术领域
本发明涉及半导体装置及其制造方法,特别涉及半导体元件的接合方法(以下也称作“芯片粘接(die attach)方法”)。
背景技术
已知有各种安装晶体管、IC或LSI等的半导体元件的接合方法。此外,还已知有各种适合于半导体元件中的发光二极管(以下也称作“LED”)及激光二极管(以下也称作 “LD”)等的发光的半导体发光元件的接合方法。以往,半导体元件的芯片粘接方法大体上分类,分为使用环氧树脂粘接剂的接合方法(以下也称作“树脂接合”)、和基于在300°C以上的高温下具有共晶点的共晶金属进行的接合方法(以下也称作“共晶接合”)的两种(例如参照专利文献1及2)。其区别使用是考虑固装(mount)半导体元件的引线框材料与基板材料的热膨胀状况的匹配性、可靠性、价格等而决定的。例如,在以价格为优先的小型便携设备等的液晶背灯用发光二极管等中使用树脂接合、在要求长寿命的照明用发光二极管及要求高可靠性的激光二极管等中一般使用共晶接合。作为在树脂接合中使用的树脂,主要使用环氧树脂等的热固性树脂。分散了像银那样的导电性粉末的银膏也是树脂接合的一种。树脂接合是将液态的环氧树脂加热到 150 200°C而使其硬化的方法。树脂接合具有能够在150°C 200°C的低温下容易地硬化的简便性。特别是,对预先向引线框模铸而得到的通用表面安装型半导体装置而言,能够避免热固性树脂的热劣化及热塑性树脂的熔融。但是,在由近年来的发光二极管、激光二极管等的光能量的提高和投入电力的上升带来的发热的影响下,在树脂接合中使用的树脂自身随着时间流逝而发生老化,产生了变色或接合强度下降等的问题。此外,由于在低温下硬化,所以作为树脂弹性率温度指标的玻璃转移温度达不到将半导体装置作为电子部件安装时的焊料安装温度,因此,容易因焊料安装时的热冲击造成的树脂强度下降而发生剥离。进而,仅使用环氧树脂的树脂接合及使用银膏的树脂接合都热传导率较低,不能说散热性充分,有发光二极管等不能点亮的问题。另一方面,基于金与锡的合金的共晶接合能够解决上述树脂接合的问题。但是,共晶接合由于在接合时需要300°C以上的加热,所以在一般使用了 PPA(聚邻苯二甲酰胺)等的树脂封装中难以承受高温而难以采用。此外,即使对安装发光二极管的布线基板或引线框的表面设置具有高反射率的银镀层,也由于共晶金属反射率较低,所以不能实现光输出效果的提高。现有技术文献专利文献专利文献1 日本特开2004-U8330号公报专利文献2 日本特开2006-237141号公报

发明内容
发明概要发明要解决的技术问题所以,本发明是鉴于上述问题而做出的,本发明的目的是提供一种可靠性较高的半导体元件的安装方法、提供一种散热性较高的半导体元件的安装方法。由此,能够提供一种便宜的半导体装置及简单的半导体装置的制造方法。用于解决技术问题的手段本发明涉及半导体装置的制造方法,该半导体装置是对基体的表面设置的银或氧化银与对半导体元件的表面设置的银或氧化银相接合的半导体装置,其特征在于,具有在对基体的表面设置的银或氧化银之上配置对半导体元件的表面设置的银或氧化银以使两者接触的工序;对半导体元件或基体施加压力或施加超声波振动、将半导体元件与基体临时接合的工序;对半导体元件及基体施加150°C 900°C的温度、将半导体元件与基体正式接合的工序。由此,因为不使用容易劣化的部件,所以能够提供可靠性较高的半导体装置的制造方法。此外,由于将半导体元件与基体直接接合,所以热传导性较高,能够将由半导体元件产生的热高效率地传递给基体。进而,由于即使不使用特殊的机械也能够安装半导体元件,所以能够提供简单的半导体装置的制造方法。上述正式接合的温度优选的是150°C 400°C的温度范围,更优选的是150°C 320°C的温度范围。这是因为能够在较低温下接合。此外,还因为,半导体元件不会被破坏、 并且安装半导体元件的封装及安装基板不会热变形。上述临时接合的工序和上述正式接合的工序优选的是同时进行。这是因为,能够更简单地安装半导体元件。上述正式接合的工序优选的是在大气中或氧环境中进行。由此,能够进一步促进银的融合反应。本发明涉及一种半导体装置,该半导体装置将对基体的表面设置的银或氧化银与对半导体元件的表面设置的银或氧化银直接接合,晶片剪切强度是13MPa 55MPa。相对于以往的树脂接合及共晶接合等在基体与半导体元件之间存在树脂粘接剂、银膏、共晶金属等,在本发明中,将基体与半导体元件直接接合。由于不将使用了金和锡的合金的共晶部件、环氧树脂及银膏那样的部件夹在半导体元件与基体之间,所以能够提供可靠性较高的半导体装置。特别是,能够提供晶片剪切强度较高的不易剥离的半导体装置。上述半导体元件也可以使用半导体发光元件。由于将半导体发光元件与基体直接接合,所以能够提供没有光劣化的半导体装置。在发光二极管或激光二极管等的半导体发光元件以外的晶体管或ic、LSI、电容器、齐纳二极管等中也能够采用本发明。上述半导体元件可以使用如下结构在透光性无机基板上形成有半导体层;上述透光性无机基板在与形成有上述半导体层的一侧相反的一侧设置有第1银;设有与上述第 1银接合的缓冲部件;在上述缓冲部件的表面设置有上述银或氧化银。由此,能够提高从半导体装置的光输出效率。此外,能够减轻透光性无机基板与第1银的界面的剥离,能够实现晶片剪切强度的提高。发明效果
通过采用上述结构,能够提供不具有劣化部件的可靠性较高的便宜的半导体装置及其制造方法。此外,由于能够将半导体元件与基体直接接合,所以能够提供散热性较高的半导体装置。进而,能够提供简单的半导体装置的制造方法。


图1是表示有关第1实施方式的半导体发光元件的安装状态的概略剖视图。图2是表示有关第2实施方式的半导体发光元件的安装状态的概略剖视图。图3是表示有关第3实施方式的半导体发光元件的安装状态的概略剖视图。
具体实施例方式本发明者们发现,在作为氧化剂的金属氧化物的存在下、或者在氧、臭氧或大气环境下,如果烧制含有具有0. 1 μ m 15 μ m的平均粒径的银粒子的组成物,则即使是例如 150°C附近的温度,银粒子也能够融合而得到导电性材料。另一方面,在氮环境下,即使烧制含有具有0. μ m 15 μ m的平均粒径的银粒子的组成物,在150°C附近的低温下也得不到导电性材料。基于这样的认识,本发明者们完成了包括在作为氧化剂的金属氧化物的存在下、 或者在氧、臭氧或大气环境下烧制含有具有0. 1 μ m 15 μ m的平均粒径的银粒子的组成物的工序的制造导电性材料的方法。此外,本发明者们在调查本发明的详细的机理的过程中,为了确认表面没有被有机污染的银的接合性,尝试了平滑的银溅镀面间的氧存在下的低温接合,发现即使不是银粒子,通过向接合面施加压力或施加超声波振动、在临时接合后进行低温加热,也能够得到充分的接合。应用该认识而开发具有高可靠性的半导体装置,所以做出了本发明。此外,同时发现作为提供便宜的半导体装置的方法也是有用的。在本发明的芯片粘接方法中,虽然没有明确形成接合的机理,但可以如以下这样推测。可以推测,在作为氧化剂的氧、臭氧或大气环境下,如果使通过银溅射、银蒸镀、银镀层面等形成的银覆层(coating)面接触,则银覆层面的一部分被局部氧化,通过该氧化而形成的氧化银在与银覆层面接触的部分催化性地进行氧交换、经过反复进行氧化还原反应的工序而形成接合。此外,可以推测,通过将银覆层面预先氧化而形成氧化银,即使在惰性气体环境中也能够以同样的结构形成接合。由于推测通过这样的机理形成接合,所以只要通过本发明的芯片粘接方法制造半导体装置,就能够提供具有较高的可靠性、便宜的半导体装置。本发明关于半导体装置的制造方法,是将对基体的表面设置的银或氧化银、与对半导体元件的表面设置的银或氧化银接合的半导体装置的制造方法,其特征在于,具有在对基体的表面设置的银或氧化银之上配置对半导体元件的表面设置的银或氧化银以使两者接触的工序;对半导体元件或基体施加压力或施加超声波振动、将半导体元件与基体临时接合的工序;对半导体元件及基体施加150°C 900°C的温度、将半导体元件与基体正式接合的工序。对半导体元件及基体施加的温度优选的是150°C 400°C的温度范围,更优选的是150°C 320°C的温度范围。本发明的制造方法能够向使用例如发光二极管、激光二极管等的半导体发光元件的半导体装置提供较高的发光效率。此外,由于不经由接合材料,所以能够得到较低的电阻及热阻,所以能够提高可靠性。此外,由于能够在不变为树脂接合的温度区域中进行接合,所以能够避免在半导体装置中使用的塑料部件的热劣化。由于在接合部件中不使用树脂,所以能够改善半导体装置的寿命。进而,由于工序较简单且贵金属的使用量极少,所以能够便宜地制造半导体装置。基体可以使用具备引线框或金属布线的有机或无机基板等,引线框的表面、金属布线的表面被用银覆层。此外,也可以通过对基体整体或仅对固装半导体元件的部位进行氧化处理而使表面成为氧化银。半导体元件的接合面的表面与基体同样被设置银覆层,不管是导电部位还是绝缘部位。此外,与上述基体同样,也可以通过对表面的银覆层进行氧化处理而形成氧化银。对半导体元件或基体施加压力或超声波振动而固装。压力或超声波振动的施加时间取决于基体的银或氧化银的表面状态,可以任意地设定以便充分地进行临时接合。此时,也可以将基体预先预热到150°C 900°C、优选的是150°C 400°C、更优选的是150°C 320°C。临时接合时的气体环境在银-银接合时优选的是含有氧、臭氧的氧化环境,更优选的是低成本的大气条件。在银-氧化银接合、氧化银-氧化银接合时的情况下也可以是不含有氧、臭氧的惰性气体环境,优选的是低成本的氮环境。通过对临时接合的基体及半导体元件施加150°C 900°C的温度、增加接合点、并且使银相互扩散,可以使接合更牢固,进行正式接合。由于金属扩散为温度的函数,所以越高温则能够越迅速地提高接合强度,但为了避免在半导体装置中使用的塑料部件的氧化劣化或熔融等,优选将作为通用的热塑性树脂的熔点上限的320°C附近设为上限。但是,在基体中使用具有耐热性的陶瓷基板等的情况下,可以将温度加温到400°C附近。关于下限温度,为了能够在实用的时间范围内进行牢固的接合,需要是150°C以上。临时接合的工序和正式接合的工序同时进行是优选的。对半导体元件施加压力或超声波振动而向基体上固装,在此状态下通过施加150°C 900°C、优选的是150°C 400°C、更优选的是150°C 320°C的温度、使接合点增加且使银相互扩散,能够使接合变得牢固。由此能够使接合点大幅增加,所以能够期待接合强度的提高。正式接合的工序优选的是在大气中或在氧环境中进行。用来实施正式接合的加热时的气体环境优选的是大气中或氧环境中。这是因为,由此接合点增加而能够期待接合强度的提高。特别是,正式接合时的环境在银-银接合时优选的是含有氧、臭氧的氧化环境, 更优选的是低成本的大气条件。在银-氧化银接合、氧化银-氧化银接合时的情况下也可以是惰性气体环境,优选的是低成本的氮环境。本发明涉及将对基体的表面设置的银或氧化银与对半导体元件的表面设置的银或氧化银直接接合、晶片剪切(Die shear)强度是13MPa 55MPa的半导体装置。晶片剪切强度取决于接合时的加热温度和加热时间,温度越高时间越长则强度越提高,但如果考虑到制造成本及在半导体装置中使用的塑料部件的氧化劣化,则温度越低时间越短越有利。因而,将加热温度设为150°C 900°C、优选的是设为150°C 400°C、更优选的是设为 150°C 320°C,能够通过任意地设定加热时间来调整晶片剪切强度。在实用上需要承受引线接合时的超声波冲击及半导体装置的热冲击试验,最低也需要13MPa,上限优选的是在基于320°C加热而进行的正式接合时晶片剪切强度饱和的55MPa。此外,为了确保半导体装置的可靠性且减少半导体装置的初始特性的下降,所以晶片剪切强度更优选的是13MPa 35MPa。
也可以使用半导体元件是半导体发光元件的结构。银在金属中可见光的反射率最好,向半导体元件表面设置银覆层使半导体元件具备高效率的反射镜,成为最适合于半导体发光元件的形态。此外,通过向基体表面设置银覆层,能够使半导体装置整体作为反射镜构造,能够更高效率地将光输出。在半导体发光元件中使用的透光性无机基板由于光吸收极低,所以可以用于制作具有较高的发光效率的半导体发光元件。半导体发光元件在透光性无机基板的上表面(upper surface)形成有作为半导体层的发光层,将该发光层配置为上表面,向相反侧的作为背面的透光性无机基板设置银或氧化银。由此,能够使从发光层放射的光高效率地反射,得到光输出较大的半导体装置。半导体元件也可以采用在透光性无机基板上形成有半导体层、透光性无机基板在对与形成有半导体层的一侧相反的一侧设置了第1银、设有与第1银接合的缓冲部件、对缓冲部件的表面设置了银或氧化银的结构。通过在最表面的银或氧化银与透光性无机基板之间形成第1银,能够提高光反射率、提高从半导体装置的光输出。在该第1银与最表面的银或氧化银之间设置1层或2层以上的缓冲部件。通过基体的材质及透光性无机基板的材质能够选择各种缓冲部件,可以使用各种无机材料、各种有机材料。通过使用缓冲部件,通过使透光性无机基板与基体之间的应力减小、或缓和,能够提高接合可靠性及防止透光性无机基板的裂纹。<半导体装置>(有关第1实施方式的半导体装置)使用

有关第1实施方式的半导体装置的一例。图1是表示有关第1实施方式的半导体发光元件的安装状态的概略剖视图。虽然作为半导体元件,基于使用了发光二极管的半导体发光元件进行说明,但在半导体发光元件以外的晶体管、ic、LSI等中也能够采用本发明。半导体装置将对基体500的表面设置的银或氧化银520、与对半导体发光元件100 的表面设置的银或氧化银140直接接合。半导体发光元件100具有透光性无机基板110、放射光的半导体层120、设在半导体层120上的电极130、对与形成有半导体层120的一侧相反的一侧设置的第1银150、 与第1银接合的缓冲部件160、和对缓冲部件的表面设置的银或氧化银140。半导体层120 在透光性无机基板110上层叠有η型半导体层121、在η型半导体层121上层叠有ρ型半导体层122。电极130在η型半导体层121上设有η侧电极131、在ρ型半导体层122上设有P侧电极132。半导体发光元件100采用在同一面侧具有η侧电极131和ρ侧电极132 的倒装片构造。对半导体发光元件100的表面设置的银或氧化银140不仅是1层,也可以是2层以上。此外,对半导体发光元件100的表面设置的银或氧化银140的膜厚优选的是 0. 1 μ m 50 μ m左右,但没有特别限定。第1银150优选的是为了使半导体层120的光高效率地反射而设置。第1银150只要是能够将光反射85%以上、优选的是反射90%以上的厚度、例如只要是0. 05 μ m以上,就能够任意地调整。缓冲部件160能够减小或缓和因透光性无机基板110与基体500的机械物性的差异而产生的接合时应力。缓冲部件160使用各种无机材料、有机材料,也可以将这些材料多层化。如果在缓冲部件160中使用有机高分子材料,则能够期待接合时应力的大幅缓和现象。出于对缓冲部件160的露出的端面部的光劣化的担心,更优选无机材料。
能够将银或氧化银140向缓冲部件160之下配置。由此,能够与对基体500的表面设置的银或氧化银520接合。通过在银或氧化银140中使用氧化银,能够进行惰性气体环境下的接合。此外,通过使用氧化银,能够防止硫化、提供接合前半导体发光元件的保管稳定性。该氧化银的实施方式可以通过首先对缓冲部件160设置银、然后用氧等离子、UV照射等的方法进行氧化处理而生成氧化银。但是,也可以对透光性无机基板110直接设置银或氧化银140。此外,银或氧化银 140不需要是一层,也可以为二层以上的多层。通过改变银或氧化银140的膜厚或改变材质,能够实现与透光性无机基板110的接合性的提高。对基体500而言,在台座部510的表面设置了银或氧化银520。台座部510既可以是导电性也可以是绝缘性。作为在台座部510中使用的导电性部件,可以举出铜或铁等的引线框。在台座部510中使用银的情况下不需要设置银或氧化银520,台座部510成为基体 500。另一方面,作为在台座部510中使用的绝缘性部件,可以举出玻璃环氧基板、聚邻苯二甲酰胺或液晶聚合物等的树脂部件、陶瓷部件等。在台座部510中使用了这些绝缘性部件的情况下,在玻璃环氧基板上进行规定的电路布线,对该电路布线设置银或氧化银 520。通过在设于台座部510上的银或氧化银520中选择氧化银,能够进行惰性气体环境下的接合。该氧化银的实施方式可以通过首先对台座部510设置银、然后用氧等离子、UV 照射等的方法进行氧化处理而生成氧化银。氧化处理可以只是固装半导体发光元件100的部位。氧化银的实施方式可以通过首先对缓冲部件160设置银、然后用氧等离子、UV照射等的方法进行氧化处理而生成氧化银。基体500的形状可以采用平板形状、杯形状等各种形态。从半导体发光元件100 的安装的简易度看,作为基体500的形状,优选使用平板形状。此外,为了实现从半导体发光元件100的光输出效率的提高,基体500也可以采用杯形状。在使基体500为杯形状的情况下,也可以使导电性的布线的一部分作为端子在基体500的外部露出。在基体500上也可以固装具有相同的功能的半导体发光元件、或固装具有不同的功能的半导体元件。此外,也可以在基体500上固装电阻元件、电容器等电子元件。设在半导体发光元件100上的电极130为了取得规定的电连接而用金线等实施布线。此外,可以用包括吸收来自半导体发光元件100的光而向不同的波长转换的荧光体或填料、光扩散部件等的密封部件来覆盖半导体发光元件100,做成半导体装置。晶片剪切强度优选的是13MPa 55MPa。这样能够牢固地将半导体元件与基体接

(半导体装置的制造方法)在将半导体发光元件100安装到基体500上时,配置为,使对半导体发光元件100 的表面设置的银或氧化银140接触在对基体500的表面设置的银或氧化银520之上。在对基体500的表面设置的银或氧化银520、与对半导体发光元件100的表面设置的银或氧化银 140之间不存在焊料或树脂等。在基体500中,对台座510实施了规定的电路布线,对该电路布线的最表面设置了银或氧化银520。为了半导体发光元件100的定位,也可以形成与半导体发光元件100的外形相同形状的电路布线、或形成比半导体发光元件100的外形稍小的大致相同形状的电路布线、或形成大致四方形的顶点延伸到半导体发光元件100的四角的电路布线等,而成为各种形状。对半导体发光元件100或基体500施加压力、或施加超声波振动,将半导体发光元件100与基体500临时接合。在将半导体发光元件100载置到基体500上时,可以施加规定的压力或超声波振动,也可以在将半导体发光元件100载置到基体500上之后通过别的机械施加规定的压力或超声波振动。虽然在将半导体发光元件100与基体500临时接合时施加的压力优选的是5MPa 50MPa,更优选的是IOMPa 20MPa,但只要是不将半导体发光元件100破坏之程度的压力就能被容许。在临时接合时也可以将半导体发光元件100及基体500预先施加150°C 400°C的温度。虽然临时接合所需要的时间最好是长时间,但没有特别限定,只要是0. 1秒 60秒左右就可以。对半导体发光元件100及基体500施加150°C 900°C的温度,将半导体发光元件 100与基体500正式接合。也可以将临时接合的工序和正式接合的工序同时进行。对半导体发光元件100及基体500施加的温度优选的是能够牢固地接合的150°C以上。此外,只要是不将半导体发光元件100破坏的温度,温度没有特别限制,只要是作为银的熔点以下的温度、即900°C以下就可以,优选的是400°C以下。此外,作为半导体发光元件100及封装能够承受的温度,特别优选的是320°C以下。正式接合的工序可以在大气中或氧环境中进行。 在半导体发光元件100的表面上使用银140以及在基体500的表面上使用银520的情况下, 在大气中或氧环境中进行。在半导体发光元件100的表面上使用银140以及在基体500的表面上使用氧化银520的情况、及在半导体发光元件100的表面上使用氧化银140以及在基体500的表面上使用银或氧化银520的情况中的任一种情况下都可以在氮环境等的惰性环境中进行,但也可以在大气中或氧环境中进行。正式接合所需要的时间也最好是长时间, 但没有特别限定,只要是1秒 M小时左右就可以。另外,由于银的熔点是961°C,所以在本制造工序中,是在银的熔点以下的900°C 以下的温度下烧制的,特别是150°C 400°C这样的温度是非常低温的。在将半导体发光元件100安装到基体500上之后,进行引线连接,用密封部件覆盖而能够做成半导体装置。(有关第2实施方式的半导体装置)利用

有关第2实施方式的半导体装置的一例。图2是表示有关第2实施方式的半导体发光元件的安装状态的概略剖视图。与有关第1实施方式的半导体装置相比,除了半导体发光元件以外,采用大致相同的结构,所以也有省略一部分说明的情况。在半导体装置中,将对基体600的表面设置的银或氧化银620、与对半导体发光元件200的表面设置的银或氧化银240接合。半导体发光元件200具有透光性无机基板210、放射光的半导体层220、设在半导体层220上的ρ侧电极232、对与形成有半导体层220的一侧相反的一侧设置的第1银250、 与第1银250接合的缓冲部件沈0、和对缓冲部件沈0的表面设置的银或氧化银M0。透光性无机基板210的底部兼作为η侧电极。半导体层220在透光性无机基板210上层叠有η 型半导体层221、在η型半导体层221之上层叠有ρ型半导体层222。半导体发光元件200 具有P侧电极232和在下表面(lower surface)侧的η侧电极(透光性无机基板210的底部)。
基体600在导电性或绝缘性的台座部610上设置了银或氧化银620。这样,即使是有在上下表面具有电极这样的构造的半导体发光元件200,也能够在规定的条件下通过在安装的下表面的最表面上形成银或氧化银240而与对基体200设置的银或氧化银620牢固地接合。(有关第3实施方式的半导体装置)利用

有关第3实施方式的半导体装置的一例。图3是表示有关第3实施方式的半导体发光元件的安装状态的概略剖视图。与有关第1实施方式的半导体装置相比,除了半导体发光元件以外,采用大致相同的结构,所以也有省略一部分说明的情况。在半导体装置中,将对基体700的表面设置的银或氧化银720和对半导体发光元件300的表面设置的银或氧化银340接合。半导体发光元件300具有透光性无机基板310、放射光的半导体层320、设在半导体层320上的电极330、和对电极330设置的银或氧化银340。半导体层320在透光性无机基板310上层叠有η型半导体层321、在η型半导体层321之上层叠有ρ型半导体层322。 对电极330而言,在η型半导体层321上设有η侧电极331、在ρ型半导体层322上设有ρ 侧电极332。半导体发光元件300采用在同一面侧具有η侧电极331和ρ侧电极332的倒装片构造,被面朝下(face down)安装。η侧电极331和ρ侧电极332都在表面上设置了银或氧化银340。银或氧化银340优选的是将η侧电极331和ρ侧电极332的整面覆盖,但也可以仅对与基体700接触的部分设置银或氧化银340。对半导体发光元件300的表面设置的银或氧化银340不仅可以是1层,也可以是2层以上。此外,对半导体发光元件300的表面设置的银或氧化银340的膜厚优选的是0. 1 μ m 50 μ m左右,但没有特别限定。半导体发光元件300由于面朝下安装,所以优选的是使η侧电极331与ρ侧电极332的高度一致, 以使透光性无机基板310与基体大致平行。对基体700而言,对绝缘性的台座部710实施了规定的电路图案,对该电路图案设置了银或氧化银720。这样,即使是将在同一面侧具有η侧电极331和ρ侧电极332这样的构造的半导体发光元件300面朝下安装的情况,也能够通过对η侧电极331及ρ侧电极332设置银或氧化银340,与对基体700设置的银或氧化银720在规定的条件下牢固地接合。特别是,由于能够不使用焊料凸块而接合,所以即使在η侧电极331与ρ侧电极332之间较窄的情况下,也能够不发生短路而接合。有关第3实施方式的半导体装置也与有关第1实施方式的半导体装置的制造方法是大致同样的。但是,在将半导体发光元件300与基体700接合后,不需要引线连接的工序。(半导体元件)作为半导体元件,除了发光二极管或激光二极管等的半导体发光元件以外,也可以使用晶体管或IC、LSI、齐纳二极管、电容器、受光元件等。半导体发光元件在无机基板上层叠有半导体层。作为无机基板,具有透光性的结构是优选的。透光性无机基板可以使用蓝宝石、6冲、6鄉、1110、2110、无机玻璃、陶瓷等,半导体层使用将 GaAlN、ZnS、Zr^e、SiC、GaP、GaAlAs、AlN、InN, AlInGaP, InGaN,GaN, AlInGaN 等的半导体作为发光层而形成的层。作为半导体的构造,可以举出具有MIS接合、PIN接合及 PN接合的同质构造、异质构造或双异质构造。可以根据半导体层的材料及其混晶度选择从
10紫外光到红外光的各种发光波长。发光层可以做成作为产生量子效应的薄膜的单一量子阱构造或多重量子阱构造。在考虑室外等的使用的情况下,作为能够形成高亮度的半导体发光元件的半导体层而使用氮化镓类化合物半导体是优选的,此外,在红色的情况下,优选使用镓-铝-砷类的半导体层或铝-铟-镓-磷类的半导体层,但根据用途也可以使用多种。在半导体层中使用氮化镓类化合物半导体的情况下,在透光性无机基板中可以使用蓝宝石、尖晶石、SiC、Si、ZnO或GaN等的材料。为了量产性良好地形成结晶性较好的氮化镓,优选在透光性无机基板中使用蓝宝石。在将半导体发光元件面朝下使用的情况下,透光性无机基板需要透光性较高。电极优选的是不遮光的材质,但也可以使用遮光的材质。在同一面侧具有η侧电极和P侧电极的半导体发光元件的情况下,优选的是P侧电极以占据半导体层的大范围的方式被实施。在上下表面具有η侧电极和ρ侧电极的半导体发光元件的情况下,优选的是与基体接触的一侧的电极以占据大范围的方式被实施,特别优选的是几乎对下表面全部设置电极。与该基体接触的一侧的电极优选的是用银或氧化银覆盖。透光性的ρ侧电极可以由膜厚为150μπι以下的薄膜形成。此外,ρ侧电极也可以使用金属以外的ITO、ZnO0这里,也可以代替透光性的P侧电极而做成网状电极等的具备多个光输出用开口部的电极形态。电极的形状除了直线状以外,也可以是曲线状、胡须状、梳子状、栅格状、树枝状、 钩状、网眼状等。由于遮光效果与P侧电极的总面积成比例地增大,所以优选的是设计延长导电部的线宽及长度,以使遮光效果不超过发光增强效果。P侧电极可以使用AiuAu-Sn等的金属、或金属以外的ΙΤ0、&ι0。此外,也可以代替透光性的ρ侧电极而做成网状电极等的具备多个光输出用开口部的电极形态。半导体发光元件的尺寸可以任意决定。半导体发光元件的缓冲部件作为无机材料优选的是,包括从银或氧化银以外的金、铜、铝、锡、钴、铁、铟、钨等的金属及其合金、硅石、氧化铝、氧化锆、氧化钛等的氧化物、 氮化铝、氮化锆、氮化钛等的氮化物的组中选择的至少一种。作为有机材料优选的是,包括从环氧树脂、硅树脂、改性硅树脂(modified silicone resin)、聚酰亚胺树脂等的绝缘树脂以及在这些绝缘树脂中填充有大量金属粉的导电性树脂的组中选择的至少一种。在对半导体元件的最表面设置氧化银的情况下,在首先设置银后用氧等离子、UV 照射等的方法进行氧化处理,从而能够生成氧化银。通过形成氧化银,能够进行惰性气体环境下的接合。能够防止银的硫化。(基体)对基体而言,在台座部上设置了银或氧化银。基体可以使用含有氧化铝、氮化铝、 氧化锆、氮化锆、氧化钛、氮化钛或它们的混合物的陶瓷基板;含有Cu、Fe、Ni、Cr、Al、Ag、 Au、Ti或它们的合金的金属基板;引线框;玻璃环氧(glass epoxy)基板;BT树脂基板;玻璃基板;树脂基板;纸等。作为引线框,可以举出例如由铜、铁、镍、铬、铝、银、金、钛或它们的合金形成的金属框,优选的是铜、铁或它们的合金。作为引线框,在需要散热性的半导体装置中更优选的是铜合金,在需要与半导体元件的接合可靠性的半导体装置中更优选的是铁合金。在基体的相当于台座部的部位使用银或氧化银的情况下,不需要再设置银或氧化银。布线基板或引线框的表面也可以由银、氧化银、银合金、银合金的氧化物、Pt、Pt合金、Sn、Sn合金、金、金合金、Cu、Cu合金、Rh, Rh合金等覆盖,固装半导体元件的部位的最表面被银或氧化银覆盖。这些覆盖可以通过镀层、蒸镀、溅射、印刷、涂覆等进行。作为基体,可以也采用使用了树脂的封装。作为封装,除了引线一体成型的结构以外,也可以在将封装成型后通过镀层等设置电路布线。封装可以采用杯形状或平板形状等各种形态。作为构成封装的树脂,优选的是使用耐光性、耐热性良好的电绝缘性的树脂, 可以使用例如聚邻苯二甲酰胺等的热塑性树脂、环氧树脂等的热固性树脂、玻璃环氧、陶瓷等。此外,为了使来自半导体发光元件的光高效率地反射,可以在这些树脂中混合氧化钛等的白色颜料等。作为封装的成形法,可以使用将导线预先设置在模具内而进行的嵌件 (insert)成形、注射成形、挤压成形、传递成型等。(密封部件)为了保护安装在基体上的半导体元件不受外力、灰尘等影响而使用密封部件。密封部件也能够使来自半导体发光元件的光高效率地向外部透射。在密封部件中使用的树脂可以举出例如环氧类、苯酚类、丙烯酸类、聚酰亚胺类、硅酮类、氨基甲酸酯类、热塑性类等。 其中,硅酮类由于能够制造耐热-耐光性良好、长寿命的半导体装置,所以是优选的。作为气密盖或非气密盖,可以举出无机玻璃、聚丙烯酸树脂、聚碳酸酯树脂、聚烯烃树脂、聚降冰片烯树脂等。其中,无机玻璃由于能够制造耐热-耐光性良好、长寿命的半导体装置,所以是优选的。(其他)密封部件也可以含有荧光物质、填料及光扩散部件等。作为荧光物质,只要是吸收来自半导体发光元件的光、并发出与该光不同的波长的荧光的物质就可以,优选的是主要从由Eu、Ce等的镧系元素活化的氮化物类荧光体或氧氮化物类荧光体、主要由Eu等镧系、 Mn等过渡金属类的元素活化的碱土类卤代磷灰石荧光体、碱土类金属卤硼酸荧光体、碱土类金属铝酸盐荧光体、碱土类硅酸盐荧光体、碱土类硫化物荧光体、碱土类硫代镓酸盐荧光体、碱土类氮化硅荧光体、锗酸盐荧光体、主要由Ce等镧系元素活化的稀土类铝酸盐荧光体、稀土类硅酸盐荧光体、或主要由Eu等镧系元素活化的有机及有机络合物等中选择的至少 1 个以上。更优选的是使用(Y,Gd)3 (Al,Ga) 5012 :Ce、(Ca,Sr,Ba)2Si04 :Eu、(Ca,Sr) 2Si5N8 Eu^CaAlSiN3 :Eu 等。作为填料,可以使用氧化铝、硅石、氧化锡、氧化锌、氧化钛、氧化镁、氮化硅、氮化
硼、氮化铝、钛酸钾、云母、硅酸钙、硫酸镁、硫酸钡、硼酸铝、玻璃小片及纤维。此外,为了缓和应力而使用硅橡胶粒子、硅酮弹性体粒子。填料粒径对光线透射率的影响较大,优选的是平均粒径5μπι以上,但也可以使用纳米粒子。由此,能够大幅提高密封部件的透光性及光分散性。作为光扩散部件,可以使用氧化铝、硅石、氧化锡、氧化锌、氧化钛、氧化镁、氮化硅、氮化硼、氮化铝、钛酸钾、云母、硅酸钙、硫酸镁、硫酸钡、硼酸铝、玻璃小片及纤维。此外, 环氧树脂、硅树脂、苯胍胺(benzoguanamine)树脂、密胺树脂的热固性树脂的粒子。填料粒径对光扩散性能的影响较大,优选的是0. Iym 5μπι的范围。由此,能够以少量的光扩散部件进行光扩散。此外,荧光物质及填料、光扩散部件也可以通过向半导体元件印刷、罐注(Potting)、电沉积(electrod印osition)、冲压(stamping)而实现覆层。能够向其上表面覆盖密封部件。由此,在密封部件具有透镜形状的情况下,光学设计变得容易,能够得到高品质的半导体装置。
实施例以下,使用实施例说明有关本发明的半导体装置及其制造方法。有关实施例1 19的半导体装置由于与有关第1实施方式的半导体装置重复,所以也有省略说明的部分。<实施例1>作为半导体发光元件100,使用采用了 600μπιΧ600μπιΧ厚度100 μ m的蓝宝石的透光性无机基板110、层叠在透光性无机基板110的上表面上的InGaN的半导体层120、 和在透光性无机基板110的下表面被金属化(metallizing)的银140。作为基体500,形成杯形状的封装作为台座部510,在从封装露出的引线框的表面上使用设置了银镀层的银 520。封装是在分散了白色颜料的环氧树脂中配置以铜为母材的引线框而嵌件(insert)成形得到的。在基体500的银520上载置半导体发光元件100的银140,以使两者直接接触。在载置中,在大气中将引线框预热到约250°C、从半导体发光元件100的上表面向基体500侧施加约15MPa的压力、保持约10秒钟、进行临时接合。再将临时接合了半导体发光元件100 的基体500在大气环境中在约150°C下加热约5小时,进行正式接合。由此,能够将半导体发光元件100直接接合在基体500上。<实施例2>作为半导体发光元件100,使用采用了 600μπιΧ600μπιΧ厚度100 μ m的蓝宝石的透光性无机基板110、层叠在透光性无机基板110的上表面上的InGaN的半导体层120、 和在透光性无机基板110的下表面被金属化的银140。作为基体500,形成杯形状的封装作为台座部510,在从封装露出的引线框的表面上使用设置了银镀层的银520。封装是在分散了白色颜料的环氧树脂中配置以铜为母材的引线框而嵌件成形得到的。在基体500的银520上载置半导体发光元件100的银140,以使两者直接接触。在载置中,在大气中将引线框预热到约250°C、从半导体发光元件100的上表面向基体500侧施加约15MPa的压力、保持约10秒钟、进行临时接合。再将临时接合了半导体发光元件100 的基体500在大气环境中在约320°C下加热约15分钟,进行正式接合。由此,能够将半导体发光元件100直接接合在基体500上。〈实施例3>作为半导体发光元件100,使用采用了 600μπιΧ600μπιΧ厚度100 μ m的蓝宝石的透光性无机基板110、层叠在透光性无机基板110的上表面上的InGaN的半导体层120、 和在透光性无机基板110的下表面被金属化的银140。作为基体500,形成杯形状的氧化铝陶瓷基板作为台座部510,在形成于氧化铝陶瓷基板上的基底金属的表面上使用设置了银镀层的银520。氧化铝陶瓷基板是将氧化铝陶瓷层叠以成为杯形状、在设置基底金属后烧制氧化铝陶瓷、对烧制后的氧化铝陶瓷的基底金属设置银镀层而成的。在基体500的银520上载置半导体发光元件100的银140,以使两者直接接触。在载置中,在大气中将引线框预热到约250°C、从半导体发光元件100的上表面向基体500侧施加约15MPa的压力、保持约10秒钟、进行临时接合。再将临时接合了半导体发光元件100 的基体500在大气环境中在约150°C下加热约10小时,进行正式接合。由此,能够将半导体发光元件100直接接合在基体500上。〈实施例4>作为半导体发光元件100,使用采用了 600μπιΧ600μπιΧ厚度100 μ m的蓝宝石的透光性无机基板110、层叠在透光性无机基板110的上表面上的InGaN的半导体层120、 和在透光性无机基板110的下表面被金属化的银140。作为基体500,形成杯形状的氧化铝陶瓷基板作为台座部510,在形成于氧化铝陶瓷基板上的基底金属的表面上使用设置了银镀层的银520。氧化铝陶瓷基板是将氧化铝陶瓷层叠以成为杯形状、在设置基底金属后烧制氧化铝陶瓷、对烧制后的氧化铝陶瓷的基底金属设置银镀层而成的。在基体500的银520上载置半导体发光元件100的银140,以使两者直接接触。在载置中,在大气中将引线框预热到约250°C、从半导体发光元件100的上表面向基体500侧施加约15MPa的压力、保持约10秒钟、进行临时接合。再将临时接合了半导体发光元件100 的基体500在大气环境中在约320°C下加热约1小时,进行正式接合。由此,能够将半导体发光元件100直接接合在基体500上。〈实施例5>作为半导体发光元件100,使用采用了 600μπιΧ600μπιΧ厚度100 μ m的蓝宝石的透光性无机基板110、层叠在透光性无机基板110的上表面上的InGaN的半导体层120、 和在透光性无机基板110的下表面被金属化的银140。作为基体500,形成杯形状的封装作为台座部510,在从封装露出的引线框的表面上使用设置了银镀层的银520。封装是在分散了白色颜料的环氧树脂中配置以铜为母材的引线框而嵌件成形得到的。在基体500的银520上载置半导体发光元件100的银140,以使两者直接接触。在载置中,在氮气流中将引线框预热到约250°C、从半导体发光元件100的上表面向基体500 侧施加约15MPa的压力、保持约10秒钟、进行临时接合。再将临时接合了半导体发光元件 100的基体500在氮气流中在约150°C下加热约7小时,进行正式接合。由此,能够将半导体发光元件100直接接合在基体500上。〈实施例6>作为半导体发光元件100,使用采用了 600μπιΧ600μπιΧ厚度100 μ m的蓝宝石的透光性无机基板110、层叠在透光性无机基板110的上表面上的InGaN的半导体层120、 和在透光性无机基板110的下表面被金属化的银140。作为基体500,形成杯形状的封装作为台座部510,在从封装露出的引线框的表面上使用设置了银镀层的银520。封装是在分散了白色颜料的环氧树脂中配置以铜为母材的引线框而嵌件成形得到的。在基体500的银520上载置半导体发光元件100的银140,以使两者直接接触。在载置中,在氮气流中将引线框预热到约250°C、从半导体发光元件100的上表面向基体500 侧施加约15MPa的压力、保持约10秒钟、进行临时接合。再将临时接合了半导体发光元件 100的基体500在氮气流中在约320°C下加热约1小时,进行正式接合。由此,能够将半导体发光元件100直接接合在基体500上。〈实施例7>作为半导体发光元件100,使用采用了 600μπιΧ600μπιΧ厚度100 μ m的蓝宝石的透光性无机基板110、层叠在透光性无机基板110的上表面上的InGaN的半导体层120、 和在透光性无机基板110的下表面被金属化的银140。作为基体500,形成杯形状的氧化铝陶瓷基板作为台座部510,在形成于氧化铝陶瓷基板上的基底金属的表面上使用设置了银镀层的银520。氧化铝陶瓷基板是将氧化铝陶瓷层叠以成为杯形状、在设置基底金属后烧制氧化铝陶瓷、对烧制后的氧化铝陶瓷的基底金属设置银镀层而成的。在基体500的银520上载置半导体发光元件100的银140,以使两者直接接触。在载置中,在氮气流中将引线框预热到约250°C、从半导体发光元件100的上表面向基体500 侧施加约15MPa的压力、保持约10秒钟、进行临时接合。再将临时接合了半导体发光元件 100的基体500在氮气流中在约150°C下加热约15小时,进行正式接合。由此,能够将半导体发光元件100直接接合在基体500上。〈实施例8>作为半导体发光元件100,使用采用了 600μπιΧ600μπιΧ厚度100 μ m的蓝宝石的透光性无机基板110、层叠在透光性无机基板110的上表面上的InGaN的半导体层120、 和在透光性无机基板110的下表面被金属化的银140。作为基体500,形成杯形状的氧化铝陶瓷基板作为台座部510,在形成于氧化铝陶瓷基板上的基底金属的表面上使用设置了银镀层的银520。氧化铝陶瓷基板是将氧化铝陶瓷层叠以成为杯形状、在设置基底金属后烧制氧化铝陶瓷、对烧制后的氧化铝陶瓷的基底金属设置银镀层而成的。在基体500的银520上载置半导体发光元件100的银140,以使两者直接接触。在载置中,在氮气流中将引线框预热到约250°C、从半导体发光元件100的上表面向基体500 侧施加约15MPa的压力、保持约10秒钟、进行临时接合。再将临时接合了半导体发光元件 100的基体500在氮气流中在约320°C下加热约3小时,进行正式接合。由此,能够将半导体发光元件100直接接合在基体500上。〈实施例9>作为半导体发光元件100,使用采用了 600μπιΧ600μπιΧ厚度100 μ m的蓝宝石的透光性无机基板110、层叠在透光性无机基板110的上表面上的InGaN的半导体层120、 和在透光性无机基板110的下表面被金属化的银140。作为基体500,形成杯形状的封装作为台座部510,在从封装露出的引线框的表面上使用设置了银镀层的银520。封装是在分散了白色颜料的环氧树脂中配置以铜为母材的引线框而嵌件成形得到的。在基体500的银520上载置半导体发光元件100的银140,以使两者直接接触。在载置中,在大气中将引线框预热到约250°C、从半导体发光元件100的上表面向基体500侧施加60kHz的超声波、保持约1秒钟、进行临时接合。再将临时接合了半导体发光元件100 的基体500在大气环境中在约150°C下加热约3小时,进行正式接合。由此,能够将半导体发光元件100直接接合在基体500上。〈实施例10>作为半导体发光元件100,使用采用了 600μπιΧ600μπιΧ厚度100 μ m的蓝宝石的透光性无机基板110、层叠在透光性无机基板110的上表面上的InGaN的半导体层120、 和在透光性无机基板110的下表面被金属化的银140。作为基体500,形成杯形状的封装作为台座部510,在从封装露出的引线框的表面上使用设置了银镀层的银520。封装是在分散了白色颜料的环氧树脂中配置以铜为母材的引线框而嵌件成形得到的。
在基体500的银520上载置半导体发光元件100的银140,以使两者直接接触。在载置中,在大气中将引线框预热到约250°C、从半导体发光元件100的上表面向基体500侧施加60kHz的超声波、保持约1秒钟、进行临时接合。再将临时接合了半导体发光元件100 的基体500在大气环境中在约320°C下加热约15分钟,进行正式接合。由此,能够将半导体发光元件100直接接合在基体500上。〈实施例11>作为半导体发光元件100,使用采用了 600μπιΧ600μπιΧ厚度100 μ m的蓝宝石的透光性无机基板110、层叠在透光性无机基板110的上表面上的InGaN的半导体层120、 和在透光性无机基板110的下表面被金属化的银140。作为基体500,形成杯形状的氧化铝陶瓷基板作为台座部510,在形成于氧化铝陶瓷基板上的基底金属的表面上使用设置了银镀层的银520。氧化铝陶瓷基板是将氧化铝陶瓷层叠以成为杯形状、在设置基底金属后烧制氧化铝陶瓷、对烧制后的氧化铝陶瓷的基底金属设置银镀层而成的。在基体500的银520上载置半导体发光元件100的银140,以使两者直接接触。在载置中,在大气中将引线框预热到约250°C、从半导体发光元件100的上表面向基体500侧施加60kHz的超声波、保持约1秒钟、进行临时接合。再将临时接合了半导体发光元件100 的基体500在大气环境中在约150°C下加热约5小时,进行正式接合。由此,能够将半导体发光元件100直接接合在基体500上。〈实施例12>作为半导体发光元件100,使用采用了 600μπιΧ600μπιΧ厚度100 μ m的蓝宝石的透光性无机基板110、层叠在透光性无机基板110的上表面上的InGaN的半导体层120、 和在透光性无机基板110的下表面被金属化的银140。作为基体500,形成杯形状的氧化铝陶瓷基板作为台座部510,在形成于氧化铝陶瓷基板上的基底金属的表面上使用设置了银镀层的银520。氧化铝陶瓷基板是将氧化铝陶瓷层叠以成为杯形状、在设置基底金属后烧制氧化铝陶瓷、对烧制后的氧化铝陶瓷的基底金属设置银镀层而成的。在基体500的银520上载置半导体发光元件100的银140,以使两者直接接触。在载置中,在大气中将引线框预热到约250°C、从半导体发光元件100的上表面向基体500侧施加60kHz的超声波、保持约1秒钟、进行临时接合。再将临时接合了半导体发光元件100 的基体500在大气环境中在约320°C下加热约30分钟,进行正式接合。由此,能够将半导体发光元件100直接接合在基体500上。〈实施例13>作为半导体发光元件100,使用采用了 600μπιΧ600μπιΧ厚度100 μ m的蓝宝石的透光性无机基板110、层叠在透光性无机基板110的上表面上的InGaN的半导体层120、 和在透光性无机基板110的下表面被金属化的银140。作为基体500,形成杯形状的封装作为台座部510,在从封装露出的引线框的表面上使用设置了银镀层的银520。封装是在分散了白色颜料的环氧树脂中配置以铜为母材的引线框而嵌件成形得到的。在基体500的银520上载置半导体发光元件100的银140,以使两者直接接触。在载置中,在氮气流中将引线框预热到约250°C、从半导体发光元件100的上表面向基体500 侧施加60kHz的超声波、保持约1秒钟、进行临时接合。再将临时接合了半导体发光元件 100的基体500在氮气流中在约150°C下加热约4小时,进行正式接合。由此,能够将半导体发光元件100直接接合在基体500上。〈实施例14>作为半导体发光元件100,使用采用了 600μπιΧ600μπιΧ厚度100 μ m的蓝宝石的透光性无机基板110、层叠在透光性无机基板110的上表面上的InGaN的半导体层120、 和在透光性无机基板110的下表面被金属化的银140。作为基体500,形成杯形状的封装作为台座部510,在从封装露出的引线框的表面上使用设置了银镀层的银520。封装是在分散了白色颜料的环氧树脂中配置以铜为母材的引线框而嵌件成形得到的。在基体500的银520上载置半导体发光元件100的银140,以使两者直接接触。在载置中,在氮气流中将引线框预热到约250°C、从半导体发光元件100的上表面向基体500 侧施加60kHz的超声波、保持约1秒钟、进行临时接合。再将临时接合了半导体发光元件 100的基体500在氮气流中在约320°C下加热约30分钟,进行正式接合。由此,能够将半导体发光元件100直接接合在基体500上。〈实施例15>作为半导体发光元件100,使用采用了 600μπιΧ600μπιΧ厚度100 μ m的蓝宝石的透光性无机基板110、层叠在透光性无机基板110的上表面上的InGaN的半导体层120、 和在透光性无机基板110的下表面被金属化的银140。作为基体500,形成杯形状的氧化铝陶瓷基板作为台座部510,在形成于氧化铝陶瓷基板上的基底金属的表面上使用设置了银镀层的银520。氧化铝陶瓷基板是将氧化铝陶瓷层叠以成为杯形状、在设置基底金属后烧制氧化铝陶瓷、对烧制后的氧化铝陶瓷的基底金属设置银镀层而成的。在基体500的银520上载置半导体发光元件100的银140,以使两者直接接触。在载置中,在氮气流中将引线框预热到约250°C、从半导体发光元件100的上表面向基体500 侧施加60kHz的超声波、保持约1秒钟、进行临时接合。再将临时接合了半导体发光元件 100的基体500在氮气流中在约150°C下加热约10小时,进行正式接合。由此,能够将半导体发光元件100直接接合在基体500上。〈实施例16>作为半导体发光元件100,使用采用了 600μπιΧ600μπιΧ厚度100 μ m的蓝宝石的透光性无机基板110、层叠在透光性无机基板110的上表面上的InGaN的半导体层120、 和在透光性无机基板110的下表面被金属化的银140。作为基体500,形成杯形状的氧化铝陶瓷基板作为台座部510,在形成于氧化铝陶瓷基板上的基底金属的表面上使用设置了银镀层的银520。氧化铝陶瓷基板是将氧化铝陶瓷层叠以成为杯形状、在设置基底金属后烧制氧化铝陶瓷、对烧制后的氧化铝陶瓷的基底金属设置银镀层而成的。在基体500的银520上载置半导体发光元件100的银140,以使两者直接接触。在载置中,在氮气流中将引线框预热到约250°C、从半导体发光元件100的上表面向基体500 侧施加60kHz的超声波、保持约1秒钟、进行临时接合。再将临时接合了半导体发光元件 100的基体500在氮气流中在约320°C下加热约2小时,进行正式接合。由此,能够将半导体发光元件100直接接合在基体500上。〈参考例1>作为半导体发光元件100,使用采用了 600μπιΧ600μπιΧ厚度100 μ m的蓝宝石的透光性无机基板110、层叠在透光性无机基板110的上表面上的InGaN的半导体层120、和在透光性无机基板110的下表面被金属化的银140。作为基体500,形成杯形状的封装作为台座部510,在从封装露出的引线框的表面上使用设置了银镀层的银520。封装是在分散了白色颜料的环氧树脂中配置以铜为母材的引线框而嵌件成形得到的。在基体500的银520上载置半导体发光元件100的银140,以使两者直接接触。在载置中,在大气中将引线框预热到约250°C、从半导体发光元件100的上表面向基体500侧施加约15MPa的压力、保持约10秒钟、进行临时接合。再将临时接合了半导体发光元件100 的基体500在大气环境中在约140°C下加热约对小时,进行正式接合。由此,能够将半导体发光元件100直接接合在基体500上。〈测量结果〉对于实施例1至16及参考例1的半导体装置,测量晶片剪切强度。对于晶片剪切强度,在室温下向从基体500剥离半导体发光元件100的方向施加剪切力,并测量出剥离时的强度。此外,对于使用了封装的实施例1、2、5、6、9、10、13、14的半导体装置,测量470nm 光线反射率。在表1中表示晶片剪切强度(gf)和光线反射率(% )的测量结果。
[表1]
权利要求
1.一种半导体装置的制造方法,该半导体装置是对基体的表面设置的银或氧化银与对半导体元件的表面设置的银或氧化银相接合的半导体装置,其特征在于,具有在对基体的表面设置的银或氧化银之上配置对半导体元件的表面设置的银或氧化银以使两者接触的工序;对半导体元件或基体施加压力或施加超声波振动、将半导体元件与基体临时接合的工序;对半导体元件及基体施加150°C 900°C的温度、将半导体元件与基体正式接合的工序。
2.如权利要求1所述的半导体装置的制造方法,其特征在于, 临时接合的工序和正式接合的工序是同时进行的。
3.如权利要求1或2所述的半导体装置的制造方法,其特征在于, 正式接合的工序在大气中或在氧环境中进行。
4.一种半导体装置,其特征在于,将对基体的表面设置的银或氧化银与对半导体元件的表面设置的银或氧化银直接接合,晶片剪切强度是13MPa 55MPa。
5.如权利要求4所述的半导体装置,其特征在于, 半导体元件是半导体发光元件。
6.如权利要求4或5所述的半导体装置,其特征在于,半导体元件在透光性无机基板上形成有半导体层,透光性无机基板在与形成有半导体层的一侧相反的一侧设置有第1银,设有与第1银接合的缓冲部件,在缓冲部件的表面设置有银或氧化银。
全文摘要
本发明目的是提供一种制造产生较低的电阻值的导电性材料的方法,该导电性材料是使用不含有粘接剂的便宜且稳定的导电性材料用的组成物而得到的导电性材料。一种将对基体的表面设置的银或氧化银与对半导体元件的表面设置的银或氧化银接合的半导体装置的制造方法,经过以下的工序制造半导体装置在对基体的表面设置的银或氧化银之上配置对半导体元件的表面设置的银或氧化银以使两者接触的工序;对半导体元件或基体施加压力或施加超声波振动、将半导体元件与基体临时接合的工序;对半导体元件及基体施加150℃~900℃的温度、将半导体元件与基体正式接合的工序。
文档编号H01L21/52GK102292802SQ201080005228
公开日2011年12月21日 申请日期2010年1月20日 优先权日2009年1月23日
发明者丹羽实辉, 小川悟, 藏本雅史 申请人:日亚化学工业株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1