高容量固态锂离子电池负极材料和电池负极及其制备方法与流程

文档序号:11956572阅读:388来源:国知局
高容量固态锂离子电池负极材料和电池负极及其制备方法与流程

本发明涉及电极材料技术领域,尤其是一种高容量固态锂离子电池用的负极材料,和电池负极及其制备方法,尤其涉及一种具有高的离子传导率、适宜的机械强度、高容量、良好电化学稳定性的锂离子电池用的聚合物电解质/负极复合材料。



背景技术:

锂离子电池由于能量密度高、循环寿命长、开路电压高、安全稳定等一系列优点,越来越多地引起国内外电池工业的重视。其研制开发和生产是电池行业的热门课题。

锂离子电池体系中的电解质隔离膜是电子绝缘体和离子载流体,在正负极之间起着输送锂离子的作用。现有的锂离子电池液态电解质易泄漏,安全性能差,凝胶态电解质难成型,机械性能弱。聚合物电解质隔离膜由于具有较好的离子导电性、质轻、弹性好、易成膜等突出特点,在一定程度上符合了化学电源质轻、安全、高效、环保的发展趋势,因此成为化学电源研究的一个热点。

负极材料是锂离子电池中非常重要的一部分,现在锂离子电池常用的负极活性材料包括碳、硅、锡基氧化物、二硫化锡、二氧化钼、二氧化钛等。然而这些负极材料存在一定的局限性,如石墨理论比容量低,高能量密度的新型负极材料在充放电过程中存在严重的体积效应;硅、锡基氧化物、二硫化锡、二氧化钼、二氧化钛等本征导电率差,锂离子扩散率低,充放电过程中的产生体积膨胀率高,易破裂粉化,使电极结构损坏,活性物质失去电接触,最终导致容量的迅速下降等。

经检索,国内公开专利中有涉及在锂离子电池中的复合电极结构,如:申请号201510434711.4的“具有复合电极的凝胶电解质锂离子电池及其制备方法”;申请号200910143465.1的“凝胶聚合物锂离子电池电极片及其制备方法”,这些技术大多涉及复杂的流程,需添加甲醛固化剂,四氢呋喃溶剂等对身体有害物质,且涂层溶剂的扩散造成单体固化不完全,复合界面破坏。



技术实现要素:

本发明针对现有技术的不足,提出一种高容量固态锂离子电池负极材料,结构巧妙,性能好。

为了实现上述发明目的,本发明提供以下技术方案:一种高容量固态锂离子电池负极材料,由三维网状聚合物电解质包覆活性材料构成,三维网状聚合物电解质固态时电导率>1×10-3S•cm-1,经活化后电导率>1×10-2S•cm-1,锂离子迁移数为tLi+=0.6283。

一种高容量固态锂离子电池负极,包括集流体基片、活性材料和三维网状聚合物电解质,活性材料包覆集流体基片,三维网状聚合物电解质包覆活性材料;三维网状聚合物电解质固态时电导率>1×10-3S•cm-1,经活化后电导率>1×10-2S•cm-1,锂离子迁移数为tLi+=0.6283。

一种如上所述高容量固态锂离子电池负极的制备方法,包括以下步骤:

⑴、将集流体基片浸泡在30~40%的双氧水中3~5小时,然后用去离子水洗涤干净,自然晾干;

⑵、向分散均匀的活性材料颗粒、导电高聚物单体、酸溶液中滴加氧化剂,聚合得凝胶状产物A;

⑶、将凝胶状产物A涂覆在步骤⑴晾干的集流体基片上,得负极材料B;

⑷、在充氩气的手套箱中将锂盐电解质溶液、纳米填料、结晶抑制剂加入光敏性单体与光引发剂搅拌形成的共混单体中,超声震荡,得预涂浆料C;

⑸、在充氩气的手套箱中将预涂浆料C均匀涂抹于负极材料B上,经紫外光照,得高容量固态锂离子电池负极。

进一步地,步骤⑷和步骤⑸的手套箱中水分<10ppm、氧分<10ppm。

进一步地,步骤⑶于集流体基片上涂覆厚度为50~200µm。

进一步地,步骤⑸中涂膜厚度20~50µm。

进一步地,步骤⑵活性材料颗粒为硅的纳米及微米、锡基氧化物纳米及微米、二氧化钛纳米及微米、二氧化钼纳米及微米、二硫化锡纳米及微米颗粒中的至少一种;导电高聚物单体为具有苯胺、吡咯、噻吩结构中的一种或两种;酸为植酸、草酸、醋酸、盐酸中的一种或两种;氧化剂为过硫酸铵、三氯化铁、高锰酸钾中的一种或两种。

进一步地,步骤⑵中,活性材料颗粒、导电高聚物单体、酸溶液和氧化剂的质量百分含量分别为60%~85%、15%~20%、0.5%~3%和0.5%~2%。

进一步地,步骤⑷中,锂盐、锂盐溶剂、光敏性单体、光引发剂、纳米填料、结晶抑制剂的质量百分含量分别为0.1%~15%、2%~25%、10%~80%、0.1%~4%、0.1%~3%和0.1%~2%。

进一步地,集流体基片为铜箔、铜网、镍网和铝箔的一种,厚度5~50μm。

与现有技术相比,本发明具有以下优点:将活性材料整体固化在聚合物电解质的网状结构内,防止电极活性材料颗粒在充放电过程中发生破坏脱落,极大地提高了此类聚合物电解质锂离子电池的寿命。

利用聚合物电解质可直接用作固态电解质,起到电解质和隔离膜的双重作用,抑制锂枝晶的生长,减轻甚至消除电解质与电池材料之间的化学反应,减少液态电解质电池中的液体渗漏,高温使用不存在安全隐患,柔韧性佳,便于制备各种形状的电池。负极材料三维多孔导电聚合物母体不仅能提供快速电子和离子传输通道,且能为活性材料颗粒在循环过程中体积膨胀提供空间。在导电高聚物与集流体表面基团的双重作用下,活性物质与铜箔结合力高、容量高、循环性能优异。负极材料整体固化在聚合物电解质的网状结构内,防止电极活性材料颗粒在充放电过程中破坏脱落,省去了研磨、过筛等操作,极大地提高了此类聚合物电解质锂离子电池的寿命。且电极活性材料制备过程中的溶剂为水,绿色环保成本低,易于大规模工业生产。

本发明高容量固态锂离子电池负极材料与纯锂组装扣式电池100次充放电循环之后,放电比容量仍保持1400mAh/g,显示了优异的电容量和良好的循环性能,可广泛应用于锂离子二次电池。

本发明的合成方法,工艺操作简单,稳定性好,成本适宜,绿色环保,高温下不存在安全隐患,柔韧性佳,可广泛应用于锂离子二次电池的大规模工业生产。

附图说明

图1是负极材料的截面放大图;

图2是高容量固态锂离子电池负极材料的充放电循环示意图。

具体实施方式

下面结合实施例对本发明进行详细描述,本部分的描述仅是示范性和解释性,不应对本发明的保护范围有任何的限制作用。

一种高容量固态锂离子电池负极材料,由三维网状聚合物电解质包覆活性材料构成,三维网状聚合物电解质固态时电导率>1×10-3S•cm-1,经活化后电导率>1×10-2S•cm-1,锂离子迁移数为tLi+=0.6283。

一种高容量固态锂离子电池负极,包括集流体基片、活性材料和三维网状聚合物电解质,活性材料包覆集流体基片,三维网状聚合物电解质包覆活性材料;三维网状聚合物电解质固态时电导率>1×10-3S•cm-1,经活化后电导率>1×10-2S•cm-1,锂离子迁移数为tLi+=0.6283。

上述高容量固态锂离子电池负极的制备方法,包括以下步骤:

⑴、将集流体基片浸泡在30~40%的双氧水中3~5小时,然后用去离子水洗涤干净,自然晾干;

⑵、向分散均匀的活性材料颗粒、导电高聚物单体、酸溶液中滴加氧化剂,聚合得凝胶状产物A;

活性材料颗粒为硅的纳米及微米、锡基氧化物纳米及微米、二氧化钛纳米及微米、二氧化钼纳米及微米、二硫化锡纳米及微米颗粒中的至少一种;导电高聚物单体为具有苯胺、吡咯、噻吩结构中的一种或两种;酸为植酸、草酸、醋酸、盐酸中的一种或两种;氧化剂为过硫酸铵、三氯化铁、高锰酸钾中的一种或两种。

⑶、将凝胶状产物A涂覆在步骤⑴晾干的集流体基片上,得负极材料B;

凝胶状产物用涂膜器均匀的涂覆在双氧水处理后的集流体基片上,真空干燥冷压处理,在导电高聚物形成的三维网络结构与集流体表面官能团双重作用下,活性颗粒将牢固包络在集流体上,制备出自带粘结效果的免粘结剂负极材料B。

负极材料B能提供快速电子和离子传输通道,能为活性材料颗粒在循环过程中体积膨胀提供空间,与铜箔结合力高、容量高、循环性能优异,绿色环保低成本,易于大规模生产。

⑷、在充氩气的手套箱中将锂盐电解质溶液、纳米填料、结晶抑制剂加入光敏性单体与光引发剂搅拌形成的共混单体中,超声震荡,得预涂浆料C;

锂盐电解质溶液在无水无氧环境中搅拌时间5~12小时,搅拌温度为室温,浓度为5~50g/L;共混单体搅拌时间0.5~2小时,搅拌温度20~25度;预涂浆料超声震荡时间0.5~3小时,超声功率200~500瓦;紫外光照功率250~600瓦,光照时间2~60分钟。

预涂浆料C中锂盐选自高氯酸锂、四氟硼酸锂、六氟磷酸锂、六氟砷酸锂、三氟甲基磺酸锂或双三氟甲烷磺酰亚胺锂的一种或多种;锂盐溶剂选自碳酸丙烯酯、碳酸乙烯酯、碳酸二乙酯、碳酸二甲酯、碳酸甲基乙基酯、邻苯二甲酸二辛酯、琥珀腈的一种或多种;光敏性单体为聚乙二醇二丙烯酸酯、乙氧化三羟甲基丙烷三丙烯酸酯、脂肪族聚氨酯三丙烯酸酯的多种;光引发剂为TPO、安息香双甲醚、1-羟基环已基苯基甲酮中的一种或几种;纳米填料为Al2O3、TiO2、SiO2、碳纳米管中的一种或几种;结晶抑制剂为N,N-亚甲基双丙烯酰胺,乙烯基三(2-甲氧基乙氧基)硅烷的混合。

⑸、在充氩气的手套箱中将预涂浆料C均匀涂抹于负极材料B上,经紫外光照,得高容量固态锂离子电池负极。

与简单的物理混合以及多层一次涂布相比,本发明是在导电高聚物的聚合过程中将负极活性材料加入,负极活性材料被导电高聚物三维网络包络在负极集流体上。在导电高聚物与集流体表面基团的双重作用下,制备出免粘结剂的负极材料,通过紫外光辐照交联,将负极材料整体固化在聚合物电解质的网状结构中。本发明优异的储锂性能得益于三维多孔导电聚合物母体,以及聚合物电解质与负极材料的复合结构,此结构不仅能提供快速电子和离子传输通道,且能为活性材料颗粒在循环过程中体积膨胀提供空间。

实施例1

(1)取0.95g粒径为1~2µm的二硫化锡,0.8g吡咯超声震荡均匀分散于40ml pH=4的植酸溶液中。向上述混合液中逐滴滴加10ml 0.125M的过硫酸铵,300瓦超声震荡15min后得到黑色凝胶状的二硫化锡/聚噻吩混合浆料。将混合浆料均匀涂覆在35%双氧水浸泡后的铜箔上,涂膜厚度150µm,40度真空干燥24h得负极材料;(2)在充氩气的手套箱中(水分<10ppm、氧分<10ppm),取适量六氟砷酸锂溶于碳酸二甲酯:碳酸丙烯酯=1:0.6(wt%)的混合溶剂中,室温搅拌12h,得浓度为1M的电解质溶液;(3)取3.2g聚乙二醇二丙烯酸酯,2.8g脂肪族聚氨酯三丙烯酸酯和4.5g乙氧化三羟甲基丙烷三丙烯酸酯,加入0.02g安息香双甲醚,0.015g TPO,室温搅拌30min,得共混单体;(4)无水无氧环境下向共混单体中加入4g电解质溶液、0.15g 纳米Al2O3、0.15g乙烯基三(2-甲氧基乙氧基)硅烷,300瓦超声30min,得预涂电解质浆料。将预涂电解质浆料均匀涂覆在负极材料上,涂膜厚度100µm,250W紫外光源辐照5分钟,得聚合物电解质/负极复合材料。测试该复合材料与纯锂组装扣式电池电容量,100次循环放电比容量为660 mAh/g。

实施例2

(1)取0.8g粒径为100~300nm的纳米锡粉,0.65g苯胺超声震荡均匀分散于40ml pH=4的草酸溶液中。向上述混合液中逐滴滴加10ml 0.125M的过硫酸铵, 300瓦超声震荡15min后得到棕绿色凝胶状的锡/聚苯胺混合浆料。将混合浆料均匀涂覆在35%双氧水浸泡后的铜箔上,涂膜厚度150μm,40度真空干燥24h得负极材料;(2)在充氩气的手套箱中(水分<10ppm、氧分<10ppm),取适量六氟磷酸锂溶于碳酸二甲酯:琥珀腈=1:1.5(wt%)的混合溶剂中,室温搅拌12h,得浓度为1M的电解质溶液;(3)取6.5g聚乙二醇二丙烯酸酯和3.5g乙氧化三羟甲基丙烷三丙烯酸酯,加入0.015g安息香双甲醚,0.01g TPO,室温搅拌30min,得共混单体;(4)无水无氧环境下向共混单体中加入2.5g电解质溶液、0.1g SiO2、0.08g乙烯基三(2-甲氧基乙氧基)硅烷,300瓦超声30min,得预涂电解质浆料。将预涂电解质浆料均匀涂覆在负极材料上,涂膜厚度100μm,250W紫外光源辐照5分钟,得聚合物电解质/负极复合材料。测试该复合材料与纯锂组装扣式电池电容量,100次循环放电比容量为870mAh/g。

实施例3

(1)取1.2g粒径为100~500nm的纳米二氧化钼,1.5g噻吩超声震荡均匀分散于40ml pH=4的盐酸溶液中。向上述混合液中逐滴滴加10ml 0.105M的三氯化铁溶液,300瓦超声震荡15min后得到褐色凝胶状的二氧化钼/聚噻吩混合浆料。将混合浆料均匀涂覆在35%双氧水浸泡后的铜箔上,涂膜厚度150μm,40度真空干燥24h得负极材料;(2)在充氩气的手套箱中(水分<10ppm、氧分<10ppm),取适量四氟硼酸锂溶于碳酸二甲酯: 碳酸乙烯酯=1:1.45(wt%)的混合溶剂中,室温搅拌12h,得浓度为1.2 M的电解质溶液;(3)取4g脂肪族聚氨酯三丙烯酸酯和6.5g乙氧化三羟甲基丙烷三丙烯酸酯,加入0.015g安息香双甲醚,0.01g TPO,室温搅拌30min,得共混单体;(4)无水无氧环境下向共混单体中加入3g电解质溶液、0.1g 碳纳米管、0.1g乙烯基三(2-甲氧基乙氧基)硅烷,300瓦超声30min,得预涂电解质浆料。将预涂电解质浆料均匀涂覆在负极材料上,涂膜厚度100μm,250W紫外光源辐照5分钟,得聚合物电解质/负极复合材料。测试该复合材料与纯锂组装扣式电池电容量,100次循环放电比容量为1060mAh/g。

实施例4

(1)取1g粒径为50~200nm的纳米硅粉,0.8g吡咯超声震荡均匀分散于40ml pH=4的盐酸溶液中。向上述混合液中逐滴滴加10ml 0.125M的过硫酸铵,300瓦超声震荡15min后得到黑色凝胶状的硅/聚吡咯混合浆料。将混合浆料均匀涂覆在35%双氧水浸泡后的铜箔上,涂膜厚度150μm,40度真空干燥24h得负极材料;(2)在充氩气的手套箱中(水分<10ppm、氧分<10ppm),取适量高氯酸锂溶于碳酸丙烯酯:碳酸乙烯酯=1:1(wt%)的混合溶剂中,室温搅拌12h,得浓度为1.2 M的电解质溶液;(3)取6g聚乙二醇二丙烯酸酯和2.5g脂肪族聚氨酯三丙烯酸酯,加入0.015g安息香双甲醚,0.01g TPO,室温搅拌30min,得共混单体;(4)无水无氧环境下向共混单体中加入2.6g电解质溶液、0.16g TiO2、0.05g N,N-亚甲基双丙烯酰胺,300瓦超声30min,得预涂电解质浆料。将预涂电解质浆料均匀涂覆在负极材料上,涂膜厚度100μm,250W紫外光源辐照5分钟,得聚合物电解质/负极复合材料。测试该复合材料与纯锂组装扣式电池电容量,100次循环放电比容量为1400mAh/g。

以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1