制造半导体器件的方法

文档序号:7107943阅读:114来源:国知局
专利名称:制造半导体器件的方法
技术领域
本发明涉及一种制造半导体器件的方法。
背景技术
对电子半导体器件和集成电路(IC)的多数应用而言,有利的是分别限制半导体器件和集成电路的总体厚度。例如,轻重量和小尺寸对芯片卡和智能卡具有重要意义。同样地,器件(诸如垂直功率半导体元件)的电气性能可通过具体调节半导体主体的厚度得到提高。通过使半导体主体的厚度与相应的功率半导体元件的电压等级相匹配,可以防止特大 (oversized)半导体主体的不期望的电阻。
因此,期望对半导体主体的厚度进行精确可靠的调节,以避免产量损失并分别确保半导体器件和集成电路的可靠电气特性。发明内容
根据制造半导体器件的方法的一个实施方式,该方法包括在半导体主体的表面上形成多孔区。半导体主体包括位于多孔区中的多孔结构。该方法还包括在多孔区上形成半导体层并在半导体层中形成半导体区域。该方法还包括将半导体层与半导体主体沿着多孔区分离。将半导体层与半导体主体分离包括通过热处理在多孔区内引入氢。
在阅读下面的详细说明并看过附图之后,本领域技术人员将会认识到其他的特征和优势。


附图被包括进来以提供对本发明的进一步了解,附图包含在该说明书中并构成说明书的一部分。附图示出了本发明的实施方式,并与说明一起用于解释本发明原理。本发明的其他实施方式以及本发明的许多潜在优势将更容易意识到,因为从下面的详细说明中更容易理解。附图中的元件不一·定互相成比例绘制。相同的参考标号表示对应的类似部件。 所示各个实施方式的特征可以互相结合,除非它们互相排斥。
实施方式在附图中示出并在随后的说明中进行详细说明。
图1A至图1E示出了应用根据一个实施方式的制造方法的半导体主体的横截面的示意图。
图2A和图2B示出了经历根据实施方式的制造方法的半导体主体的横截面的示意图。
具体实施方式
在下面的详细说明中,参考构成说明书一部分的附图,附图以图解的方式示出实践本发明的具体实施方式
。在这方面,诸如“顶部”、“底部”、“正面”、“背面”、“头部”、“尾部”、“在...上方”、“上方”、“下方”等方向性术语参考正在说明的附图的方向来使用。例如,作为一个实施方式的一部分而示出或说明的特征可用于其他实施方式或与其他实施方式相结合进而形成另一个实施方式。按照设计思路,本发明包括这类修改和变型。使用特定语言来说明实例,这不应理解为限制所附权利要求的范围。附图不按比例绘制,并且只用于说明的目的。为了清楚起见,如果没有另外声明,不同附图中的相同元件或制造过程由相同的参考标号表不。
本说明书中所用的术语“横向”和“水平”旨在说明与半导体衬底或半导体主体的第一表面平行的方向。例如,这可能是晶片或晶圆的表面。本说明书中所用的术语“垂直” 旨在说明布置为与半导体衬底或半导体主体的第一表面垂直的方向。
下面参考

示例性实施方式。然而,本发明不限于详细说明的实施方式,而是能够以适当的方式进行修改和变型。只要不明显地互相排斥,一个实施方式的具体特征和特征的组合可以恰当地与另一个实施方式的特征和特征的组合相结合。
图1A至图1D示出了制造方法的不同阶段期间的半导体器件的横截面的示意图。
图1A的示意性横截面示出了半导体主体100。根据一个实施方式,半导体主体100 包含娃(Si)或由娃制成。根据另一个实施方式,半导体主体100包含碳化娃(SiC)或由碳化硅制成。通常,Si和SiC半导体主体由单晶材料制成,但是半导体主体也可以包含多晶或非晶态材料部件。
参考图1B的示意性横截面,通过将半导体主体100在第一表面的晶体结构从例如单晶或多晶结构变为多孔结构,在半导体主体100的第一表面处形成多孔区101。于是,半导体主体100包括位于多孔区101中的多孔结构。多孔区101中的多孔结构可通过使用一种或多种含有氟化物(F)的溶液对Si或SiC进行阳极氧化而制成。作为一个实例,使用含有氢氟酸(HF)和乙醇或乙酸的溶液。通过选择性地使用或避免外部光源,也可以采用配置为将晶体结构变为多孔结构的其他溶液(例如,HF/ 二甲基甲酰胺和HF/乙腈(acenitri Ie )
O
一旦溶液和半导体主体100进行了物理接触,就发生反应,这使得半导体主体100 将其结构变为多孔结构。这种反应以及相应的作用开始于半导体主体100的表面并扩展到半导体主体100内。因此,通常从半导体主体100的正面IOOf应用溶液。通过选择适当的参数值,诸如电流密度和溶液中的HF浓度,可以控制多孔区的孔隙率。
多孔区101的多孔结构包括多个空穴,诸如中孔(meso-pore)和/或纳米孔。纳米孔的典型的孔尺寸小于大约2nm,中孔具有2nm直到IOOnm的孔尺寸,并且大孔 (maciO-pore)可具有μ m范围内的尺寸。可以实现高达或大于70%的孔隙率。根据一个实施方式,表面处的孔隙率保持足够小,以使多孔区101上可以适当地生长其他层。
然而,这类其他层也可以生长在带有尺寸在nm至μ m范围内的孔(例如,纳米孔、 中孔或甚至大孔)的多孔区101上。在这种情况下,可采用温度在1050° C直到1230° C 的范围或1150° C直到1200° C的范围内的高温TCS (三氯硅烷)外延生长工艺,从而在多孔区101上生成其他层。
在形成多孔区101之后,并且如图1C的示意性横截面所示,在多孔区101上形成半导体层102。半导体层102对应于布置在如上所述多孔区101上的其他层,并且是例如生长或沉积在具有多孔结构的多孔区101上的。通常,半导体层102通过外延生长而形成,以便具有期望的厚度。根据一个实施方式,半导体层102形成为具有5 μ m至200 μ m范围、或者20iim至170iim范围或者35 y m至150 y m范围内的厚度。然后,在半导体层102中形成区域103a、103b和103c,以便形成功能元件。作为一个实例,区域103a、103b和103c可包括通过离子注入和/或杂质扩散到半导体层102内而形成的半导体区域。例如,半导体区域可以由不同的压印(lithographic)步骤形成。半导体区域可以包括n型区、p型区或者n型区和p型区的结合。半导体区域的实例包括源极、漏极、主体、发射极、基极和/或集电区。区域103a、103b和103c还可在半导体区域的包括平面栅介电层和平面栅电极的表面上或靠近该表面包含介电材料和导电材料。区域103a、103b和103c还可包括其中含有介电材料和导电材料的沟槽结构,例如,含有栅介电层和栅电极的沟槽。区域103a、103b和103c可包括形成于半导体层102中的电和/或微机械元件。因此,可以应用多种工艺在半导体层102中形成区域103a、103b、103c,诸如蚀刻、应用激光、掺杂、研磨、材料沉积或生长、以及其他处理,特别是还有这些工艺的各种组合。例如,半导体层102的区域103可以适当地掺杂,以便达到用于半导体器件的对应期望功能的期望掺杂浓度。 然后,如图1D的横截面图中所示,将半导体层102与半导体主体100沿着多孔区101分离。将半导体层102与半导体主体100分离包括通过热处理将氢引入半导体主体100的多孔区101内。具体地,将氢引入多孔区101内也可以与将氢引入整个半导体主体100内同时发生,只要引入的氢应用于多孔区101即可。因此,待引入多孔区101内的氢可以例如从半导体主体100的后侧IOOb开始应用。替换地,或除了从后侧102b引入氢以外,也可以从半导体主体100的正面IOOf引入氢,这意味着氢将从待分离的半导体层102引入或穿过半导体层。热处理支持通过例如增强型扩散将氢引入多孔区101内。此外,对邻近随后将出现在孔内的含有空气的氢的半导体材料进行热处理可导致半导体原子的表面迁移率增大,因而导致半导体原子的更容易重新布置或重新配置(reallocation)。当将氢引入多孔区101内时,多孔区101中的多孔结构的各个小孔重新配置,即,以空穴沿半导体主体100的水平面布置并且半导体主体100与半导体层102沿多孔区101分离的方式重新布置。例如,氢可通过扩散的方式引入或靠近多孔区101。然而,也可将氢注入多孔区101内。也可使用将氢扩散到半导体主体100内和将氢注入到半导体主体100内的组合方式。当将氢通过离子注入方式引入多孔区101内时,氢的注入量例如可低于1016cm_2,例如在5X IO14CnT2至5X IO15CnT2的范围内。此外,能量例如可以在150keV至4MeV的范围内。此外,形成半导体主体的多孔区101可包括半导体主体100的(特别是部分)阳极溶解。如以上说明,中孔(S卩,平均尺寸在大约2nm至大约IOOnm之间的孔)可能是有利的,因为它们与实际孔周围的较小的Si或SiC结构一起出现。这使得半导体层102与半导体主体100更容易分离,这是分别由于Si原子和/或C原子的较高的表面迁移率和/或挥发性C-H化合物的形成以及分离体积中较高的曲率半径和较大的整体表面面积。这些效果和优点也可通过包括的孔尺寸在nm或次nm范围内(S卩,纳米孔)的孔隙率来实现。
当将氢引入多孔区101内时,分别发生Si或SiC的重新配置,其是热激活式的。 该重新配置也进一步由引入多孔区101内的氢支持并对应于多孔区101中的表面积量的减少,以产生实际活动。通过进一步增加多孔区101中的Si或SiC的迁移率,除了将半导体层102与半导体主体100分离之外,还可获得后者的水平测量(levelling)。
这意味着在与半导体主体100分离之后多孔区101的部分将粘附至半导体层102 的情况下,不必通过蚀刻或抛光来去除这些部分,因为这些部分可能具有忽略不计的厚度并且已经是平滑的。因此,由于半导体层102在与半导体主体100分离之后无需经历进一步的蚀刻或抛光处理,所以可实现具有非常小厚度的半导体层102。然而,典型的后侧处理 (诸如离子注入或激光退火)可毫无困难地应用于分离的半导体主体102。
可能已在正面经历装置和布线处理的半导体层102的上述分离处理使得半导体器件的半导体主体具有精确调整的厚度。半导体主体上的厚度变化较小且可能小于半导体主体的总厚度的1%、小于8%、小于4%、或者甚至小于2%,以分别确保半导体器件和形成于其中的集成电路的可靠电气性能。
在图1E的示意性横截面图中,示出了与图1C和图1D类似的半导体主体100、多孔区101、半导体层102、以及半导体层102中的区域103a、103b、103c。此外,示出了沟槽 104a和104b,设置所述沟槽以便有利于将氢应用于多孔结构。沟槽104a和104b可交替地设置或以任意的组合和数量进行设置,并且可包括没有锥度或具有不同锥度的沟槽侧壁。
沟槽104a形成于半导体层102中并且 可穿过半导体层102延伸至多孔区101或终止于半导体层102内。沟槽104a有利于将氢应用于多孔区101,因为氢可更容易地到达多孔区101。
替换地,或除了沟槽104a之外,在半导体主体100的背面设置沟槽104b。沟槽 104b也可向上延伸至多孔区101或在到达多孔区101之前终止于半导体主体100内。而且,沟槽104b有利于将氢应用于多孔区101,因为氢能够更容易地到达多孔区101。虽然沟槽104a可在半导体层102形成于半导体主体100上之后形成,但沟槽104b可在半导体层 102形成在半导体主体100上之前或之后形成。
根据另一个实施方式,多孔区101的形成包括形成双孔隙率结构,该结构包括具有第一孔隙率的第一多孔区和在半导体主体100内更深的具有第二孔隙率的第二多孔区。 多孔区的孔隙率可通过选择合适的参数值来控制,参数值如电流密度和/或溶液中的HF浓度和/或光照强度。
根据一个实施方式,设定第一孔隙率小于第二孔隙率。这例如在图2A中示出,其中第一多孔区IOla形成于半导体主体100中,并且第二多孔区IOlb也形成在第一多孔区 IOla的下方,即,在半导体主体100中更深。作为实例,将第一多孔区IOla的孔隙率设定在 10%至50%之间的范围内,并且将第二多孔区IOlb的孔隙率设定在第一多孔区IOla的孔隙率至80%之间的范围内。选择第一孔隙率小于第二孔隙率允许通过调整第一孔隙率来改进生长在第一多孔区IOla上的半导体层102的晶体质量,并且通过调整第二多孔区IOlb中的第二孔隙率来改进半导体层102与半导体主体100的分离。
图2B示出了另一个实施方式,除了图2A中示出的实施方式,还包括相对于第一多孔区IOla和第二多孔区IOlb在半导体主体100内布置得更深的第三多孔区101c。因此, 第一多孔区IOla的孔隙率设定为小于第二多孔区IOlb和第三多孔区IOlc的孔隙率。并且第三多孔区IOlc在三个多孔区IOlaUOlb和IOlc中具有最大的孔隙率。应当理解,此处说明的各个实施方式的特征相互可进行组合,除非另有说明。术语,诸如“第一”、“第二”等,用于说明各个元件、区域、部分等,并且不旨在进行限制。本说明书中,相同的术语表示相同的元件。如此处所使用的,术语“具有”、“含有”、“包含”、“包括”等是开放式术语,表示存在所述元件或特征,但不排除附加的元件或特征。冠词“一(a、an)”和“该(the)”旨在包括单数形式和复数形式,除非上下文中另有说明。虽然此处示出和说明了具体的实施方式,但本领域技术人员应当理解,在不背离本发明范围的情况下,可对此处示出和说明的具体实施方式
进行各种修改和/或等同执行。本申请旨在覆盖此处讨论的具体实施方式
的任何适用情况或变型。因此,本发明仅由权利要求及其等同物限定。·
权利要求
1.一种制造半导体器件的方法,包括在半导体主体的表面处形成多孔区,其中,所述半导体主体包括位于所述多孔区中的多孔结构;在所述多孔区上形成半导体层;在所述半导体层中形成半导体区域;以及将具有所述半导体区域的所述半导体层与所述半导体主体沿着所述多孔区分离,包括通过热处理将氢引入到所述多孔区内。
2.根据权利要求1所述的方法,其中,通过离子注入将氢引入到所述多孔区内。
3.根据权利要求2所述的方法,其中,氢的注入量在5xl014cm_2至5X1015cm_2的范围内。
4.根据权利要求2所述的方法,其中,所述离子注入的注入能量在150keV至4MeV的范围内。
5.根据权利要求1所述的方法,其中,通过将氢扩散通过所述半导体层进入所述多孔区内,将氢引入到所述多孔区内。
6.根据权利要求1所述的方法,其中,在所述多孔区上形成所述半导体层包括通过外延生长形成所述半导体层。
7.根据权利要求1所述的方法,其中,在所述多孔区上形成所述半导体层包括形成厚度在5 μ m至200 μ m范围内的所述半导体层。
8.根据权利要求1所述的方法,其中,所述半导体主体是Si和SiC中的一种。
9.根据权利要求1所述的方法,其中,形成所述半导体主体的所述多孔区包括所述半导体主体的阳极溶解。
10.根据权利要求9所述的方法,其中,所述半导体主体的阳极溶解包括在氢氟酸和乙醇或乙酸的化学混合物中的阳极溶解。
11.根据权利要求9所述的方法,其中,形成所述多孔区包括形成双孔隙率结构,该结构包括位于所述半导体主体中的具有第一孔隙率的第一多孔区以及在所述半导体主体内更深的具有第二孔隙率的第二多孔区,其中所述第一孔隙率小于所述第二孔隙率。
12.根据权利要求11所述的方法,其中,所述第一多孔区的孔隙率设定在10%至50%之间的范围内,并且所述第二多孔区的孔隙率设定在所述第一多孔区的孔隙率至80%之间的范围内。
13.根据权利要求1所述的方法,其中,在所述半导体层中形成所述半导体区域包括通过将杂质引入所述半导体层内而在所述半导体层中形成η型区或P型区中的至少一种。
14.根据权利要求1所述的方法,还包括在所述半导体主体和/或所述半导体层中形成沟槽。
全文摘要
本发明公开了一种制造半导体器件的方法,包括形成半导体主体的多孔区。该半导体主体包括位于多孔区中的多孔结构。在多孔区上形成半导体层在半导体层中形成半导体区域。然后,将半导体层与半导体主体沿着多孔区分离,包括通过热处理将氢引入到多孔区内。
文档编号H01L21/02GK103000493SQ201210337659
公开日2013年3月27日 申请日期2012年9月12日 优先权日2011年9月12日
发明者卡斯滕·阿伦斯, 约翰内斯·鲍姆加特尔, 安东·毛德, 弗朗西斯科·哈维尔·桑托斯罗德里格斯, 汉斯-约阿希姆·舒尔茨 申请人:英飞凌科技奥地利有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1