一种无膜的直接硼氢化钠燃料电池及其制造方法

文档序号:7039934阅读:228来源:国知局
一种无膜的直接硼氢化钠燃料电池及其制造方法
【专利摘要】本发明公开了一种无膜的直接硼氢化钠燃料电池及其制造方法,本发明的主要内容包括(1)首先,用硼氢化钠还原剂将硝酸银和硝酸镍与EDTA形成的络合物进行还原,制备多壁碳纳米管负载的AgNi纳米催化剂颗粒AgNi-EDTA/MWCNT;(2)将FeCl36H2O与苯胺混合,以过硫酸胺为氧化剂将苯胺聚合,得到铁掺杂的聚苯胺,将它热处理后得到催化剂颗粒Fe/C-PANI;(3)将AgNi-EDTA/MWCNT颗粒制备成阳极片,将Fe/C-PANI颗粒制备成气体扩散电极;(4)以上述阳极片和气体扩散电极组成无膜的直接硼氢化钠燃料电池,电解液为含硼氢化钠的氢氧化钠溶液。本发明的这种无膜直接硼氢化钠燃料电池采用非铂金属(银-镍或Fe/C-PANI)作为电极材料,电催化活性强且性能稳定,而且没有使用离子交换膜,电池成本大大下降。
【专利说明】一种无膜的直接硼氢化钠燃料电池及其制造方法
【技术领域】
[0001]本发明属于燃料电池领域,具体涉及一种无离子交换膜的燃料电池,本发明还涉及一种无离子交换膜的直接硼氢化钠燃料电池的制造方法。
【背景技术】
[0002]燃料电池是公认的一种清洁、高效、安全的发电技术,具有广阔的发展前景。其中质子交换膜燃料电池(PEMFC)的发展最为迅速,但是由于燃料的供给方式、成本、运输等关键性的问题一直没有得到很好的解决,PEMFC的商业化目前还不能实现。因此在PEMFC基础上发展起来的直接液体燃料电池(DLFC)最近得到了广泛的关注,得到了一定的发展,技术也是逐渐成熟。DLFC —般选择有机小分子作为燃料,包括甲醇、甲酸、乙醇等;也选择含氢量高的化合物作为燃料,如肼、硼氢化物。根据DLFC选择的燃料可以分为直接甲酸燃料电池(DFAFC)、直接肼燃料电池(DHFC)、直接醇类燃料电池(DAFC)和直接硼氢化钠燃料电池(DBFC)。
[0003]直接甲醇燃料电池(DMFC)在运行过程中,甲醇氧化的中间产物CO容易使催化剂中毒而使催化剂失去活性,电池的使用寿命缩短。虽然DFAFC中甲酸的氧化活性受到温度的负影响较小,但是甲酸的渗透不但降低了阴极催化剂的氧还原活性,也要求阴极催化剂具有很高的耐酸性。DHFC的肼渗透到阴极,此时在阴极同时发生肼的电化学氧化反应与氧还原反应,从而形成电化学短路使得DHFC的阴极电位向负方向移动,导致电池的电压下降,阴极的氧还原反应也受到影响,降低了燃料的利用率。
[0004]DBFC具有更高的比能量,燃料与产物都是无毒的,而且相比于其他燃料电池使用贵金属催化剂才具有很好的效果,DBFC使用非贵金属催化剂就能够取得满意的效果,因此DBFC受到了广泛的关注。
[0005]因为NaBH4在酸性环境中不稳定,硼氢化钠燃料电池是在碱性介质条件下工作的。直接硼氢化钠燃料电池在碱性介质中的反应机理如下:
阳极反应:BH4>80r — B02>6H20 +8e? E0=-L 24V vs SHE 阴极反应:202+4H20+8e_ — 8 OH、E0=0.4V vs SHE 总反应:202+ BH; — B02> H2O, E0=L 64V vs SHE
直接硼氢化钠燃料电池以硼氢化钠为燃料,是一种不易燃、毒性低、不产生二氧化碳的理想燃料,电池的理论电压为1.64V,理论比能量达到9300 ffh/Kg NaBH4。
[0006]在直接硼氢化钠燃料电池的催化剂选择上,Pt、Pd等贵金属虽然具有较高的催化活性,但是也容易发生BH4_的水解反应,在BH4_浓度高时更为严重。而Au催化剂可以发生接近8电子反应,但其反应活性低,对于燃料电池的推广不具备优势。有相关文献研究了 Ag及Ag合金对硼氢化钠的电催化性能,对NaBH4的氧化电位为-0.7?0.4V (vs Hg/HgO),显示了较好的电催化活性。
[0007]
【发明内容】

本发明的目的是提供一种无膜的直接硼氢化钠燃料电池及其制造方法。[0008]为达到上述目的,本发明的实施方案为:一种无膜的直接硼氢化钠燃料电池的制造方法,包括步骤:
(1)将10~80mg Ni (NO3) 2.6H20和50~120 mg AgNO3溶于25ml纯水中,随后加入125~420 mg的乙二胺四乙酸EDTA,搅拌反应10 min形成络合物,然后再加入70~120mg多壁碳纳米管MWCNT,混合超声15 min ;在磁力搅拌下,缓慢滴入5~15 mL质量百分比50%的NaBH4溶液,保持反应温度50 V,并且在不断搅拌下反应I h ;反应完全后用纯水洗涤,于真空干燥箱内保持40 °C干燥,得到MWCNT负载的AgNi纳米催化剂颗粒AgN1-EDTA/MWCNT ;
(2)将一定量的FeCl36H20与苯胺混合,加入过硫酸胺作为氧化剂,在一定温度下将苯胺聚合,得到铁掺杂的聚苯胺。然后在高温和氮气气氛下将铁掺杂的聚苯胺进行热处理,得到催化剂颗粒Fe/C-PANI。
[0009](3)制备电池的阳极片:称取30~300mg的碳粉与10~IOOmg AgNi纳米催化剂颗粒AgN1-EDTA/MWCNT,加入5~20 ml无水乙醇,置于80°C水浴中,搅拌15分钟,随后慢慢滴加0.03~0.09ml质量百分比为60%的PTFE,促使碳粉和催化剂形成膏状物;将膏状物压成片状,晾干,均匀放置在不锈钢网的两侧,随后用压片机在50 °C、30MPa下压成所需要的电极片样品;将电极片样品置于马弗炉中,缓慢升温至400 °C,在400 1:下烧结1.5 h,即得到所需的阳极电极片。
[0010]( 4 )制备电池的阴极片:
步骤一:防水透气层的制备:
将0.1~0.6g研磨的无水硫酸钠、0.05~0.2g碳粉加入到15ml无水乙醇中,超声分散15分钟以混合均匀,放于80°C水浴中搅拌,逐滴加入0.06~0.4 ml质量百分比60%的PTFE,直至搅拌成凝膏状物体,然后碾压呈片状;将防水透气片状样品放入冷水中,缓慢加热至沸腾,保持30min,放入干燥箱逐渐加热温度到120°C,将防水透气片加热烘干I小时;步骤二:催化层的制备
将10~80 mg Fe/C-PANI催化剂颗粒以及30~240 mg碳粉加入到5~20 ml无水乙醇中,超声15分钟混合均匀,放在80°C水浴中搅拌,逐滴加入0.03~0.06 ml质量百分比60%的PTFE,使碳粉和催化剂形成凝膏状物,然后碾压呈片状,晾干;
步骤三:阴极的制备
将上述制备好的催化层、不锈钢网和防水透气层按顺序叠放在一起,以50°C、200KN的压力热压成型,样品成型后在马弗炉中400 °C焙烧2小时,即制备成阴极片。
[0011](5)将上述制备好的阳极片和阴极片组装成无膜的直接硼氢化钠燃料电池,其中,阴极片涂有催化剂的一面朝向阳极片,防水透气层的一面与空气接触;阳极片两边各配置一块阴极片;电解质为含有硼氢化钠的氢氧化钠溶液。
[0012]步骤(5)中,电解质为含有硼氢化钠的氢氧化钠溶液,其浓度为0.5~
1.5mol.1 ;氢氧化钠的浓度为2 mo I.L'
[0013]一种按照所述的无膜的直接硼氢化钠燃料电池的制造方法制造的电池。
[0014]本发明制备了以多壁碳纳米管(MWCNT)负载的AgNi纳米颗粒AgN1-EDTA/MWCNT,以它作为电池的阳极;通过高温热解铁掺杂的聚苯胺复合物,制备Fe/C-PANI纳米颗粒,以它作为电池的阴极;在碱性溶液中,制造出自呼吸式的无膜直接硼氢化钠燃料电池。由于是无膜燃料电池,而且阳极和阴极材料均为非钼金属,其制造成本大大下降,是一种具有重要应用前景的硼氢化钠燃料电池。
[0015]说明书附图
图1是无膜直接肼燃料电池结构图,其中,a-阴极的防水透气层,b-不锈钢网,C-阴极的催化剂,d-电解质,e-阳极片。
[0016]图2是实例I的燃料电池稳态性能曲线;
图3是实例2的燃料电池稳态性能曲线;
图4是实例3的燃料电池稳态性能曲线。
【具体实施方式】
[0017]实施例1:
(I)将10 mg的Ni (NO3) 2.6H20和50 mg的AgNO3溶于25ml的纯水中,随后加入125mg的乙二胺四乙酸EDTA,搅拌反应10 min形成络合物,然后再加入70 mg多壁碳纳米管MWCNT,混合超声15 min ;在磁力搅拌下,缓慢滴入5 mL质量百分比50%的NaBH4溶液,保持50 °C并且搅拌反应I h;反应完全后用纯水洗涤,于真空干燥箱内保持40 °C干燥,得到MWCNT负载的AgNi纳米催化剂颗粒AgN1-EDTA/MWCNT ;
(2)将一定量的FeCl36H20与苯胺混合,加入过硫酸胺作为氧化剂,在一定温度下将苯胺聚合,得到铁掺杂的聚苯胺。然后在高温和氮气气氛下将铁掺杂的聚苯胺进行热处理,得到催化剂颗粒Fe/C-PANI,具体制备过程与文献(Qingfeng Yi, Yuhui Zhang, XiaopingLiu, Bailin Xiang, Yahui Yang, Fe/Co/C - N nanocatalysts for oxygen reductionreaction synthesized by directly pyrolyzing Fe/Co-doped polyaniline, J.Mater.Sc1.(2014) 49:729 - 736)相同;
(3)电池的阳极片制备:称取30mg的碳粉与10 mg AgNi纳米催化剂颗粒AgN1-EDTA/MWCNT,加入5 ml无水乙醇,置于80°C水浴中,搅拌15分钟,随后慢慢滴加0.03 ml质量百分比为60%的PTFE,促使碳粉和催化剂形成膏状物;将膏状物压成片状,晾干,均匀放置在不锈钢网的两侧,随后用压片机在50 °C、30MPa下压成所需要的电极片样品;将电极片样品置于马弗炉中,缓慢升温至400 °C,在400 1:下烧结1.5 h,即得到所需的阳极电极片。
[0018](4)电池的阴极片制备:
步骤一:防水透气层的制备:
将0.1 g研磨的无水硫酸钠、0.05 g碳粉加入到15 ml无水乙醇中,超声15分钟以混合均匀,放在80°C水浴中搅拌,逐滴加入0.06 ml质量百分比为60%的PTFE,直至搅拌成混合均匀的凝膏,然后碾压呈片状;将该片状样品放入冷水中,缓慢加热至沸腾,保持30min,放入干燥箱逐渐加热温度到120°C,之后再加热烘干I小时,得到防水透气层步骤二:催化层的制备:
将10 mg Fe/C-PANI催化剂颗粒、30 mg碳粉加入到5 ml无水乙醇中,超声15 min混合均匀,放入80°C水浴中磁力搅拌,逐滴加入0.03 ml质量百分比为60%的PTFE,搅拌,形成均匀混合的凝膏,碾压,晾干。
[0019]步骤三:阴极片的制备:
将上述制备好的催化层、不锈钢网和防水透气层按顺序叠放在一起,以50°C、200KN的压力热压成型,样品成型后在马弗炉中400 °C焙烧2小时,即制备成阴极片。
[0020](5)将上述阳极片和阴极片组装成无膜的直接硼氢化钠燃料电池,其结构如图1所示,电解质为含0.5 mo 1-T1硼氢化钠的2 mo 1-T1氢氧化钠溶液,在此条件下电池的稳定性能曲线如图2所示。
[0021]实施例2:
(1)将40mg的Ni (NO3) 2.6Η20和90 mg的AgNO3溶于25ml的纯水中,随后加入280 mg的乙二胺四乙酸EDTA,搅拌反应10 min形成络合物,再加入100 mg的多壁碳纳米管MWCNT与其混合后,超声15 min。在磁力搅拌下,缓慢滴入10 mL质量百分比50%的NaBH4溶液,保持50 °C并且搅拌反应I h。反应完全后用纯水洗涤,于真空干燥箱内保持40 °C干燥,得到MWCNT负载的AgNi纳米催化剂颗粒AgN1-EDTA/MWCNT ;
(2)将一定量的FeCl36H20与苯胺混合,加入过硫酸胺作为氧化剂,在一定温度下将苯胺聚合,得到铁掺杂的聚苯胺。然后在高温和氮气气氛下将铁掺杂的聚苯胺进行热处理,得到催化剂颗粒Fe/C-PANI,具体制备过程与文献(Qingfeng Yi, Yuhui Zhang, XiaopingLiu, Bailin Xiang, Yahui Yang, Fe/Co/C - N nanocatalysts for oxygen reductionreaction synthesized by directly pyrolyzing Fe/Co-doped polyaniline, J.Mater.Sc1.(2014) 49:729 - 736)相同;
(3)电池的阳极片制备:称取100mg的碳粉与30 mg AgNi纳米催化剂颗粒AgN1-EDTA/MWCNT,加入10 ml无水乙醇,置于80°C水浴中,搅拌15分钟,随后慢慢滴加0.06ml质量百分比为60% PTFE,促使碳粉和催化剂形成膏状物;将膏状物压成片状,晾干,均匀放置在不锈钢网的两侧,随后用压片机在50 °C、30MPa下压成所需要的电极片样品;将电极片样品置于马弗炉中,缓慢升温至400 °C,在400 °C下烧结1.5 h,即得到所需的阳极电极片。
[0022](4)电池的阴极片制备:
步骤一:防水透气层的制备:
将0.15 g研磨的无水硫酸钠、0.1 g碳粉加入到15 ml无水乙醇中,超声15分钟以混合均匀,放在80°C水浴中搅拌,逐滴加入0.15 ml质量百分比60%的PTFE,直至搅拌成混合均匀的凝膏,然后碾压呈片状;将该片状样品放入冷水中,缓慢加热至沸腾,保持30min,放入干燥箱逐渐加热温度到120°C,之后再加热烘干I小时,得到防水透气层;
步骤二:催化层的制备:
将50 mg Fe/C-PANI催化剂颗粒、120 mg碳粉加入到10 ml无水乙醇中,超声15 min混合均匀,放入80°C水浴中磁力搅拌,逐滴加入0.04 ml质量百分比60%的PTFE,搅拌,形成均匀混合的凝膏,碾压,晾干。
[0023]步骤三:阴极片的制备:
将上述制备好的催化层、不锈钢网和防水透气层按顺序叠放在一起,以50°C、200KN的压力热压成型,样品成型后在马弗炉中400 °C焙烧2小时,即制备成阴极片。
[0024](5)将上述阳极片和阴极片组装成无膜的直接硼氢化钠燃料电池,其结构如图1所示,电解质为含1.0 mo 1-T1硼氢化钠的2 mo 1-T1氢氧化钠溶液,在此条件下电池的稳定性能曲线如图3所示。
[0025]实施例3:
(I)将80 mg的Ni (NO3) 2.6H20和120 mg的AgNO3溶于25ml的纯水中,随后加入420mg的乙二胺四乙酸EDTA,搅拌反应10 min形成络合物,再加入100 mg的多壁碳纳米管MWCNT与其混合后,超声15 min。在磁力搅拌下,缓慢滴入10 mL质量百分比50%的NaBH4溶液,保持50 °C,并且搅拌反应I h。反应完全后用纯水洗涤,于真空干燥箱内保持40 V干燥,得到MWCNT负载的AgNi纳米催化剂颗粒AgN1-EDTA/MWCNT ;
(2)将一定量的FeCl36H20与苯胺混合,加入过硫酸胺作为氧化剂,在一定温度下将苯胺聚合,得到铁掺杂的聚苯胺。然后在高温和氮气气氛下将铁掺杂的聚苯胺进行热处理,得到催化剂颗粒Fe/C-PANI,具体制备过程与文献(Qingfeng Yi, Yuhui Zhang, XiaopingLiu, Bailin Xiang, Yahui Yang, Fe/Co/C - N nanocatalysts for oxygen reductionreaction synthesized by directly pyrolyzing Fe/Co-doped polyaniline, J.Mater.Sc1.(2014) 49:729 - 736)相同;
(3 )电池的阳极片制备:称取300 mg的碳粉与100 mg AgNi纳米催化剂颗粒AgN1-EDTA/MWCNT,加入20 ml无水乙醇,置于80°C水浴中,搅拌15分钟,随后慢慢滴加
0.09ml质量百分比为60% PTFE,促使碳粉和催化剂形成膏状物;将膏状物压成片状,晾干,均匀放置在不锈钢网的两侧,随后用压片机在50 °C、30MPa下压成所需要的电极片样品;将电极片样品置于马弗炉中,缓慢升温至400 °C,在400 1:下烧结1.5 h,即得到所需的阳极电极片。
[0026](4)电池的阴极片制备:
步骤一:防水透气层的制备:
将0.6 g研磨的无水硫酸钠、0.2 g碳粉加入到15 ml无水乙醇中,超声15分钟以混合均匀,放在80°C水浴中搅拌,逐滴加入0.4 ml质量百分比60%的PTFE,直至搅拌成混合均匀的凝膏,然后碾压呈片状;将该片状样品放入冷水中,缓慢加热至沸腾,保持30min,放入干燥箱逐渐加热温度到120°C,之后再加热烘干I小时,得到防水透气层;
步骤二:催化层的制备:
将80 mg Fe/C-PANI催化剂颗粒、240 mg碳粉加入到20 ml无水乙醇中,超声15 min混合均匀,放入80°C水浴中磁力搅拌,逐滴加入0.06 ml质量百分比60%的PTFE,搅拌,形成均匀混合的凝膏,碾压,晾干。
[0027]步骤三:阴极片的制备:
将上述制备好的催化层、不锈钢网和防水透气层按顺序叠放在一起,以50°C、200KN的压力热压成型,样品成型后在马弗炉中400 °C焙烧2小时,即制备成阴极片。
[0028](5)将上述阳极片和阴极片组装成无膜的直接硼氢化钠燃料电池,其结构如图1所示,电解质为含1.5 mo 1-T1硼氢化钠的2 mo 1-T1氢氧化钠溶液,在此条件下电池的稳定性能曲线如图4所示。
【权利要求】
1.一种无膜的直接硼氢化钠燃料电池的制造方法,其特征在于,包括步骤: (1)将10?80mg Ni (NO3) 2.6H20和50?120 mg AgNO3溶于25ml纯水中,随后加入125?420 mg的乙二胺四乙酸EDTA,搅拌反应10 min形成络合物,然后再加入70?120mg多壁碳纳米管MWCNT,混合超声15 min ;在磁力搅拌下,缓慢滴入5?15 mL质量百分比50%的NaBH4溶液,保持50 °C,并在不断搅拌下反应I h ;反应完全后用纯水洗涤,于真空干燥箱内保持40 °C干燥,得到MWCNT负载的AgNi纳米催化剂颗粒AgNi_EDTA/MWCNT ; (2)将FeCl36H20与苯胺混合,加入过硫酸胺作为氧化剂,在一定温度下将苯胺聚合,得到铁掺杂的聚苯胺,然后在高温和氮气气氛下将铁掺杂的聚苯胺进行热处理,得到催化剂颗粒 Fe/C-PANI ; (3)电池的阳极片的制备方法:称取30?300mg的碳粉与10?IOOmgAgNi纳米催化剂颗粒AgN1-EDTA/MWCNT,加入5?20 ml无水乙醇,置于80°C水浴中,搅拌15分钟,随后慢慢滴加0.03?0.09ml质量百分比为60%的PTFE,促使碳粉和催化剂形成膏状物;将膏状物压成片状,晾干,均匀放置在不锈钢网的两侧,随后用压片机在50 °C、30MPa下压成所需要的电极片样品;将电极片样品置于马弗炉中,缓慢升温至400 °C,在400 °C下烧结1.5h,即得到所需的阳极电极片; (4)电池的阴极按下列三个步骤制备: 步骤一:防水透气层的制备: 将0.1?0.6g研磨的无水硫酸钠、0.05?0.2g碳粉加入到15ml无水乙醇中,超声分散15分钟以混合均匀,放于80°C水浴中搅拌,逐滴加入0.06?0.4 ml质量百分比60%的PTFE,直至搅拌成凝膏状物体,然后碾压呈片状;将该片状样品放入冷水中,缓慢加热至沸腾,保持30min,放入干燥箱逐渐加热温度到120°C,将防水透气片加热烘干I小时; 步骤二:催化层的制备 将10?80 mg Fe/C-PANI催化剂颗粒以及30?240 mg碳粉加入到5?20 ml无水乙醇中,超声15分钟混合均匀,放在80°C水浴中搅拌,逐滴加入0.03?0.06 ml质量百分比60%的PTFE,使碳粉和催化剂形成凝膏状物,然后碾压呈片状,晾干; 步骤三:阴极片的制备 将上述制备好的催化层、不锈钢网和防水透气层按顺序叠放在一起,以50°C、200KN的压力热压成型,样品成型后在马弗炉中400 °C焙烧2小时,即制备成阴极片; (5)将上述制备好的阳极片和阴极片组装成无膜的直接硼氢化钠燃料电池,其中,阴极片涂有催化剂的一面朝向阳极片,防水透气层的一面与空气接触;阳极片两边各配置一块阴极片;电解质为含有硼氢化钠的氢氧化钠溶液。
2.根据权利要求1所述的无膜的直接硼氢化钠燃料电池的制造方法,步骤(5)中,电解质为含有硼氢化钠的氢氧化钠溶液,其浓度为0.5?1.5mol.I71 ;氢氧化钠的浓度为2mo I.L 1。
3.根据权利要求1或2所述的无膜的直接硼氢化钠燃料电池的制造方法制造的电池。
【文档编号】H01M4/86GK103730671SQ201410010905
【公开日】2014年4月16日 申请日期:2014年1月10日 优先权日:2014年1月10日
【发明者】易清风, 唐梅香, 张玉晖, 楚洁, 刘小平, 周智华, 聂会东 申请人:湖南科技大学
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1