半导体器件和制造半导体器件的方法

文档序号:7005001阅读:198来源:国知局
专利名称:半导体器件和制造半导体器件的方法
技术领域
本发明涉及一种半导体器件和制造半导体器件的方法,并且更加特别地涉及具有优秀的反向特性的半导体器件和制造半导体器件的方法。
背景技术
近年来,已经发展了高压半导体元件的使用。通常,在高压半导体元件中,环形 EQR(等电位环)电极形成为围绕其中排列有单元的有源区。如果保持EQR电极的漏电势, 那么抑制了朝着单元区域的外部的耗尽层的扩展。耗尽层的扩展得到抑制的机构通常被称为“沟道截断结构”。在获得优秀的反向特性方面,沟道截断机构是非常重要的。在现有技术的高压半导体元件中,EQR电极包括两个部分,这两个部分包括EQR电极形成在层间绝缘膜上的部分和EQR电极嵌入在层间绝缘膜中的部分。这两个部分相互电气耦接(日本专利No. 3376209和日本专利No. 3440987)。而且,存在具有其中上面的两个 EQR电极集成在一起的构造的半导体元件(日本专利No. 4059566)。类似地,在此半导体元件中,EQR电极的一部分被暴露到层间绝缘膜。下面将会描述普通高压半导体器件。图13是示出普通高压半导体器件500的构造的平面图。半导体器件500具有矩形外形,并且具有被布置在中心的有源区51。诸如 MOSFET (金属氧化物半导体场效应晶体管)的单元被布置在有源区51中。有源区51被覆盖有与各自的单元电气耦接的源电极(未示出)。环形的第二栅电极76与有源区51隔开地形成在有源区51的外围中。第二栅电极76电气地耦接到稍后将会描述的第一栅电极66。环形的第二 EQR电极73与第二栅电极 76隔开地形成在第二栅电极76的外围中。接下来,将会描述半导体器件500的横截面结构。图14是沿着图13中的线 XIV-XIV截取的普通高压半导体器件500的横截面图。半导体器件500被分为有源区51和沟道截断区52。在半导体器件500中,η—型外延层62形成在η+型半导体衬底61上。漏电极69形成在半导体衬底61的后表面侧上。在有源区51中,ρ型基极扩散区63形成在外延层62的上部中。在基极扩散区63 的上表面侧的一部分上形成η+型源极扩散区64。第一栅电极66形成为将电压通过栅极氧化膜65施加给基极扩散区63。层间绝缘膜67形成在第一栅电极66上。覆盖有源区51的源电极68电气地耦接到源极扩散区64。在沟道截断区52中,基极扩散区63形成在外延层62的上部中。η+型沟道截断层 71形成在基极扩散区63的上表面侧的一部分上。沟道截断层71是与源极扩散区64相同的层。栅极氧化物膜65形成在其处没有形成沟道截断层71的外延层62和基极扩散区63上方。第一 EQR电极72形成在栅极氧化物膜65上方。第一 EQR电极72覆盖有层间绝缘膜67。开口部分形成在层间绝缘膜67的一部分中,并且第一 EQR电极72的上表面被暴露。 被电气地耦接到暴露的第一 EQR电极72的第二 EQR电极73形成在层间绝缘膜67和沟道截断层71上方。在有源区51和沟道截断区52之间的区域中,场氧化物膜74形成在外延层62上方。场氧化物膜74覆盖有层间绝缘膜67。开口部分形成在层间绝缘膜67中,层间绝缘膜 67形成在从有源区51延伸的第一栅电极66上方。第二栅电极76形成为通过开口部分电气地耦接到第一栅电极66。在半导体器件500中,当反向偏置被施加在源电极68和漏电极69之间时,通过虚线Ll表示的耗尽层从有源区51朝着沟道截断区52扩展。另一方面,在沟道截断区52中,沟道截断层71、第一 ERQ电极72、以及第二 EQR电极73相互电气地耦接。而且,图14的末端表面75是通过划片形成的并且具有大量的缺陷的表面。为此,末端表面75具有导电性。通过此构造,沟道截断层71和漏电极69通过末端表面75相互电气地连接。结果,第一 EQR电极72与漏电极69等电势。当第一 ERQ电极72被保持为漏极电势时,通过虚线L2表示的反型层通过形成在第一 EQR电极72下方的栅极氧化物膜65形成在外延层62中。通过此构造,形成沟道截断结构以截断从有源区51延伸的电力线。结果,在电压-电流波形中,获得硬击穿形状(优秀的反向特性)。而且,作为高压半导体元件的另一重要特性,存在导通电阻和击穿耐受电压。导通电阻主要取决于外延层的电阻率,并且能够通过增加外延层中的杂质浓度而减少。然而,当外延层62的杂质浓度增加时,击穿耐受电压减少。即,导通电阻和击穿耐受电压具有相互折衷的关系。为了避免相互折衷的关系的影响,减小单元以增加每单位面积的导通状态电流使得实现导通电阻的减少。另一方面,存在以相同的芯片尺寸减少导通电阻的需求。为了满足此需求,尝试扩大单元面积(其中形成诸如晶体管的元件的区域)。作为一个尝试,已经提出减少沟道截断区的方法(日本专利申请公开No. 2008-270440)。而且,已经提出其中通过使用半导体元件的死区来减少耐受电压区域(与沟道截断区相对应)的技术(日本专利申请公开No. 2008-193043)。在此技术中,多个环形保护环形成在有源区周围的半导体衬底上方。具有导电性的环形第一场板形成在保护环上方。由金属膜形成的第二场板形成在保护环上方。第二场板被暴露到层间绝缘膜。第二场板被布置在其中保护环和第一场板弯曲的半导体元件的每个角的一部分上。因为半导体元件的每个角最初是死区,所以第二场板被布置在角处使得能够减小耐受电压区域的宽度,并且能够增加有源区的面积。稍后将会描述日本专利申请公开No. Hei5 (1993)-19010和日本专利 No.3417336。

发明内容
在上述半导体器件中,有源区覆盖有源电极,并且环形的栅电极和EQR电极以给定的间隔形成在有源区周围。栅电极和EQR电极覆盖有常常被称为“覆盖膜”的绝缘膜。此外,在后工艺的封装中,树脂沉积在覆盖膜上。通常,与源电极、栅电极、以及EQR电极之间的各距离相比,覆盖膜的厚度较薄。为此,树脂进入各电极之间的空间中。在上述情况下,当进行温度循环测试时,由于半导体器件本身和树脂之间的热膨胀系数的差导致应力被施加到半导体器件的表面侧。为此,各电极被挤压和拉伸,导致电极的位移或者剥离。如果电极由铝制成,那么已知热应力对电极的电气性能的影响,诸如铝滑移(电极的移位)、相邻的电极的短路、或者出现断开(日本专利申请公开No. Hei 5(1993)-19010)。已知在半导体器件的角处,由于树脂导致的热应力的影响大。为了解决此问题,例如,已经提出电极形成在除了角之外的区域中的技术(日本专利No. 3417336)。S卩,例如,如日本专利申请公开No. 2008-193043中所公开的,当电极形成在半导体器件的角处时,半导体器件由于热应力的影响而变得脆弱。因此,到现在为止,不能够缩小使用死区同时保持优秀的反向特性的半导体器件的尺寸。根据本发明的一个方面,提供一种半导体器件,包括半导体主体,该半导体主体具有多边形形状并且具有包括形成在其中的晶体管元件的有源区;绝缘膜,该绝缘膜形成在半导体主体的上方;EQR电极,该EQR电极嵌入在有源区周围的绝缘膜中,并且包括在多边形的角处的弯曲部分;源极接触,该源极接触形成在有源区的绝缘膜内;以及EQR接触, 该EQR接触形成在绝缘膜内以接触EQR电极的弯曲部分以及弯曲部分的外侧的半导体主体。在半导体器件中,EQR接触的上表面低于绝缘膜的上表面和源极接触的上表面。根据本发明的另一方面,提供一种制造半导体器件的方法,该半导体器件包括有源区,该有源区形成在半导体主体中,该半导体主体具有多边形外形。该方法包括在半导体主体上方形成EQR电极以围绕有源区,该EQR电极在多边形外形的角处具有弯曲部分;形成覆盖半导体主体和EQR电极的绝缘膜;移除绝缘膜的一部分,并且在从其暴露半导体主体的有源区中形成源极接触孔,并且同时在从其暴露EQR电极和EQR电极外侧的半导体主体的EQR电极的弯曲部分中形成EQR接触孔,其中EQR接触孔中的每一个具有比源极接触孔的开口大的开口 ;在绝缘膜上和在源极接触孔和EQR接触孔内沉积导电材料;以及蚀刻导电材料直到暴露绝缘膜的上表面,同时形成源极接触和EQR接触,其中EQR接触的上表面低于绝缘膜的上表面和源极接触的上表面。根据本发明,能够提供具有优秀的反向特性的尺寸减小的半导体器件以及制造半导体器件的方法。


图1是示出根据第一实施例的半导体器件的结构的平面图;图2是示出根据第一实施例的半导体器件的角的放大的平面图;图3是示出根据第一实施例的沿着图1的线III-III截取的半导体器件的截面图;图4是示出根据第二实施例的半导体器件的结构的平面图;图5是示出根据第二实施例的半导体器件的角的放大的平面图;图6是示出根据第三实施例的半导体器件的结构的平面图;图7是示出根据第三实施例的半导体器件的角的放大的平面图;图8是示出根据第三实施例的沿着图6中的线VIII-VIII截取的半导体器件的截面图;图9是示出根据第三实施例的半导体器件的有源区的截面图;图IOAl和图10A2是示出根据第三实施例的半导体器件的制造工艺的截面图;图IOBl和图10B2是示出根据第三实施例的半导体器件的制造工艺的截面图;图IOCl和图10C2是示出根据第三实施例的半导体器件的制造工艺的截面图;图IODl和图10D2是示出根据第三实施例的半导体器件的制造工艺的截面图;图IOEl和图10E2是根据第三实施例的半导体器件的制造工艺的截面图;图11是示出根据第四实施例的半导体器件的结构的平面图;图12是示出根据第四实施例的半导体器件的半导体器件的角的放大的平面图;图13是示出普通高压半导体器件的构造的平面图;以及图14是示出沿着图13中的线XIV-XIV截取的普通高压半导体器件的截面图。
具体实施例方式第一实施例下面将会参考附图描述本发明的实施例。首先,将会描述根据第一实施例的半导体器件。图1是示出根据第一实施例的半导体器件100的结构的平面图。半导体器件100 具有矩形外形并且具有被布置在其中心的有源区21。例如,有源区21具有被布置在其中的诸如MOSFET或者IGBT (绝缘栅极双极晶体管)的单元。有源区21覆盖有与各单元连接的源电极(未示出)。第二栅电极6形成为围绕有源区21。第二栅电极6电气地耦接到稍后将会描述的第一栅电极9。EQR电极8形成为与第二栅电极6隔开,并且围绕有源区21和第二栅电极 6。如上所述,半导体器件100具有矩形外形。为此,在沿着半导体器件100的侧面的区域中以直线形状形成第二栅电极6和EQR电极8。另一方面,沿着半导体器件100的每个角22弯曲第二栅电极6和EQR电极8。即,第二栅电极6和EQR电极8中的每一个具有其中直线部分和弯曲部分被相互耦接的环形状。如图1中所示,第二栅电极6形成有第二栅电极的直线部分6a和第二栅电极的弯曲部分6b。EQR电极8形成有EQR电极的直线部分 8a和EQR电极的弯曲部分汕。图2是示出根据第一实施例的半导体器件100的角22的放大的平面图。如图1 和图2中所示,每个EQR接触IOa接触EQR电极8的每个弯曲部分8b的外侧。在图1和图2中,EQR电极8和EQR接触IOa覆盖有稍后将会描述的层间绝缘膜 7。然而,为了描述EQR电极8和EQR接触IOa的位置,从图1和图2省略层间绝缘膜7。接下来,将会描述半导体器件100的截面结构。图3是示出根据第一实施例的沿着图1的线III-III截取的半导体器件100的截面图。在半导体器件100中,外延层2形成在半导体层1上方。例如,半导体层1由η型硅衬底制成。例如,外延层2由η—型硅层制成。基极扩散区3形成在外延层2的一部分中。例如,基极扩散区3由ρ型硅扩散区构成。 高浓度扩散区12形成在基极扩散区3的一部分中。例如,高浓度扩散区12由ρ+型硅扩散区构成。漏电极5形成在半导体层1的后表面侧上。层间绝缘膜7形成在外延层2上方。EQR电极(即,EQR电极8)的直线部分8a和弯曲部分8b以及第一栅电极9嵌入在层间绝缘膜7中。第一栅电极9耦接到被排列在有源区21中的每个单元的栅极。例如,EQR电极8和第一栅电极9由多晶硅层构成。开口部分形成在第一栅电极9上方的层间绝缘膜7中。第二栅电极(即,第二栅电极6)的直线部分6a和弯曲部分6b从开口部分在层间绝缘膜7上方延伸。因此,第一栅电极9和第二栅电极6相互电气地耦接。例如,第二栅电极6由铝层构成。将EQR电极8电气地耦接到高浓度扩散区12的每个EQR接触IOa嵌入在层间绝缘膜7中。EQR接触IOa形成为钨塞。在从EQR接触IOa延伸到末端表面16的区域中,沟道截断层4形成在基极扩散区3和层间绝缘膜7之间。例如,沟道截断层4由例如η+硅扩散层构成。尽管未示出,但是在封装半导体器件100时,树脂沉积在层间绝缘膜7上。半导体层1、外延层2、基极扩散区3、沟道截止层4、以及高浓度扩散区12均由半导体材料制成,并且形成半导体主体30。在本示例中,EQR电极8通过EQR接触10a、沟道截断层4、以及末端表面16电气地耦接到漏电极5。因此,EQR电极8被保持为与漏电极5等电势。通过此构造,形成沟道截断结构。在半导体器件100中,如上所述,EQR电极8嵌入在层间绝缘膜7中。此外,EQR接触IOa嵌入在层间绝缘膜7中。g卩,在半导体器件100中,沟道截断结构嵌入在层间绝缘膜 7中。因此,EQR电极8和EQR接触IOa没有接触沉积在层间绝缘膜7上的树脂。因此,能够减少沉积在层间绝缘膜7上的树脂的热膨胀。因此,根据此构造,能够防止电极之间的短路,并且能够防止由于热应力的影响导致的EQR接触IOa的移位和剥离。而且,每个EQR接触IOa形成在最初是死区(半导体器件100的每个角2 的EQR 电极的每个弯曲部分8b的外区域中。因此,不需要确保用于形成EQR接触IOa的额外的区域。因此,根据此构造,能够提供具有优异的耐热性的尺寸缩小的半导体器件。第二实施例接下来,将会描述根据第二实施例的半导体器件。图4是示出根据第二实施例的半导体器件200的平面图。图5是示出根据第二实施例的半导体器件200的每个角23的放大的平面图。如图4和图5中所示,在半导体器件200中,半导体器件100的EQR接触IOa 被替换为EQR接触10b。半导体器件200的其它构造与半导体器件100中的相同,并且将会省略它们的描述。而且,半导体器件200的截面结构与图3中所示的半导体器件100的截面结构相同,并且因此将会省略它的描述。在每个角23,EQR接触IOb在与EQR电极8的外侧正交的方向上延伸。每个EQR 接触IOb形成为矩形形状,并且每个长侧沿着EQR电极8的正交方向延伸。并行地形成多个EQR电极10b。在图4和图5中,EQR电极8和EQR接触IOb覆盖有层间绝缘膜7。然而,为了描述EQR电极8和EQR接触IOb的位置,从图4和图5中省略层间绝缘膜7。根据此构造,EQR接触IOb形成在每个角处。因此,与其中仅形成一个EQR接触的情况相比,能够确保用于EQR接触的形成缺陷的余裕。即,即使在EQR接触的一部分中出现形成缺陷,则正常地形成的EQR接触能够用作EQR接触。而且,如果构造EQR接触IOb的每个条纹电极的宽度变窄,那么EQR接触IOb能够由与形成在有源区中的每个晶体管单元中的沟槽源极接触15相同的材料制成。在小型化晶体管单元的情况下,当沟槽源极接触15的宽度变窄(例如,0.8μπι)时,不能够嵌入铝。 因此,例如,使用诸如钨的具有优异的嵌入性质的材料。EQR接触IOb的宽度可以被设置为足以令人满意地嵌入要嵌入的导电材料的宽度。通过嵌入性质的改进,在通过已经沉积金属之后进行回蚀来形成EQR接触IOb时, 能够充分地确保EQR接触IOb的厚度。另外,通过使条纹电极的宽度变窄,能够进一步减少在后工艺中由沉积在层间绝缘膜7上的树脂施加的热应力。第三实施例下面将会描述根据第三实施例的半导体器件。图6是示出根据第三实施例的半导体器件300的结构的平面图。图7是示出根据第三实施例的半导体器件300的每个角M 的放大的平面图。如图6和图7中所示,在半导体器件300中,半导体器件100的EQR接触 IOa被替换为EQR接触10c。半导体器件300的其它构造与半导体器件100的相同,并且将会省略它们的描述。在图6和图7中,EQR电极8覆盖有层间绝缘膜7。然而,为了描述EQR电极8的位置,从图6和图7中省略层间绝缘膜7。下面将会描述半导体器件300的每个角的截面结构。图8是示出根据第三实施例的沿着图6中的线VIII-VIII截取的半导体器件300的截面图。与半导体器件100的EQR 接触IOa相比,每个EQR接触IOc被暴露同时其上部没有覆盖有层间绝缘膜7。而且,EQR 接触IOc的侧壁接触层间绝缘膜7和EQR电极8。半导体器件300的其它截面结构与半导体器件100的相同,并且因此,将会省略它们的描述。下面将会描述被布置在半导体器件300的有源区21中的每个单元的截面结构。图 9是示出根据第三实施例的半导体器件300的有源区21的截面图。有源区21中的每个单元是沟槽栅极结构。在有源区21中,外延层2形成在半导体层1上。漏电极5形成在半导体层1的后表面侧上。基极扩散区3和源极扩散区如按顺序形成在外延层2的上部中。在本示例中, 源极扩散区如是与沟道截断层4相同的层。第一栅电极9穿过基极扩散区3和源极扩散区4a,并且到达外延层2。栅极氧化膜14形成在基极扩散区3、源极扩散区4a、以及外延层 2与第一栅电极9之间。在图9中,尽管未示出,但是第一栅电极9延伸到有源区21的外部,并且电气地耦接到第二栅电极6。形成覆盖这些结构的层间绝缘膜7。高浓度扩散区12形成在被第一栅电极9夹着的区域中的基极扩散区3的上部中。 沟槽源极接触15穿过层间绝缘膜7和源极扩散区4a,并且电气地耦接到高浓度扩散区12。 源电极13形成在层间绝缘膜7和沟槽源极接触15的上方。源电极13和沟槽源极接触15 相互电气地耦接。下面将会描述半导体器件300的制造方法。图IOAl至图10E2是根据第三实施例的半导体器件300的制造工艺的截面图。在图IOA至图10E2中,并排示出有源区和布置在有源区21中的角的截面结构。首先,外延层2形成在半导体层1上。然后,基极扩散区3、沟道截断层4、以及源极扩散区4a按照所述顺序形成在外延层2的上部中。例如,通过在外延层2上方形成抗蚀剂掩模(未示出),并且其后在其中注入离子能够分别形成基极扩散区3、沟道截断层4、以及源极扩散区如。然后,在有源区21中,形成第一栅电极9、栅极氧化物膜14、以及层间绝缘膜7,如图IOAl中所示。嵌入在层间绝缘膜7中的EQR电极8形成在每个角处(图10A2)。接下来,抗蚀剂掩模17形成在层间绝缘膜7的上方。例如,通过光刻形成抗蚀剂掩模17。在抗蚀剂掩模17中,开口部分形成在有源区21中的沟槽源极接触15形成在层间绝缘膜7中的区域中,和同时形成角处的EQR接触IOa的区域中。然后,通过使用抗蚀剂掩模17进行蚀刻以移除源极扩散区4a(图10B1)和沟道截断层4(图10B》。在此情况下,执行蚀刻使得基极扩散区3不被穿透。接下来,高浓度扩散区12形成在基极扩散区的上部中。例如,通过注入诸如硼的 P型掺杂物离子来形成高浓度扩散区12。在其中剂量是3X IO"5离子/cm2,并且注入能量是50keV的条件下进行离子注入。然后,在高浓度扩散区12的形成之后,移除抗蚀剂掩模 17 (图 IOCl 和图 10C2)。接下来,沉积钨层18使得利用钨层18填充开口部分(图IODl和图10拟)。在沉积钨层18之前可以很好地沉积诸如钛/氮化钛的阻挡金属。然后,钨层18被蚀刻直到钨层18的上表面与层间绝缘膜7的上表面对齐以形成沟槽源极接触15。在此情况下,以相同的方式蚀刻沉积在角处的钨层18。顺便提及,每个角的开口部分的面积比有源区21的开口部分的面积大。为此,角的开口部分的蚀刻速率比有源区21的高。结果,角处的EQR接触 IOc的上表面低于沟槽源极接触15的上表面(图IOEl和图10E2)。结果,EQR接触IOc的侧表面形成为接触EQR电极8和层间绝缘膜7,并且EQR接触IOc的上表面低于层间绝缘膜7的上表面。其后,源电极13被电气地耦接到沟槽源极接触15。其后,EQR接触的上表面被覆盖有覆盖膜(未示出)。S卩,根据此构造和此制造方法,能够同时形成EQR接触IOc和沟槽源极接触15。因此,不需要增加用于形成EQR接触IOc的工艺。因此,根据此构造和此制造方法,能够以低成本实现具有优异的抗热应力性的尺寸缩小的半导体器件。第四实施例下面将会描述根据第四实施例的半导体器件。图11是示出根据第四实施例的半导体器件400的结构的平面图。图12是示出根据第四实施例的半导体器件400的每个角 25的放大的平面图。如图11和图12中所示,在半导体器件400中,半导体器件100的EQR 接触IOa被替换为EQR接触10d。半导体器件400的其它构造与半导体器件100中的相同, 并且将会省略它们的描述。而且,半导体器件400的截面结构与图3中所示的半导体器件 100的截面结构相同。在半导体器件400中,EQR接触IOd形成为矩形形状。两个EQR接触IOd形成在一个角处。两个EQR接触IOd分别在相对于与EQR电极的每个弯曲部分8b正交的方向的不同方向上倾斜。这两个EQR接触IOd的每个宽度大约是0.6 μ m。其它的实施例本发明不限于上述实施例,在不偏离本发明的主题的情况下能够适当地改变。例如,EQR接触IOa至IOd不限于钨。EQR接触IOa至IOd能够由具有导电性的其它材料制成。因此,例如,EQR接触IOa至IOd能够由铝制成。上述EQR接触10a、10b以及IOd的上表面覆盖有层间绝缘膜7。然而,像EQR接触IOc —样,EQR接触10a、10b以及IOd的上表面可以不覆盖有层间绝缘膜7。因此,能够以图IOAl至10E2中所示的制造工艺生产EQR接触IOb和10d。在上述第一至第四实施例中,EQR接触IOa至IOd形成在高浓度扩散区12上方。 然而,如果EQR接触IOa至IOd被保持与漏电极5等电势,那么不总是要求接触EQR接触 IOa至IOd的高浓度扩散区12,并且能够省略高浓度扩散区12。而且,在上述第一至第四实施例中,沟道截断层4形成在EQR接触IOa至IOd与末端表面16之间。通过沟道截断层4能够截断从芯片末端表面开始的电力线。因此,能够提供具有优秀的反向特性的尺寸减少的半导体器件和制造此半导体器件的方法。然而,只要目的是通过例如基极扩散区3使EQR接触IOa至IOd保持与漏电极5等电势,就不总是要求有沟道截断层4,并且能够省略沟道截断层4。根据上述第一至第四实施例的半导体器件的外形不限于矩形形状。根据本发明的半导体器件的外形能够是诸如任意的多边形、圆形或者椭圆形形状的形状。
权利要求
1.一种半导体器件,包括半导体主体,所述半导体主体具有多边形形状并且具有包括形成在其中的晶体管元件的有源区;绝缘膜,所述绝缘膜形成在所述半导体主体的上方;EQR电极,所述EQR电极嵌入在所述有源区周围的所述绝缘膜中,并且包括在所述多边形形状的角处的弯曲部分;源极接触,所述源极接触形成在所述有源区中的所述绝缘膜内;以及EQR接触,所述EQR接触形成在所述绝缘膜内以接触所述EQR电极的弯曲部分和所述弯曲部分外侧的所述半导体主体,其中所述EQR接触的上表面在高度上低于所述绝缘膜的上表面和所述源极接触的上表面。
2.根据权利要求1所述的半导体器件,其中所述EQR接触的宽度大于所述源极接触的宽度。
3.根据权利要求1所述的半导体器件,其中所述EQR接触形成在所述弯曲部分中的每一个处。
4.根据权利要求3所述的半导体器件,其中多个EQR接触形成在所述弯曲部分中的每一个处。
5.根据权利要求1所述的半导体器件,其中所述EQR接触具有矩形形状,所述矩形形状具有从所述弯曲部分的外围朝着所述半导体主体的末端表面延伸的长边。
6.根据权利要求1所述的半导体器件,其中所述源极接触和所述EQR接触中的每一个包括钨塞。
7.根据权利要求1所述的半导体器件,其中所述EQR接触与形成在所述半导体主体的末端上的第一导电类型的第一扩散区和第二导电类型的第二扩散区接触,并且所述EQR电极通过所述EQR接触以及第一和第二扩散区电气地耦接到所述半导体主体的末端表面。
8.根据权利要求7所述的半导体器件,其中所述第二扩散区形成在所述第一扩散区上方,其中所述EQR接触的每个底表面接触所述第一扩散区,并且其中所述第二扩散区接触所述EQR接触的侧表面。
9.根据权利要求1所述的半导体器件,其中所述EQR接触的每个上表面覆盖有另一绝缘膜。
10.一种制造半导体器件的方法,所述半导体器件包括形成在半导体主体中的有源区, 所述半导体主体具有多边形外形,所述方法包括在所述半导体主体上方形成EQR电极使其围绕所述有源区,所述EQR电极在所述多边形外形的角处具有弯曲部分;形成覆盖所述半导体主体和所述EQR电极的绝缘膜;移除所述绝缘膜的一部分,并且在暴露所述半导体主体的所述有源区中形成源极接触孔,并且同时在暴露所述EQR电极和所述EQR电极的外侧的所述半导体主体的所述EQR电极的弯曲部分中形成EQR接触孔,其中所述EQR接触孔中的每一个具有比所述源极接触孔的开口大的开口;在所述绝缘膜上和在所述源极接触孔和所述EQR接触孔内沉积导电材料;以及蚀刻所述导电材料直到暴露所述绝缘膜的上表面,同时形成源极接触和EQR接触,其中所述EQR接触的上表面在高度上低于所述绝缘膜的上表面和所述源极接触的上表面。
11.根据权利要求10所述的制造半导体器件的方法, 其中所述EQR接触形成在所述弯曲部分中的每一个处。
12.根据权利要求11所述的制造半导体器件的方法, 其中多个EQR接触形成在所述弯曲部分中的每一个处。
13.根据权利要求10所述的制造半导体器件的方法,其中所述EQR接触形成矩形形状,所述矩形形状具有从所述弯曲部分的外围朝着所述半导体主体的末端表面延伸的长边。
14.根据权利要求10所述的制造半导体器件的方法, 其中所述源极接触和所述EQR接触被构造为形成钨塞。
15.根据权利要求10所述的制造半导体器件的方法,进一步包括在所述半导体主体的末端上形成第一导电类型的第一扩散区和第二导电类型的第二扩散区,其中所述EQR接触与第一和第二扩散区接触。
16.根据权利要求15所述的制造半导体器件的方法, 其中所述第二扩散区形成在所述第一扩散区上方,其中所述EQR接触孔穿过所述第二扩散区,并且暴露所述第一扩散区, 其中所述EQR接触的每个底表面接触所述第一扩散区,并且其中所述第二半导体层接触所述EQR接触的每个侧表面。
17.根据权利要求10所述的制造半导体器件的方法,进一步包括 在所述EQR接触的上表面上形成另一绝缘膜。
全文摘要
本发明涉及一种半导体器件和制造半导体器件的方法。寻求改进具有优秀的反向特性的尺寸缩小的半导体器件和制造半导体器件的方法。半导体器件包括具有多边形外形的半导体主体。有源区形成在半导体主体中。EQR电极形成为围绕有源区并且具有沿着半导体主体的角EQR电极的弯曲部分。层间绝缘膜形成为覆盖有源区和EQR电极。EQR电极嵌入在有源区周围的层间绝缘膜中。EQR接触接触EQR电极的弯曲部分和弯曲部分的外侧的半导体主体,并且至少具有覆盖有层间绝缘膜的侧壁。
文档编号H01L29/40GK102315248SQ20111018638
公开日2012年1月11日 申请日期2011年6月30日 优先权日2010年6月30日
发明者村川浩一 申请人:瑞萨电子株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1