一种石墨烯/CNTs杂交体做锂金属电池集流体及其制备方法与流程

文档序号:11233221阅读:1106来源:国知局
一种石墨烯/CNTs杂交体做锂金属电池集流体及其制备方法与流程

本发明属于电化学领域,涉及一种抑制锂枝晶产生锂金属电池集流体,还涉及这种集流体的制备方法。



背景技术:

随着电动汽车和智能电网等的应用和发展,高比能量的电池逐渐受到关注和研究。锂金属具有高理论比容量(3860mah/g),低密度(0.59g/cm3),低负电压(相对于标准的氢电极电压为-3.040v),这些优点使锂金属在储能领域受到很大研究与关注,但是在锂金属电池的循环过程中,锂金属负极将产生锂枝晶,进而形成死锂,不仅降低电池的性能,还会使锂金属体积膨胀破坏sei膜消耗电解液,更严重的是枝晶刺穿隔膜直接接触正极导致内部短路起火发生爆炸。这些问题严重阻碍了金属锂负极二次电池的发展和实际应用。

在过去的40年里科学家用各种方法控制锂枝晶的形成,如锂金属表面改性、隔膜改性、电解液添加剂等等。科学界普遍认为形成锂枝晶的根本原因是集流体表面电场分布不均匀,导致锂离子分布不均匀,从而形成枝晶。要避免枝晶形成那就必须使集流体附近的电场均匀分布,而锂金属负极表面改性、隔膜改性、电解液添加剂这些方法都不能够从根本上解决问题。如chun-pengyang等人[naturecommunications,2015,6:8058]通过用三维介孔铜集流体成功地抑制锂枝晶,就是利用了三维多孔结构能够使集流体表面的电场均匀分布;专利文献cn103972470a中提出了一种三维纤维网状的锂合金负极,三维网状结构稳定了sei膜,在负极表面电场分布均匀,形成了无枝晶的负极。

现在研究的大部分抑制锂枝晶的集流体都是在小电流密度下,而大电流密度下还是不能够避免枝晶形成。因此有必要提供一种大电流密度下无枝晶的集流体,来促进快速充放电的锂金属电池的发展。

发明目的

本发明的目的是提供一种在锂金属电池中避免锂枝晶形成的集流体及其制备方法,即使在大电流密度下也可以保证没有枝晶的形成。

本发明的技术原理是:通过在三维多孔泡沫模板基底上生长cnts(碳纳米管),使模板成为导电体,再在上面生长石墨烯,增强导电性,由于生长的石墨烯扩大了比表面积,增加了形核位点,而三维多孔泡沫的结构能够保证电场的均匀分布,从而使锂沉积变得均匀。

本发明的技术方案如下:

该锂金属电池集流体,主要由三维多孔泡沫、cnts和石墨烯组成,所述三维多孔泡沫作为cnts均匀生长的模板,使得形成的cnts维持三维多孔形态,所述石墨烯生长于cnts的表面,组成三维多孔泡沫形态的cnts和石墨烯杂交体。

上述三维多孔泡沫优选氧化硅纳米线多孔泡沫。

上述锂金属电池集流体的制备方法,主要是先将三维多孔泡沫放入低压cvd炉中,抽真空,使炉内压力为1-10pa,通入ch4生长cnts;当cnts生长完成后将其放入等离子增强cvd炉中,当压强降到目标值后将乙醇和水混合液抽到等离子增强cvd炉中,在cnts表面生长石墨烯,最终获得三维多孔泡沫形态的集流体。

除了采用乙醇和水混合液作为碳源外,也可采用其他的碳源,则可设定相应的压强目标值。

该制备方法的具体步骤如下:

步骤1)将氧化硅纳米线多孔泡沫模板放入低压cvd炉中,抽真空,使炉内压力为1-10pa,升温至800-1200℃;当温度达到目标值后,通入ch4,流量为10-200ml/min,调节真空泵开关,使炉内压力为40-200pa,生长cnts,生长时间为1-10h;cnts生长完成后,断开ch4供给,调节真空泵使炉内压力为1-10pa,然后断电降温;

步骤2)当温度降至室温后,将均匀生长有cnts的氧化硅纳米线多孔泡沫取出,放入等离子增强cvd炉中,然后,抽真空使炉内压力为1-10pa,升温至500-800℃;按照1:(0.01-0.1)的体积比例混合乙醇和水,再将混合液进行超声混合;当等离子增强cvd炉温度升至目标值后,利用真空泵将超声混合后的混合液抽到等离子增强cvd炉中,调节真空泵开关,使炉内压力为40-160pa,调节射频电源功率为40-100w,产生等离子体,在cnts表面生长石墨烯,生长时间为2-5h;石墨烯生长完成后,关闭乙醇和水的供给,关闭射频电源,调节真空泵使炉内压力为1-10pa,断开加热电源,待炉内降温至室温后开炉取样,即获得三维多孔泡沫形态的集流体。

优选的,步骤1)中,具体是使低压cvd炉压力维持在5pa,升温至1000℃并稳定后通入ch4,流量为100ml/min,调节真空泵开关,使炉内压力为100pa,生长cnts,生长时间为5h;cnts生长完成后,断开ch4供给,调节真空泵使炉内压力为5pa,然后断电降温。

优选的,步骤2)中,具体是使等离子增强cvd炉压力维持在5pa,升温至600℃;按照1:0.05的体积比例混合乙醇和水,再将混合液进行超声混合;等离子增强cvd炉温度升至600℃,利用真空泵将制备好的的混合液体抽到等离子增强cvd炉中,调节真空泵开关,使炉内压力为80pa,调节射频电源功率为50w,产生等离子体,在cnts表面的生长石墨烯,石墨烯生长时间为3h;石墨烯生长完成后,关闭乙醇和水的供给,关闭射频电源,调节真空泵使炉内压力为5pa,断开加热电源,待炉内降温至室温后开炉取样。优选的,步骤2)中,超声混合1-10h,所用超声功率为100w。

本发明还基于上述集流体制备出了新型的锂金属电池产品。

该锂金属电池产品包括正极、负极、隔膜以及电解液,有别于现有技术的是:其中负极采用沉积有锂金属的上述集流体,正极采用lifepo4。电解液优选以下任一:

ec:dmc:emc=1:1:11mol/l的lipf6、

ec:dec=1:11mol/l的lipf6、

dol:dme=1:11mol/l的litfsi。

该锂金属电池产品的制备方法,主要是先将上述集流体冲成极片、锂片作对电极,并利用隔膜和电解液组装电池,然后进行放电;当锂金属在集流体上沉积完毕后,将电池拆开,取出沉积锂金属的集流体作负极、lifepo4材料作正极,并利用新的隔膜和电解液重新组装,得到锂金属电池产品。

本发明具有以下有益效果:

该锂金属电池集流体中,cnts均匀生长在模板上,将该材料完全转化为导体,同时维持三维多孔结构,在集流体表面维持均一稳定电场分布。当石墨烯生长在cnts上后,泡沫导电性增强,同时集流体表面附近的电场更加均匀,扩大锂金属沉积时的形核位点,减小有效电流密度稳定了sei膜,确保该材料能够在大电流密度时保证枝晶不能形成,进而保证高的库伦效率。

与商业化的锂电池负极集流体铜箔相比,本发明提供的集流体能够在大电流下抑制锂枝晶的形成,即使电流密度达到10ma/cm2也能在前100次循环中保证95%以上的库伦效率。故本发明提供的锂金属电池集流体能够很好的在高电流密度下抑制锂枝晶形成,促进锂金属电池的发展,并为快充和快放电池提供新的集流体。

附图说明

图1为本发明制备得到的集流体的透射电镜图。

图2为本发明实例1的库伦效率测试结果。

图3为本发明实例1在循环100次后锂金属在三维多空集流体的扫描电镜形貌。

图4为本发明实例3的库伦效率测试结果。

图5为本发明实例3在循环100次后锂金属在三维多空集流体的扫描电镜形貌。

图6为对比实例1库伦效率测试结果。

图7为对比实例1的锂金属在商业化铜箔集流体上扫描电镜形貌。

图8为对比实例2锂片的扫描电镜形貌。

具体实施方式

以下通过具体实施例对本发明作详细说明。本发明不受下述实施案例的限制,可以根据发明的技术方案与实际情况来确定具体的实施方式。

实例1

以氧化硅纳米线多孔泡沫为生长模板,将氧化硅纳米线多孔泡沫模板其放入低压cvd炉中,抽真空,使炉内压力为5pa,升温至1000℃。当温度达到1000℃后,通入ch4,流量为100ml/min,调节真空泵开关,使炉内压力为100pa,生长cnts,生长时间为5h。cnts生长完成后,断开ch4供给,调节真空泵使炉内压力为5pa,然后断电降温,至室温后,将长有cnts的氧化硅纳米线模板取出,并将其放入等离子增强cvd炉中,然后,抽真空使炉内压力为5pa,升温至600℃。按照1:0.05的体积比例,混合乙醇和水,将混合液倒入烧杯中在超声清洗仪中超声混合5h,所用超声功率为100w。等离子增强cvd温度升至600℃,利用真空泵将制备好的的混合液体抽到等离子增强cvd炉中,调节真空泵开关,使炉内压力为80pa,此刻调节射频电源功率为50w,产生等离子体,在cnts表面的生长石墨烯,石墨烯生长时间为3h。石墨烯生长完成后,关闭乙醇和水的供给,关闭射频电源,调节真空泵使炉内压力为5pa,断开加热电源,待炉内降温至室温后开炉取样,获得cnts和石墨烯杂交体多孔泡沫。

将泡沫冲成14mm的极片组装电池,以多孔的玻璃纤维为隔膜、锂片为对电极、电解液为dol:dme=1:11mol/llitfsi进行效率测试,以10ma/cm2的电流密度充放电,放电时间6min,充电截止电压为1v,循环100次后拆开电池在扫描电镜观察结果如图2、3所示没有形成锂枝晶,且库伦效率能够保持在95%以上。

实例2

以氧化硅纳米线多孔泡沫为生长模板,将氧化硅纳米线多孔泡沫模板其放入低压cvd炉中,抽真空,使炉内压力为10pa,升温至1200℃。当温度达到1200℃后,通入ch4,流量为150ml/min,调节真空泵开关,使炉内压力为150pa,生长cnts,生长时间为10h。cnts生长完成后,断开ch4供给,调节真空泵使炉内压力为1pa,断电降温至室温后,将长有cnts的氧化硅纳米线模板取出,并将其放入等离子增强cvd炉中,抽真空使炉内压力为10pa,升温至800℃。按照1:0.035的体积比例,混合乙醇和水,将混合液倒入烧杯中在超声清洗仪中超声混合8h,所用超声功率为100w。等离子增强cvd温度升至1000℃,利用真空泵将制备好的混合液体抽到等离子增强cvd炉中,调节真空泵开关,使炉内压力为100pa,此刻调节射频电源功率为100w,产生等离子体,在cnts表面的生长石墨烯;石墨烯生长时间为5h。石墨烯生长完成后,关闭乙醇和水的供给,关闭射频电源,调节真空泵使炉内压力为10pa,断开加热电源,待炉内降温至室温后开炉取样,获得了cnts和石墨烯杂交体多孔泡沫。

将泡沫冲成直径为14mm的极片组装电池,以多孔的玻璃纤维为隔膜,锂片为对电极、电解液为ec:dec=1:1的1mol/llipf6进行效率测试,以10ma/cm2的电流密度充放电,放电时间6min,充电截止电压为1v,循环100次后拆开电池在扫描电镜观察没有形成枝晶,效率在100次循环内能够保持在90%以上。

另外也可以看出,本发明的集流体可适用多种不同的电解液。

实例3

将lifepo4、superp、pvdf按照质量比为80:10:10研磨混合均匀,将得到的浆料均匀涂布在铝箔集流体上,在120℃的真空干燥箱中干燥24小时后备用。

以氧化硅纳米线多孔泡沫为生长模板,将氧化硅纳米线多孔泡沫模板其放入低压cvd炉中,抽真空,使炉内压力为8pa,升温至1100℃,通入ch4,流量为160ml/min,调节真空泵开关,使炉内压力为150pa,生长cnts,生长时间为10h。cnts生长完成后,断开ch4供给,调节真空泵使炉内压力为5pa,断电降温至室温后,将长有cnts的氧化硅纳米线模板取出,并将其放入等离子增强cvd炉中,抽真空使炉内压力为10pa,升温至800℃。按照1:0.08的体积比例,混合乙醇和水。将混合液倒入烧杯中在超声清洗仪中超声混合8h,所用超声功率为100w。等离子增强cvd温度升至800℃,利用真空泵将制备好的的混合液体抽到等离子增强cvd炉中,调节真空泵开关,使炉内压力为100pa,此刻调节射频电源功率为100w,产生等离子体,在cnts表面的生长石墨烯;石墨烯生长时间为4h。石墨烯生长完成后,关闭乙醇和水的供给,关闭射频电源,调节真空泵使炉内压力为10pa,断开加热电源,待炉内降温至室温后开炉取样,获得cnts和石墨烯杂交体多孔泡沫。

将泡沫冲成14mm的极片组装电池,以多孔的玻璃纤维为隔膜、锂片做对电极、电解液为dol:dme=1:1的1mol/llitfsi组装电池并进行以0.5ma/cm2的电流密度放电10小时,当锂金属在集流体上沉积完毕后,将电池拆开,取出沉积锂金属的集流体做负极、前述备用的涂布有含lifepo4浆料的铝箔集流体做正极、玻璃纤维为隔膜、电解液为ec:dmc:emc=1:1:11mol/l的lipf6重新组装电池。电池以1c进行循环充放电,电压范围为3.2-4.3v,如图4、5所示,充放循环100次后容量为125mah/g,充放电效率接近100%,三维多空cnts和石墨烯交联泡沫集流体中没有锂枝晶产生。

对比实例1

采用商业化的锂离子电池负极集流体铜箔组装电池,将铜箔冲成14mm的极片组装电池,以多孔的玻璃纤维为隔膜、锂片为对电极、电解液为dol:dme=1:1的1mol/llitfsi进行效率测试,以10ma/cm2的电流密度充放电,放电时间6min,充电截止电压为1v,循环100次后拆开电池,结果如图6、7所示,扫描电镜观察循环100次后集流体上有枝晶形成,循环的库伦效率较低。

对比实例2

将lifepo4、superp、pvdf按照质量比为80:10:10研磨混合均匀,将得到的浆料均匀涂布在铝箔集流体上,然后在120℃的真空干燥箱中干燥24小时后将其冲成直径为14mm的极片组装电池。以多孔的玻璃纤维为隔膜、锂片为负极、含有lifepo4的极片为正极、电解液为解液为ec:dmc:emc=1:1:11mol/l的lipf6组装电池以1c进行循环充放电,电压范围为3.2-4.3v,充放循环100次后拆开电池对锂片的形貌进行扫描电镜观察,结果如图8所示,锂片有枝晶形成。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1