一种大功率紫外LED真空封装器件及其制造方法与流程

文档序号:13319200阅读:242来源:国知局

本发明涉及led封装领域,特别是一种大功率紫外led真空封装器件及其制造方法。



背景技术:

现有技术中浅紫外led应用比较多,常见的是3535陶瓷封装,但封装尺寸偏小很难做到更大功率;另外不论浅紫外还是紫外,1-3wled器件封装材料大多是选用molding硅胶,器件长时间使用容易造成硅胶黄化、破裂甚至脱落。硅胶封装只适合浅紫外小功率产品使用。因此现有技术瓶颈在无法实现大功率、无法有效解决紫外光对材料的破坏。



技术实现要素:

本发明所要解决的技术问题是克服现有技术的不足而提供一种大功率紫外led真空封装器件及其制造方法,本发明完全实现较大功率的封装需求。

本发明为解决上述技术问题采用以下技术方案:

根据本发明提出的一种大功率紫外led真空封装器件,包括基板、反射杯、玻璃片和至少一个紫外led晶片;基板的底部设有正极焊盘、负极焊盘和散热器,散热器位于正极焊盘和负极焊盘的中间,基板的上表面设有固晶区与粘接区;其中,

反射杯固定在基板的粘接区上,紫外led晶片固定在基板的固晶区,紫外led晶片的正极与正极焊盘连接,紫外led晶片的负极与负极焊盘连接,玻璃片覆盖在反射杯上并与反射杯粘接;反射杯杯口有台阶形状设计,台阶高度与玻璃片厚度一致,玻璃片固定在反射杯的台阶上使得玻璃片表面与反射杯表面在同一平面上。

作为本发明所述的一种大功率紫外led真空封装器件进一步优化方案,所述反射杯的表面为光滑的。

作为本发明所述的一种大功率紫外led真空封装器件进一步优化方案,所述反射杯为铝制反射杯。

作为本发明所述的一种大功率紫外led真空封装器件进一步优化方案,所述紫外led晶片的波段为200-420nm。

作为本发明所述的一种大功率紫外led真空封装器件进一步优化方案,所述玻璃片为钢化玻璃片。

作为本发明所述的一种大功率紫外led真空封装器件进一步优化方案,所述基板的材质为氧化铝陶瓷。

一种大功率紫外led真空封装器件的制作方法,包括以下步骤:

步骤一、提供基板,基板的底部设有正极焊盘、负极焊盘和散热器,散热器位于正极焊盘和负极焊盘的中间,基板的上表面设有固晶区与粘接区;

步骤二、采用印刷制程将粘接剂均匀印刷在基板的粘接区;

步骤三、将反射杯固定在基板的粘接区上;

步骤四、将粘接好反射杯的基板置入烤箱烘烤固化粘接剂;

步骤五、将粘接好反射杯的基板置于固晶机上,采用固晶胶将紫外led晶片固定在基板的固晶区;

步骤六、将固完紫外led晶片的半成品置入烤箱烘烤使固晶胶固化;

步骤七、将固化完成的半成品置于焊线机上进行键合金线焊线,使紫外led晶片的正负极分别连接基板的正极焊盘、负极焊盘;

步骤八、焊线后的半成品置于真空环境下,将钢化玻璃粘接在反射杯上并固化,从而形成成品器件,得到大功率紫外led真空封装器件。

作为本发明所述的一种大功率紫外led真空封装器件的制作方法进一步优化方案,所述反射杯为铝制反射杯,所述反射杯的表面为光滑的。

作为本发明所述的一种大功率紫外led真空封装器件的制作方法进一步优化方案,所述紫外led晶片的波段为200-420nm。

作为本发明所述的一种大功率紫外led真空封装器件的制作方法进一步优化方案,所述玻璃片为钢化玻璃片,所述基板的材质为氧化铝陶瓷。

本发明采用以上技术方案与现有技术相比,具有以下技术效果:

(1)采用基板底部包括正极、负极焊盘和散热器,基板正面包含固晶区与粘接区;基板是由氧化铝陶瓷作为基材在其表面做线路,线路由铜金属作为底层,在铜层上电镀镍与银或者金;

(2)采用铝制反射杯,取代现有塑料材质;

(3)采用钢化玻璃片封装,抗机械冲击性能强;

(4)晶片可选用紫外led芯片(200nm-420nm)任意波段;

(5)器件内部成真空状态,不受外界环境影响寿命,本发明使用陶瓷基板、铝制反射杯与玻璃的全无机封装材料克服了不管浅紫外还是紫外光长期照射带来的材料破坏,再搭配较大尺寸陶瓷基板,完全实现较大功率的封装需求,实现了较大功率需求的应用场合。

附图说明

图1为基板正面结构。

图2为基板底部结构。

图3为铝制反射杯结构。

图4为铝制反射杯粘接在基板上之后的示意图。

图5为固晶打线封装后的成品器件。

附图标记解释为:1为基板,2为固晶胶,3为紫外led晶片,4为键合金丝,5为粘接剂,6为钢化玻璃片,7为铝制反射杯,8为基板固晶区,9为基板焊线区,10为基板粘接区,11为基板底部的正极焊盘,12为散热器,13为基板底部的负极焊盘。

具体实施方式

下面结合附图对本发明的技术方案做进一步的详细说明:

如图5所示,本发明的一种大功率紫外led真空封装器件,包括基板1、铝制反射杯7、钢化玻璃片6和至少一个紫外led晶片3;基板的底部设有正极焊盘11、负极焊盘13和散热器12,散热器位于正极焊盘和负极焊盘的中间,基板的上表面设有固晶区8与粘接区10;其中,

反射杯固定在基板的粘接区上,紫外led晶片固定在基板的固晶区,紫外led晶片的正极与正极焊盘连接,紫外led晶片的负极与负极焊盘连接,玻璃片覆盖在反射杯上并与反射杯粘接。反射杯为铝制反射杯。反射杯杯口有台阶形状设计,台阶高度与玻璃片厚度一致,玻璃片固定在反射杯的台阶上使得玻璃片表面与反射杯表面在同一平面上,反射杯杯口外围包裹玻璃片,使得产品避免因侧面外力引起的破真空或玻璃片破损的失效风险。反射杯为铝制反射杯。

如图1为基板正面结构,如图2为基板底部结构,如图3为铝制反射杯的结构。图4为铝制反射杯粘接在基板上之后的示意图。

本发明使用基板为陶瓷基板、铝制反射杯与玻璃的全无机封装材料克服了不管浅紫外还是紫外光长期照射带来的材料破坏,再搭配较大尺寸陶瓷基板,完全实现较大功率的封装需求。实现了较大功率需求的应用场合。

一种大功率紫外led真空封装器件的制造方法,包括以下步骤:

步骤一、使用印刷制程将粘接剂5印刷在基板粘接区,需印刷涂布均匀。

步骤二、将铝制反射杯底座固定在基板粘接区,如图4所示;

步骤三、将粘接好铝制反射杯的基板置入烤箱烘烤固化粘接剂;

步骤四、将粘接好铝制反射杯的基板置于固晶机上使用高导热固晶胶2进行固定紫外led晶片;

步骤五、将固完led晶片的半成品置入烤箱烘烤使固晶胶固化;

步骤六、将固化完成的半成品置于焊线机上进行键合金丝4焊线,9为基板焊线区,使紫外led晶片的正负极分别连接基板正负极焊盘;

步骤七、焊线后半成品置于真空环境下降钢化玻璃粘接在铝制反射杯上并固化行成成品器件;如图5所示为固晶打线封装后的成品器件。

步骤八、检验后成品器件按照电压、亮度与波长分类。

将经过表面处理的铝制反射杯底座与陶瓷基板正面粘接区结合并粘接;之后基板固晶区进行固晶打线作业;最后在真空环境下将钢化玻璃片粘接在铝制反射杯上面形成led器件。本发明使用5*5mm的大尺寸基板可封装多颗led晶片,适合5-10w操作;使用陶瓷材质基板也可更好的散热。本发明实现了紫外led大功率封装,更适合在需要高功率的uv固化领域或者需求高效率的情况下使用。本发明也使用全无机材料真空封装,适合200-420nm全波段led晶片封装。

所述基板中粘接区用来粘接基板与铝制反射杯底座,使两者行成一体。

所述粘接剂需密封性好且耐高温200℃以上。

所述玻璃片经钢化处理,增加其机械冲击强度。

所述铝制反射杯是经表面打磨处理,行成光滑的高反射杯。

将紫外led晶片使用高导热固晶胶固定,并使用焊线机焊接正负极焊盘。

在真空状态下将钢化玻璃片覆盖在铝制反射杯上并粘接,行成真空封装密闭器件。

所述反射杯是铝制材料,并经过表面处理使其具有高亮、高反射的特性。

玻璃片是玻璃材质,经过钢化处理,抗机械冲击性能强不易破碎。

除上述实施例外,本发明还可以有其他实施方式,凡采用等同替换或等效变换形成的技术方案,均落在本发明要求的保护范围内。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1