功率半导体接触结构及其生产方法与流程

文档序号:11452763阅读:245来源:国知局
功率半导体接触结构及其生产方法与流程

本发明涉及一种用于功率半导体模块的具有键合缓冲物的功率半导体接触结构、以及其生产方法。



背景技术:

厚导线键合、也称为条带键合,代表了尤其在功率电子器件中广泛使用的连接技术。这种已知的连接技术用于在连接器轨道、终端接线柱与部件触点之间通过借助于导线或条带进行桥接来产生电连接。通过静态接触压力以及夹紧工具的高频振荡在对应接触位置处产生导线与键合缓冲物的连接,其中以摩擦焊接过程的形式,导线与接触区域产生实心的且一体的材料键合。最经常地主要使用铝和铜导线进行这些已知的连接技术。铝键合导线具有超过铜键合导线的优点是,它们更易延展并且硬度较小。用铝导线实现的这些已知的摩擦焊接连接通常容易生产,主要是由于固有的薄的氧化铝层环绕该导线。这个氧化物层牢固地粘连到导线上并且由此对摩擦焊接过程中要求的摩擦提供了强力支持,这一方面是通过有待结合的部件的磨损、并且另一方面是通过金属地暴露出纯铝。可以将金属,优选地铜、铝或金属涂层(例如处于镍-金、镍、或钯的形式)考虑作为结合对象。

wo2013/053420a1披露了一种功率半导体芯片及其生产方法,该功率半导体芯片具有用于连接厚导线或条带的金属模制本体。它尤其关注厚导线铜键合技术,以用于实现改进的负载循环耐久性。这种已知的功率半导体芯片在其上侧上具有多个电势表面,在这些电势表面上以良好导电且导热的方式固定了金属模制本体。将这样的金属模制本体借助于连接层、通过低温烧结技术或通过扩散软焊或粘合剂结合的方式紧固到半导体的金属化层上。

wo2013/053419a1描述了用于在金属模制本体与功率半导体芯片之间提供连接从而使之通过厚导线或条带相连接的方法。这种已知的功率半导体芯片的、在该文献中也描述了的基础结构与之前提到的、通过此现有技术尤其解决了通过有机载体膜来生产金属模制本体相对应。

此外,de202012004434u1同样描述了用于提供在上侧具有电势表面的功率半导体芯片与厚导线的连接的金属模制本体。这种已知的连接技术的目的同样是铜-厚导线键合。

所有这些已知的方法共有的特征是,厚导线或条带的连接是在金属模制本体的、基本上光滑的、最多具有在生产过程中造成的粗糙度的表面上进行。虽然铝导线具有强力键合的氧化物层,但铜导线尽管形成氧化物,它们仍不能在厚导线键合过程中用作所需的磨损手段,因为该氧化物并不强力地键合。此外,铜是比铝更硬的金属。另一方面,铜是具有比铝显著更高的导热率和更低的电阻的材料、并且因此在选择用于接触导线的材料时被赋予了优先级。为了能够在导线键合过程中实现与金属模制本体足够好的材料键合,即,通过所述本体的接触面积的方式,通常显著地增大了用于导线键合的超声焊接中的静态压力和能量输入。然而,这具有损伤要连接的半导体结构的风险。尤其是只要金属模制本体上的接触区域由不易延展的、未氧化的材料构成,就可能在借助于厚导线产生牢固结合时、就在相对高数量的负载循环下可靠的连接而言引起问题。



技术实现要素:

在此背景下,本发明的目的是提供一种尤其用于功率半导体模块的功率半导体接触结构、还以及其生产方法,其中在厚导线键合技术中尤其可以使用铜,而不会在一体材料键合的意义上发生尤其是与铝导线相比的、关于有待键合在金属模制本体的接触区域上的导线的一体连接而言的缺点。

根据本发明,该功率半导体接触结构具有至少一个衬底以及作为电极的金属模制本体,该衬底和金属模制本体通过基本上无中断的烧结层而一者烧结在另一者顶上,该烧结层具有多个具有变化的厚度的区域。根据本发明,该金属模制本体采取挠性接触膜的形式,该挠性接触膜的厚度使得此接触膜通过其面向该烧结层的这侧基本上覆盖整个表面积地烧结到这个烧结层的这些具有变化的厚度的区域上。这意味着,烧结层的几何形式改变,使得在处于挠性接触膜的形式的金属模制本体中产生局部交替的隆起和凹陷。通过该接触膜的表面的局部交替的隆起和凹陷,在导线或条带连接过程中产生了高于用平坦表面实现的压力的局部高接触压力。因此,当在导线与接触膜之间产生连接时使夹紧工具进行振荡运动时,这在这种振荡运动的过程中引起了铜氧化物的所希望的局部磨损、并且因此得到了裸露的金属表面。这些局部安排的裸露金属表面适合于在摩擦焊接工艺过程中在键合导线或条带与有待结合的部件之间创建初始的焊接连接,在此情况下金属模制本体是处于接触膜的形式。在接触膜中创建的这样的波浪状表面本身表现为宏观上不平的表面。这样的不平表面则提供了通过微摩擦焊接来形成金属连接的优选条件。这样的不平表面在夹紧工具的振荡运动下提供了与例如由正在结合的部件的给定粗糙度所提供的(这代表了微观上不平的表面)相比更高的抵抗力。

已经证明特别有利的是,通常由相当软的铜构成的膜(其表面已经变成不平的形式)就具备了由于对于创建隆起和凹陷而言的确需要的加工硬化产生的变形而导致的、与铜膜在塑性变形的位置处的初始状态相比更大的强度。接触面积的更大强度在铜键合过程中是尤其有利的,因为这可以更好地吸收在该过程中出现的更大的力。

该金属模制本体优选地由具有的熔点比铝的熔点高300开尔文的金属构成、并且更优选地由选自下组的金属构成,该组包括:铜、银、金、钼、钨、或其合金和/或其混合物。

该烧结层优选地包括银,衬底和金属模制本体通过低温烧结彼此发生材料键合。

根据本发明的另一个示例性实施例,金属模制本体具有基本上恒定的厚度、并且在其背向该烧结层的外侧上将该烧结层的变化的厚度再现作为不平整的、优选波浪状的表面。因此,取决于烧结层的形成,该具有恒定的厚度的金属模制本体被形成为在其面向烧结层的表面上并且在其背向烧结层的表面上是波浪状的或不平的。

在该接触膜上,准确地说在其背向烧结层的、具有与这些具有变化的厚度的区域相适配的隆起和凹陷(具体处于波浪状表面的形式)的外侧上,优选地在至少三个极端点处金属地连接铜导线或铜条带。这可以例如按以下方式实现:铜导线或铜条带覆盖间以凹陷的至少两个隆起、或者替代地间以隆起的两个凹陷。

该烧结层的变化的厚度一方面可以是有意地造成的,但它也可以是通过在烧结之前在有待彼此连接的元件之间均匀地厚地施加该烧结材料层来产生或创建的。由于烧结材料层优选地是以糊状形式以变化的厚度施加的,因此在压力和具有热量输入的情况下进行的烧结之后,获得了波浪状烧结层。

这些具有变化的厚度的区域优选地是以点状、圆形或螺旋形、和/或条状区域的限定图案形成的。在此情况下点状应理解为是指,出现具有增大的厚度的小圆形区域。在原始地以不平结构的形式施加较多烧结糊浆的任何地方,在烧结之后也形成了具有更大厚度的类似图案的对应区域。为了获得非常好的电连接,将这些结合在一起的部件按以下方式烧结,使得金属模制本体通过其面向烧结层的整个表面连接至烧结层上。不存在未连接的区域。

该烧结层优选地形成有以70μm或更小的平均厚度。更优选地,该烧结层具有5至20μm、尤其10至15μm、还更优选地10μm的厚度。已经出乎意料地发现,即使是这样的薄烧结层,也可以以具有限定图案的安排来创建这样的具有不同密度的区域。

该接触膜优选地具有10至105μm、更优选地5至70μm、尤其35μm的厚度。

根据本发明的另外的方面,描述了一种用于在功率半导体模块中形成功率半导体接触结构的方法。

被安排在针对低温烧结的功能表面上的已知接触区域具有平坦的表面,该表面仅具有在生产过程中造成的粗糙度。因此,利用根据本发明的方法,对于铜-厚导线键合实现了这个接触区域的局部交替的隆起和凹陷。在根据本发明的用于在功率半导体模块中形成具有至少一个衬底并且具有金属模制本体的功率半导体接触结构的方法中,首先向作为接触膜形成的金属模制本体的第一结合表面、或向衬底的第二结合表面施加具有局部变化的厚度的烧结材料层。施加烧结材料层之后,通过使用该烧结材料层的在第一与第二结合表面之间连接导通的特性将该接触膜连接至衬底上。在烧结之后,由该烧结材料层形成了烧结层,这是接触膜的、对应于烧结层在发展的变化的厚度的一种区别性形式。

在压力和热量输入下以通常方式进行的烧结优选地是借助于模具进行的,该模具的、面向烧结区域的压力施加面是按以下方式形成的,使得可以与之一起形成具有隆起和凹陷的波浪状烧结层,在烧结之前该接触膜被布置在实际烧结层与该模具的压力施加面之间。在任何情况下进行烧结的方式为,使得在烧结之后,该烧结层具有多个具有不同厚度的区域,该接触膜基本上跟随烧结层的这种波浪状形式,即,具有隆起和凹陷的形式。

根据一种发展,在烧结之前,该烧结材料层以均衡的厚度被施加至相应结合表面上。接着用模具进行烧结,该模具具有抗变形的压力施加面,波浪状形式本身是作为负压痕引入在该压力施加面中。因此一旦进行了烧结,该模具通过其抗变形的压力施加表面将其负压痕作为正压痕冲压到与接触膜烧结的表面中。根据本发明,这具有的作用是形成具有多个具有不同厚度的区域烧结层,并且接触膜已经基本上跨整个表面积烧结成该波浪状形式。该烧结材料层优选地具有足够低的粘度,使得当施加该烧结材料层时,例如通过烧结材料的某种流动实现了基本上恒定的层厚度,并且该层在烧结之前具有这个恒定厚度。

根据一种发展,该烧结材料层是呈糊状形式地以多个具有变化的厚度的区域施加到相应结合表面上。为了能够以糊浆形式施加烧结材料层,为此目的该烧结材料具有优选地比之前描述的示例性实施例中更高的粘度。在施加了该烧结材料层(其中该烧结材料的厚度在该烧结材料层表的面积上变化)之后,该烧结材料以这种形式干燥,即本身被固定为施加时的波浪状结构。随后用模具进行烧结,该模具具有可弹性变形的压力施加面。虽然这个具有可弹性变形的压力施加面的模具能够向有待烧结的位置施加烧结所需要的压力、包括热输入,但它在烧结层中并且在接触膜中基本上维持该烧结材料层的波浪状形式。为了使该模具的压力施加面具备实现这个示例性实施例所需要的可弹性变形的特性,在该模具的施加实际烧结压力的面与金属模制本体(即,接触膜)之间放置一层柔软材料。在烧结过程中,这种柔软材料与金属模制本体相接触,该金属模制本体在上侧上具有干燥的、并且因此固定的波浪状烧结糊浆。这种柔软材料优选地是硅胶垫或橡胶垫,但是也可以由某种其他无孔弹性体构成。决定性的是,这些垫是由甚至在上至300℃的温度(在烧结过程中占主导)下也高度具弹性的材料制成。对于这些垫,使用材料结构上内部具有极高交联的材料,使得它们甚至在烧结所需要的压力和温度下也不显示出任何塑性流动。该柔软材料可以被设计成产生准静压曲线。通过将模具设计成以密封的方式闭合,可以防止该柔软材料逸出。糊状形式的烧结材料层具有的粘度优选地确保了在施加成波浪状结构之后不流动,这样使得它在随后的在烧结之前发生的干燥过程中被固定。

优选地,将一根或多根导线或一个或多个条带的金属连接部进行键合以便在关于该接触膜的第一结合表面、即波浪状外侧而言相反的那侧上形成电连接。这优选地通过微摩擦焊接进行。

接触区域下方的烧结层并不是通过在表面积上平整施加的方法产生的、而是使用局部离散的涂覆方法,这一事实意味着,通过彼此并排地布置多团烧结糊浆来创建在烧结之后变成烧结层的烧结材料层或烧结糊浆,但作为整体这些烧结糊浆呈现无中断的层,其层厚度在该结合表面上在局部最小值与局部最大值之间波动。因此,通过以彼此并排且可以良好接触的离散的团来施加烧结糊浆,获得了在烧结之前不平的表面。所施加的烧结糊浆层的局部厚度的这种特定变化可以例如通过对应地选择所使用的施加方法和/或对应选择的烧结材料粘度来获得。优选地,使用分配、喷射打印涂覆、移印方法、喷雾或丝网印刷或孔版印刷来以对应的团施加烧结糊浆。

在丝网印刷的情况下,通过掩模或掩盖的区域可以实现比丝网的未掩盖区域更薄的层厚度。在喷射打印方法的情况下,另一方面,实现点形式的累积物,这同样对于较厚层厚度或较薄层厚度的区域有贡献。在喷雾的情况下,实现彼此并排的线状层厚度变化,这些变化被安排成线性地延伸并且因此在相应结合表面上以曲线方式延伸。然而在此有可能安排方格形轨迹,从而实现具有限定图案的层厚度变化。

优选地,将糊状的烧结材料层、即烧结糊浆团以点状、圆形、条状或螺旋状方式施加。这种特定的以变化的厚度施加烧结糊浆因此导致了与有待连接的部件的平面平行度的特定偏差。在烧结之后,接触膜与烧结层的波浪状结构烧结在一起,从而使得接触膜也在其外侧上同样具有波浪状结构。

根据本发明的方法的一种发展,优选地通过低温烧结将该接触膜、烧结材料层和衬底烧结在一起。

根据该方法的一种发展,通过接触膜的塑性变形造成的加工硬化导致形成了多个局部创建的第一区域和多个局部创建的第二区域,所述第一区域具有的硬度高于第二区域中的硬度。这意味着,这些具有变化的硬度的区域是并排安排的。

优选地,使用铜导线或条带来进行电连接的键合,通过铜键合将这些导线或条带一体地连接到接触膜上,即在键合之后它们材料键合到彼此上。

根据本发明的方法的主要优点在于提供了用于键合的表面,借助于该表面,可以以摩擦焊接、尤其微摩擦焊接来为与导线或条带的电连接提供尤其甚至在负载循环下都较长的该连接的使用寿命。

附图说明

现在将参照附图来解释本发明的另外的优点、特征和可能的应用。在附图中:

图1:示出了根据本发明的具有功率半导体接触结构的功率半导体模块的基础结构,并且

图2:示出了根据本发明的方法的流程图。

具体实施方式

图1示出了根据本发明的具有功率半导体接触结构的功率半导体模块的基础结构。根据其基本结构,有待连接的衬底或第一部件在其上侧上具有金属模制本体或有待结合的第二部件,该第二部件通过在第一结合表面上通过低温烧结而创建的处于烧结层3a的形式的烧结材料层被连接到衬底1上。金属模制本体2是以波浪状方式、以接触膜5的形式形成并且通过其面向烧结层3a的这侧4具有以下形式,使得它与烧结层3a的波浪状结构相适配,其方式为使得尽管存在该波浪状结构,侧4仍始终被烧结到该烧结层上,而在形成其整个表面积的连接中没有任何瑕疵。金属模制本体2被形成为挠性薄膜意义上的接触膜。烧结层3a具有多个具有较大厚度的区域8a和多个具有较小厚度的区域8b。

根据图1的表示,衬底1在其底侧或第二结合表面9上通过金属化层6a上的另外烧结层3b连接到半导体7上。金属化层6a代表发射极金属化层。在半导体7的上侧上还安排了用于栅极端子的金属化层6b,金属化层6b与发射极金属化层6a通过用空隙代表的钝化层10绝缘。在半导体7的底侧上还提供了另外的金属化层6c,该金属化层为该功率半导体模块的连接提供了额外的可能性。

接触膜5的波浪状结构在通过摩擦焊接来在其上侧上连接端子导线或端子条带时也提供了优点,因为摩擦焊接是在同时施加压力的情况下进行的,并且在将端子导线或端子条带布置在该波浪状结构的“鼓起”上时,压力更高,因为接触面积减小。

图2示出了根据本发明用于在功率半导体模块中形成具有至少一个衬底并且具有金属模制本体的功率半导体接触结构的方法的流程图。该方法包括以下步骤:

--首先,向作为接触膜形成的该金属模制本体的第一结合表面、或向该衬底的第二结合表面施加11如上文描述的烧结材料层,接着

--其次,在形成具有局部变化的厚度的烧结层并发展该接触膜的区别性形式来应对该烧结层的变化的厚度的同时,通过使用烧结材料层将该接触膜烧结12到衬底上。

在图2中还展示了可选的第三步骤13,其中在接触膜的波浪状表面处将导线或条带金属地连接到该接触膜上。使用微摩擦焊接或通过铜键合可以形成这样的金属连接。

标记清单

1衬底/有待结合的第一部件

2金属模制本体/有待结合的第二部件

3a有待结合的第一与第二部件之间的烧结层

3b有待结合的第一部件与半导体的发射极金属化层之间的另外烧结层

4金属模制本体的面向烧结层的那侧/第一结合表面

5接触膜

6a半导体的发射极区域中的金属化层

6b半导体的栅极端子的金属化层

6c半导体的底侧的金属化层

7半导体

8a烧结层的具有较大厚度的区域

8b烧结层的具有较小厚度的区域

9衬底的结合表面

10钝化层

11本发明方法的第一步骤

12本发明方法的第二步骤

13本发明方法的可选的第三步骤

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1