晶片的加工方法与流程

文档序号:12159961阅读:167来源:国知局
晶片的加工方法与流程

本发明涉及晶片的加工方法,将在SiC基板的正面上形成有多个器件的晶片分割成一个个的器件芯片。



背景技术:

在将硅基板作为原材料的晶片的正面上层叠功能层,在该功能层上在通过多条分割预定线划分出的区域中形成有IC、LSI等各种器件。并且,在通过磨削装置对晶片的背面进行磨削而将晶片薄化到规定的厚度之后,通过切削装置、激光加工装置等加工装置对晶片的分割预定线实施加工,将晶片分割成一个个的器件芯片,分割得到的器件芯片广泛应用于移动电话、个人计算机等各种电子设备。

并且,在将SiC基板作为原材料的晶片的正面上层叠功能层,在该功能层上在由多条分割预定线划分出的区域中形成功率器件或者LED、LD等光器件。

并且,与上述的硅晶片同样,在通过磨削装置对晶片的背面进行磨削而薄化到规定的厚度之后,通过切削装置、激光加工装置等对晶片的分割预定线实施加工,将晶片分割成一个个的器件芯片,分割得到的器件芯片广泛应用于各种电子设备。

专利文献1:日本特开2002-373870号公报

但是,SiC基板与硅基板相比莫氏硬度非常高,当通过具有磨削磨具的磨削轮对由SiC基板构成的晶片的背面进行磨削时,磨削磨具会磨损磨削量的4~5倍左右而存在经济性非常差的问题。

例如,当将硅基板磨削100μm时磨削磨具会磨损0.1μm,与此相对当将SiC基板磨削100μm时磨削磨具会磨损400~500μm,与磨削硅基板的情况相比磨损4000~5000倍。



技术实现要素:

本发明是鉴于这样的点而完成的,其目的在于提供晶片的加工方法,将由在正面上具有多个器件的SiC基板构成的晶片薄化成规定的厚度并且分割成一个个的器件芯片。

根据本发明,提供一种晶片的加工方法,将由SiC基板构成的晶片分割成一个个的器件芯片,该SiC基板具有:第一面;位于该第一面的相反侧的第二面;从该第一面至该第二面的c轴;以及与该c轴垂直的c面,该晶片的加工方法的特征在于,具有如下的步骤:分离起点形成步骤,将对于SiC基板具有透过性的波长的激光束的聚光点定位在距该第一面或该第二面相当于器件芯片的完工厚度的区域,并且一边使该聚光点与SiC基板相对地移动一边照射激光束,形成与该第一面平行的改质层和从该改质层沿着c面延伸的裂痕而作为分离起点;器件形成步骤,在实施了该分离起点形成步骤之后,在该第一面上在由相互交叉的多条分割预定线划分出的区域中形成多个器件;分割起点形成步骤,在实施了该器件形成步骤之后,沿着形成于该第一面的该多条分割预定线形成深度相当于器件芯片的完工厚度的分割起点;保护部件配设步骤,在实施了该分割起点形成步骤之后,在该第一面上配设保护部件;以及晶片分离步骤,在实施了该保护部件配设步骤之后,施加外力而从该分离起点将具有该第二面的晶片从具有形成有多个器件的该第一面的晶片分离,该分离起点形成步骤包含如下的步骤:改质层形成步骤,该c轴相对于该第二面的垂线倾斜偏离角,使激光束的聚光点沿着与在该第二面和该c面之间形成偏离角的方向垂直的方向相对地移动而形成直线状的改质层;以及转位步骤,在形成该偏离角的方向上使该聚光点相对地移动而转位规定的量。

优选在晶片分离步骤中,通过将具有第二面的晶片分离而将具有第一面的晶片分割成一个个的器件芯片。

优选在实施了晶片分离步骤之后,对具有形成有多个器件的该第一面的晶片的背面进行磨削而进行平坦化并且将晶片分割成一个个的器件芯片。

根据本发明的晶片的加工方法,当在第一面上形成多个器件之前,实施分离起点形成步骤,在晶片内部的整个面上形成由改质层和从该改质层沿着c面延伸的裂痕构成的分离起点,然后当在第一面上形成了多个器件之后,实施分割起点形成步骤,然后对晶片施加外力而以改质层和裂痕为分离起点将晶片分离成两部分,因此能够在不利用磨削磨具对SiC基板的第二面进行磨削的情况下将其薄化而分割成一个个的器件芯片,能够解决磨削磨具磨损而经济性差的问题。

并且,在对薄化后的晶片的背面进行磨削而使其平坦化的情况下,只要将晶片的背面磨削1~5μm左右即可,能够将此时的磨削磨具的磨损量抑制为4~25μm左右。此外,由于能够将分离后的具有第二面的晶片作为SiC基板进行再利用,因此是经济的。

附图说明

图1是适合实施本发明的晶片的加工方法的激光加工装置的立体图。

图2是激光束产生单元的框图。

图3的(A)是SiC锭的立体图,图3的(B)是其主视图。

图4是在正面上形成多个器件之前的SiC晶片的立体图。

图5是说明分离起点形成步骤的立体图。

图6是SiC晶片的俯视图。

图7是说明改质层形成步骤的示意性剖视图。

图8是说明改质层形成步骤的示意性俯视图。

图9是实施了器件形成步骤之后的SiC晶片的正面侧立体图。

图10是示出分割起点形成步骤的第一实施方式的立体图。

图11是示出分割起点形成步骤的第二实施方式的立体图。

图12是示出在沿着分割预定线形成分割起点后的SiC晶片的正面上粘贴保护带的情形的立体图。

图13的(A)是将SiC晶片隔着粘贴于正面的保护带而载置在卡盘工作台上的情形的立体图,图13的(B)是由卡盘工作台吸引保持的SiC晶片的立体图。

图14的(A)、(B)是说明晶片分离步骤的立体图(其一)。

图15是说明晶片分离步骤的立体图(其二)。

图16是示出对晶片的背面进行磨削而将其平坦化的磨削步骤的立体图。

图17是借助分割起点而被分割成一个个的器件芯片的SiC晶片的背面侧立体图。

标号说明

2:激光加工装置;11:SiC锭;13、37:第一定向平面;15、39:第二定向平面;19:c轴;21:c面;30:激光束照射单元;31:SiC晶片;36:聚光器(激光头);41:槽;43:改质层;45:裂痕;47:保护带;49:分离面;64:切削刀具;76:磨削轮;82:磨削磨具。

具体实施方式

以下,参照附图详细地说明本发明的实施方式。参照图1,示出了适合实施本发明的晶片的加工方法的激光加工装置2的立体图。激光加工装置2包含以能够在X轴方向上移动的方式搭载在静止基台4上的第一滑动块6。

第一滑动块6借助由滚珠丝杠8和脉冲电动机10构成的加工进给机构12而沿着一对导轨14在加工进给方向、即X轴方向上移动。

第二滑动块16以能够在Y轴方向上移动的方式搭载在第一滑动块6上。即,第二滑动块16借助由滚珠丝杠18和脉冲电动机20构成的分度进给机构22而沿着一对导轨24在分度进给方向、即Y轴方向上移动。

在第二滑动块16上搭载有具有吸引保持部26a的卡盘工作台26。卡盘工作台26能够借助加工进给机构12和分度进给机构22在X轴方向和Y轴方向上移动,并且借助收纳在第二滑动块16中的电动机而旋转。

柱28竖立设置于静止基台4,在该柱28上安装有激光束照射机构(激光束照射构件)30。激光束照射机构30由收纳在外壳32中的图2所示的激光束产生单元34和安装于外壳32的前端的聚光器(激光头)36构成。在外壳32的前端安装有具有显微镜和照相机的拍摄单元38,该拍摄单元38与聚光器36在X轴方向上排列。

如图2所示,激光束产生单元34包含:振荡出YAG激光或者YVO4激光的激光振荡器40、重复频率设定构件42、脉冲宽度调整构件44、以及功率调整构件46。虽然未特别进行图示,但激光振荡器40具有布鲁斯特窗,从激光振荡器40射出的激光束是直线偏光的激光束。

被激光束产生单元34的功率调整构件46调整成规定功率的脉冲激光束被聚光器36的反射镜48反射,进而通过聚光透镜50将聚光点定位在卡盘工作台26所保持的作为被加工物的SiC晶片31的内部而进行照射。

参照图3的(A),示出了SiC锭(以下,有时简称为锭)11的立体图。图3的(B)是图3的(A)所示的SiC锭11的主视图。

锭11具有第一面(上表面)11a和位于第一面11a的相反侧的第二面(下表面)11b。由于锭11的上表面11a成为激光束的照射面因此将其研磨成镜面。

锭11具有第一定向平面13和与第一定向平面13垂直的第二定向平面15。第一定向平面13的长度形成为比第二定向平面15的长度长。

锭11具有c轴19和c面21,该c轴19相对于上表面11a的垂线17向第二定向平面15方向倾斜偏离角α,该c面21与c轴19垂直。c面21相对于锭11的上表面11a倾斜偏离角α。通常在六方晶单晶锭11中,与较短的第二定向平面15的伸长方向垂直的方向是c轴的倾斜方向。

在锭11中按照锭11的分子级设定无数个c面21。在本实施方式中,偏离角α被设定为4°。但是,偏离角α不限于4°,能够在例如1°~6°的范围中自由设定而制造出锭11。

再次参照图1,在静止基台4的左侧固定有柱52,按压机构54经由形成于柱52的开口53而以能够在上下方向上移动的方式搭载于该柱52。

参照图4,示出从SiC锭11切片且至少对第一面(正面)31a进行镜面加工后的SiC晶片31的立体图。SiC晶片31整体由SiC基板形成,具有约700μm的厚度。

SiC晶片31具有第一定向平面37和与第一定向平面37垂直的第二定向平面39。第一定向平面37的长度形成得比第二定向平面39的长度长。

这里,由于SiC晶片31是利用线切割机对图3所示的SiC锭11进行切片而得到的,因此第一定向平面37与锭11的第一定向平面13对应,第二定向平面39与锭11的第二定向平面15对应。

并且,晶片31具有相对于正面31a的垂线向第二定向平面39方向倾斜偏离角α的c轴19和与c轴19垂直的c面21(参照图3)。c面21相对于晶片31的正面31a倾斜偏离角α。在该SiC晶片31中,与较短的第二定向平面39的伸长方向垂直的方向是c轴19的倾斜方向。

在本发明的晶片的加工方法中,首先,实施分离起点形成步骤,如图5所示,从由SiC基板构成的晶片31的第二面(背面)31b起将对于保持于卡盘工作台26的晶片31具有透过性的波长(例如1064nm的波长)的激光束的聚光点定位在第一面(正面)31a附近,并且使聚光点和晶片31相对地移动而对背面31b照射激光束,形成与正面31a平行的改质层43和从改质层43沿着c面21传播的裂痕45而作为分离起点(参照图7)。

由于SiC晶片31是对在正面31a形成多个器件之前的正面31a进行了镜面加工的晶片,因此也可以利用卡盘工作台26对晶片31的背面31b侧进行吸引保持,将激光束的聚光点定位在第一面(正面)31a附近,并且使聚光点和晶片31相对地移动而对正面31a照射激光束,形成由改质层43和裂痕45构成的分离起点。

在分离起点形成步骤中,如图5和图6所示,使保持着晶片31的卡盘工作台26旋转,使得晶片31的第二定向平面39在X轴方向上排列。

即,如图6所示,以与第二定向平面39平行的箭头A方向在X轴方向上排列的方式旋转卡盘工作台26,其中该A方向即是与形成偏离角α的方向Y1、换言之c轴19的与背面31b的交点19a相对于晶片31的背面31b的垂线17所存在的方向垂直的方向。

由此,沿着与形成有偏离角α的方向垂直的方向A对激光束进行扫描。换言之,与形成有偏离角α的方向Y1垂直的A方向成为卡盘工作台26的加工进给方向。

在本发明的晶片的加工方法中,将从聚光器36射出的激光束的扫描方向设为与形成有晶片31的偏离角α的方向Y1垂直的箭头A方向很重要。

即,本发明的晶片的加工方法的特征在于探索出如下情况:通过将激光束的扫描方向设定为上述这样的方向,从形成在晶片31的内部的改质层传播的裂痕沿着c面21非常长地伸长。

该分离起点形成步骤包含:改质层形成步骤,如图6所示,c轴19相对于背面31b的垂线17倾斜偏离角α,在与c面21和背面31b形成有偏离角α的方向即图6的箭头Y1方向垂直的方向即A方向上使激光束的聚光点相对地移动,而如图7所示在晶片31的内部形成改质层43和从改质层43沿着c面21传播的裂痕45;以及转位步骤,如图8所示,在形成有偏离角的方向即Y轴方向上使聚光点相对地移动且转位进给规定的量。

如图7和图8所示,当在X轴方向上将改质层43形成为直线状时,裂痕45从改质层43的两侧沿着c面21传播而形成。在本实施方式的晶片的加工方法中包含转位量设定步骤,对从直线状的改质层43起在c面21方向上传播而形成的裂痕45的宽度进行测量,设定聚光点的转位量。

在转位量设定步骤中,如图7所示,当将从直线状的改质层43起在c面方向上传播而形成在改质层43的单侧的裂痕45的宽度设为W1的情况下,将应该进行转位的规定的量W2设定为W1以上2W1以下。

这里,以如下的方式设定优选的实施方式的分离起点形成步骤的激光加工条件。

光源:Nd:YAG脉冲激光

波长:1064nm

重复频率:80kHz

平均输出:3.2W

脉冲宽度:4ns

光斑直径:10μm

进给速度:500mm/s

转位量:400μm

在上述的激光加工条件中,在图7中,将从改质层43沿着c面21传播的裂痕45的宽度W1设定为大致250μm,将转位量W2设定为400μm。

但是,激光束的平均输出不限于3.2W,在本实施方式的加工方法中,将平均输出设定为2W~4.5W而得到良好的结果。在平均输出为2W的情况下,裂痕25的宽度W1为大致100μm,在平均输出为4.5W的情况下,裂痕25的宽度W1为大致350μm。

由于在平均输出小于2W的情况下和大于4.5W的情况下,无法在锭31的内部形成良好的改质层43,因此优选照射的激光束的平均输出在2W~4.5W的范围内,在本实施方式中对晶片31照射平均输出为3.2W的激光束。在图7中,将形成改质层43的聚光点的距背面31b的深度D1设定为作为相当于器件芯片的完工厚度的区域的650μm。

如图7所示,如果转位进给规定的量,并且完成了在从晶片31的整个区域的背面31b起深度D1的位置上形成多个改质层43和形成从改质层43沿着c面21延伸的裂痕45,则实施器件形成步骤,在晶片31的正面31a上形成多个器件。

该器件形成步骤使用以往公知的光刻技术来实施。参照图9,示出了实施了器件形成步骤之后的SiC晶片31的正面侧立体图。

通过光刻而在SiC晶片31的正面31a上形成功率器件等多个器件35。各器件35形成于由形成为格子状的多条分割预定线33划分出的各区域。

在实施了器件形成步骤之后,实施分割起点形成步骤,沿着形成于第一面(正面)31a的分割预定线33形成相当于器件芯片的完工厚度的深度的分割起点。

参照图10,示出了该分割起点形成步骤的第一实施方式。在分割起点形成步骤的第一实施方式中,使切削单元62的切削刀具64在箭头A方向上高速旋转而向在第一方向上伸长的分割预定线33切入相当于器件芯片的完工厚度的深度,在X轴方向上对卡盘工作台60进行加工进给,由此形成作为分割起点的槽41。

通过在Y轴方向上对切削单元62进行分度进给,而沿着在第一方向上伸长的所有的分割预定线33形成作为分割起点的相同的槽41。接着,在使卡盘工作台60旋转90°之后,沿着在与第一方向垂直的第二方向上伸长的所有的分割预定线33形成相同的槽41而作为分割起点。

本实施方式的分割起点形成步骤的加工条件例如如下。

切削刀具64的厚度:30μm

切削刀具64的直径:φ50mm

切削刀具64的旋转速度:20000rpm

进给速度:10mm/s

参照图11,示出了表示分割起点形成步骤的第二实施方式的立体图。在第二实施方式的分割起点形成步骤中,经由聚光器36沿着SiC晶片31的分割预定线33照射对于SiC晶片31具有吸收性的波长(例如355nm)的激光束,通过烧蚀加工形成作为沿着分割预定线33的分割起点的槽41。

当在Y轴方向上对卡盘工作台26进行分度进给并且沿着在第一方向上伸长的所有的分割预定线33形成槽41之后,使卡盘工作台26旋转90°,接着沿着在与第一方向垂直的第二方向上伸长的所有的分割预定线33形成作为分割起点的相同的槽41。

分割起点形成步骤的第二实施方式的加工条件例如如下。

光源:Nd:YAG脉冲激光

激光束的波长:355nm

重复频率:50kHz

光斑直径:10μm

平均输出:2W

进给速度:100mm/s

虽然未特别进行图示,但在分割起点形成步骤的第三实施方式中,从SiC晶片31的正面31a或者背面31b照射对于SiC晶片31具有透过性的波长(例如1064nm)的激光束,而在正面附近(从正面31a起约50μm的深度)沿着分割预定线33形成作为分割起点的改质层。

当在Y轴方向上对卡盘工作台26进行分度进给并且沿着在第一方向上伸长的所有的分割预定线33形成相同的改质层之后,使卡盘工作台26旋转90°,接着沿着在与第一方向垂直的第二方向上伸长的所有的分割预定线33形成作为分割起点的相同的改质层。

分割起点形成步骤的第三实施方式的加工条件例如如下。

光源:Nd:YAG脉冲激光

激光束的波长:1064nm

重复频率:50kHz

光斑直径:10μm

平均输出:1W

进给速度:300mm/s

在分割起点形成步骤实施后,如图12所示,实施保护带粘贴步骤,在晶片31的正面31a上粘贴保护带47,该晶片31在正面31a上沿着分割预定线33形成作为分割起点的槽41。

当在晶片31的正面31a上粘贴保护带47之后,如图13的(A)所示,使保护带47侧朝下而将晶片31载置在卡盘工作台26上,使负压作用于卡盘工作台26的吸引保持部26a,而如图13的(B)所示,利用卡盘工作台26对晶片31进行吸引保持,使晶片31的背面31b露出。

在利用卡盘工作台26经由保护带47对晶片31进行了吸引保持之后,实施晶片分离步骤,施加外力而将晶片从由改质层43和裂痕45构成的分离起点分离,从而将在正面31a具有多个器件35的晶片薄化到约50μm左右。

该晶片分离步骤由例如图14所示的按压机构54实施。按压机构54包含:头56,其借助内设在柱52内的移动机构在上下方向上移动;以及按压部件58,其如图14的(B)所示,相对于头56在箭头R方向上旋转。

如图14的(A)所示,将按压机构54定位在保持于卡盘工作台26的晶片31的上方,如图14的(B)所示,按压部件58将头56下降到压接于晶片31的背面31b。

当在使按压部件58压接于晶片31的背面31b的状态下,使按压部件58在箭头R方向上旋转时,晶片31中产生扭转应力,晶片31从形成有改质层43和裂痕45的分离起点处断裂,能够将晶片31分离成保持于卡盘工作台26的晶片31A和晶片31B。

在作为保持于卡盘工作台26的晶片31A的背面的分离面49残留有改质层43和裂痕45的一部分,如图15和图16所示,在分离面49上形成有细微的凹凸。因此,在本发明的晶片的加工方法中,优选实施磨削步骤,对作为晶片31A的背面的分离面49进行磨削而使其平坦化。

在该磨削步骤中,如图16所示,利用磨削装置的卡盘工作台68经由保护带47对晶片31A进行吸引保持而使分离面49露出。磨削装置的磨削单元70包含:由电动机旋转驱动的主轴72、固定于主轴72的前端的轮固定件74、以及借助多个螺钉78以能够装卸的方式装配于轮固定件74的磨削轮76。磨削轮76由环状的轮基座80和固定安装于轮基座80的下端部外周的多个磨削磨具82构成。

在磨削步骤中,使卡盘工作台68在箭头a所示的方向上以例如300rpm旋转,且使磨削轮76在箭头b所示的方向上以例如6000rpm旋转,并且驱动磨削单元进给机构而使磨削轮76的磨削磨具82与晶片31A的分离面49接触。

并且,一边使磨削轮76以规定的磨削进给速度(例如0.1μm/s)向下方磨削进给规定的量一边对晶片31A的分离面49进行磨削而使其平坦化。由此,如图17所示,将晶片31A的背面31b所残留的改质层43和裂痕45去除而成为平坦面,并且槽41在背面31b上露出而将晶片31A分割成一个个的器件芯片。

另一方面,当在分割起点形成步骤的第3实施方式中作为分割起点形成了改质层的情况下,作为分割起点而形成的改质层因磨削轮76的按压力而断裂,从而将晶片31A分割成一个个的器件芯片。

在对薄化后的晶片31A的背面进行磨削而使其平坦化的情况下,只要将晶片31A的背面磨削1~5μm左右即可,能够将磨削磨具72的磨损量抑制为4~25μm左右。

并且,由于图15中从晶片31A分离出的晶片31B可以作为SiC基板而再利用,因此是非常经济的。

作为分离起点形成步骤的其他的实施方式,在将由改质层43和裂痕45构成的分离起点形成在与槽41重叠的位置上的情况下,当实施图15所示的晶片分离步骤时,能够将保持于卡盘工作台26的晶片31A分割成一个个的器件芯片。

同样在该情况下,优选对晶片31A的背面31b进行磨削,而去除在背面31b上残留的改质层43和裂痕45从而将背面31b形成为平坦面。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1