一种线状多孔钛酸锂材料及其制备和产品的制作方法

文档序号:16850314发布日期:2019-02-12 22:40阅读:257来源:国知局
一种线状多孔钛酸锂材料及其制备和产品的制作方法

本发明涉及能源、环保材料的制备领域,具体的说,本发明涉及一种线状多孔钛酸锂材料及其制备和产品。



背景技术:

钛酸锂是一理想的、极具开发前景的锂离子电池负极材料,其充放电循环可达数千次以上,是电极材料领域研究的热点。

钛酸锂的尺寸和形貌能在很大的程度上影响其在锂离子电池中的应用。相比于颗粒而言,线状结构钛酸锂材料可以减少颗粒间的晶界,有利于载流子在长轴方向上的输运,在电池电极材料领域,长轴有利于电子的有效迁移,短轴有利于锂、钠或钾离子的快速嵌入与嵌出过程。相比于颗粒而言,线状结构具有较好的充放电性能等。此外,多孔结构材料具有大的比表面积、高的孔隙率,使其在应用方面具有许多优异的特性。将钛酸锂制备成多孔结构,具有以下一些优势:(1)多孔结构可增加材料的比表面积,扩大电极与电解液的接触面积,减少电流密度,提高充放电速率;(2)多孔结构有利于电解液的输运,提升导电性能;(3)多孔结构构成的材料在整体上属于大颗粒范畴,有利于增加材料的振实密度,提升电池的体积比容量。因此,将线状结构、单晶结构、多孔结构结合,得到具有线状、多孔、单晶的钛酸锂材料,可大大提高材料比表面积、提升材料的表面活性、减少颗粒间的晶界,提升载流子在长轴方向的有效输运,可大大提升材料在电池电极的容量和快速充放电等领域的应用性能。

现有生产钛酸锂的方法主要包括固态合成以及水热反应制备。其中,固态合成方法通常采用先将氢氧化锂或碳酸锂和二氧化钛等原料通过球磨或在有机溶剂中混合均匀,后在大于800摄氏度的高温下烧结制备得到。该方法制备需要过量的氢氧化锂或碳酸锂,得到的钛酸锂通常纯度不高,尺寸在微米尺度,形貌和均一性都不好。钛酸锂的水热制备方法通常以商业二氧化钛和氢氧化钠为起始原材料,通过水热法制备出钛酸钠,并将钛酸钠浸泡在酸溶液中,利用离子交换法得到了钛酸;随后将钛酸与氢氧化锂溶液混合后或钛酸锂前驱物,之后产物在不同温度下退火处理,得到钛酸锂产物。该制备方法的水热过程涉及到高温高压,具有一定的危险性。同时,该反应体系为10mol/l的强碱,在高温下具有很强的腐蚀性,对水热反应设备的要求非常苛刻,很难寻找到合适的反应设备。此外,该制备方法使用到的碱浓度很高,造成后续的产品分离提纯困难,也给环境带来一定的污染。因此,钛酸锂的水热制备方法在合成设备及后续处理等方面仍面临很多难题,无法实现规模化生产。

综上,为进一步提升钛酸锂材料在锂离子等电池领域的应用性能,急需寻找开发一种具有线状、多孔和单晶结构的钛酸锂电极材料。此外,针对开发工艺流程简单,便于规模化生产钛酸锂的制备方法,尤其是具有多孔线状结构钛酸锂材料的制备方法,仍具有很大的技术挑战。



技术实现要素:

本发明的一个目的在于提供一种线状多孔钛酸锂材料。

本发明的另一目的在于提供所述线状多孔钛酸锂材料的制备方法。

本发明的再一目的在于提供所述线状多孔钛酸锂材料为原料制备得到的气体传感器或离子电池电极。

为达上述目的,一方面,本发明提供了一种线状多孔钛酸锂材料,其中,所述材料包括:

所述钛酸锂材料的晶相为尖晶石型钛酸锂;

所述钛酸锂材料为线状结构;,所述线状结构的长径比大于10;

所述线状钛酸锂材料为多孔结构;

所述线状多孔钛酸锂材料的结构由多个颗粒组成,所述颗粒具有定向的生长方向,所述生长方向优选为<001>方向。

根据本发明一些具体实施方案,其中,所述线状结构的长径比为10至100。

根据本发明一些具体实施方案,其中,所述线状多孔钛酸锂材料为矩形柱或多个矩形柱结构,并具有平整和相互垂直的侧面。

根据本发明一些具体实施方案,其中,所述线状多孔钛酸锂材料为矩形柱或多个矩形柱结构,并具有平整和相互垂直的侧面,所述侧面为{110}晶面。

根据本发明一些具体实施方案,其中,所述尖晶石型钛酸锂晶相中还可含有锐钛矿相二氧化钛晶相、单斜晶系钛酸锂晶相中的一种。

根据本发明一些具体实施方案,其中,所述线状多孔结构的直径为20纳米至1微米,长度为1微米至50微米。

根据本发明一些具体实施方案,其中,所述线状结构的直径为50纳米至500纳米,长度为5微米至20微米。

根据本发明一些具体实施方案,其中,所述线状多孔结构中孔的大小为2纳米至50纳米。

根据本发明一些具体实施方案,其中,所述线状多孔结构中孔的大小为5纳米至20纳米。

另一方面,本发明还提供了所述线状多孔钛酸锂材料的制备方法,其中,所述方法包括:

s11、制备含有钛过氧络合物的分散液;

s12、往所述含有钛过氧络合物的分散液中加入锂化合物形成溶液;

s13、将所述溶液进行加热反应获得线状结构的过氧化钛酸锂;

s14、所述线状结构过氧化钛酸锂经低温退火处理获得线状结构无定型钛酸锂;

s15、将所述线状结构无定型钛酸锂经浸泡处理和高温退火处理获得线状多孔钛酸锂材料。

根据本发明一些具体实施方案,其中,步骤s15是将所述线状结构无定型钛酸锂经氢离子交换获得线状结构钛酸;然后再将所述线状结构钛酸经锂离子交换和热处理获得线状多孔钛酸锂材料。

根据本发明一些具体实施方案,其中,所述含有钛过氧络合物的分散液中钛过氧络合物浓度为0.01mol/l至1mol/l。

根据本发明一些具体实施方案,其中,所述含有钛过氧络合物的分散液中钛过氧络合物浓度为0.05mol/l至0.5mol/l。

根据本发明一些具体实施方案,其中,所述制备含有钛过氧络合物的分散液的方法为将钛源分散于过氧化物水溶液中形成分散液。

根据本发明一些具体实施方案,其中,所述钛源选自金属钛、乙醇钛、丙醇钛、钛酸四丁酯、乙二醇钛、丙三醇钛、硫酸钛、硫酸氧钛、四氯化钛、四氟化钛、氟钛酸铵、氮化钛、二氧化钛、水合钛酸、偏钛酸、和正钛酸中的一种或者几种的组合。

根据本发明一些具体实施方案,其中,所述过氧化物选自过氧化氢、过氧化尿素、和过氧乙酸中的一种或几种的组合。

根据本发明一些具体实施方案,其中,所述含有钛过氧络合物的分散液的状态可以是溶液状态、悬浊液状态、乳液状态中的一种。

根据本发明一些具体实施方案,其中,步骤s11制备含有钛过氧络合物的分散液时还可以往分散液中添加聚合物;所述聚合物选自壳聚糖、瓜尔胶、甲基纤维素、乙基纤维素、羟乙基纤维素、羟丙基纤维素、羟丙基甲基纤维素、聚乙烯醇、聚丙烯酰胺、聚氧化乙烯、聚乙二醇、和聚乙烯吡咯烷酮中的一种或者几种;所述溶液中添加的聚合物的含量为万分之一至百分之十。

根据本发明一些具体实施方案,其中,溶液中添加聚合物的含量为千分之一至百分之一。

根据本发明一些具体实施方案,其中,所述添加的聚合物选自聚合物固体或聚合物水溶液。

根据本发明一些具体实施方案,其中,步骤s12所述锂化合物选自氢氧化锂、氧化锂、过氧化锂、超氧化锂中的一种或几种的组合。

根据本发明一些具体实施方案,其中,步骤s12所述加入锂化合物形成的溶液中锂离子的浓度为0.4mol/l-2.0mol/l。

根据本发明一些具体实施方案,其中,所述加入锂化合物选自锂化合物固体或锂化合物水溶液。

根据本发明一些具体实施方案,其中,步骤s13所述加热反应的温度为60℃-100℃;所述加热反应的时间为0.5h-24h。

根据本发明一些具体实施方案,其中,步骤s14所述低温退火处理的温度为150℃-250℃;所述低温退火处理的时间为1h-24h;步骤s15所述高温退火的温度为350℃-800℃;所述高温退火处理的时间为1h-24h。

根据本发明一些具体实施方案,其中,步骤s15所述浸泡处理为将线状结构无定型钛酸锂加入水中浸泡后分离干燥的处理方式,其中线状结构无定型钛酸锂与水的质量百分比为1:1000至1:100000;所述浸泡时间为1h-24h。

根据本发明一些具体实施方案,其中,步骤s15所述所述氢离子交换过程为将线状结构无定型钛酸锂多次洗涤分离后放入酸溶液中进行氢离子交换获得线状结构钛酸;所述酸溶液选自硝酸、盐酸、硫酸、和醋酸中的一种或者几种,酸溶液的浓度为0.001mol/l-0.1mol/l。

根据本发明一些具体实施方案,其中,步骤s15所述锂离子交换过程为将经过氢离子交换得到的线状结构钛酸放入含有锂离子的溶液中进行锂离子交换获得线状结构钛酸锂前驱物;所述锂离子的溶液选自硝酸锂、醋酸锂、氯化锂、柠檬酸锂、和氢氧化锂中的一种或者几种的溶液;所述锂离子的溶液中锂离子的浓度为0.1mol/l-1.0mol/l。

根据本发明一些具体实施方案,其中,步骤s15所述热处理的方式为水热反应、和高温退火中的一种或者它们之间的组合。

根据本发明一些具体实施方案,其中,所述水热反应的体系选自纯水体系、含有锂离子的水体系、氢氧化锂的水体系中的一种进行反应;所述水热反应的温度为100℃-200℃;所述水热反应时间为1h-24h。

根据本发明一些具体实施方案,其中,当所述热处理方式为高温退火时,高温退火的温度为350℃-800℃;所述高温退火的时间为1h-24h。

再一方面,本发明还提供了本发明任意一项所述线状多孔钛酸锂材料为原料制备得到的气体传感器或离子电池电极。

根据本发明一些具体实施方案,其中,所述离子电池选自锂离子电池、钠离子电池、钾离子电池、或镁离子电池。

综上所述,本发明提供了一种线状多孔钛酸锂材料及其制备和产品。本发明的材料具有如下优点:

(1)该申请首次提供一种线状结构、单晶结构、多孔结构的钛酸锂材料。

(2)该方法提供线状结构、单晶结构、多孔结构钛酸锂材料的制备技术,是其它方法所无法实现的。

(3)该方法提供的多孔结构可增加钛酸锂的比表面积,增加钛酸锂作为电极材料时与电解液的接触面积,减少电流密度,提升电池性能。

(4)该方法提供的线状单晶结构可减少颗粒间的晶界,有利于载流子在长轴方向上的输运,提升电极材料的应用效果。

(5)该方法制备工艺简单,工艺参数易控制,原料易得,生产成本较低,易于大规模工业化生产。

(6)该结构长轴有利于电子的有效迁移,多孔结构有利于锂离子、钠离子或钾离子的快速嵌入与嵌出过程,大的比表面积有利于电解液与电极的接触面积,减少电流密度,具有较好的电池快速充放电性能。

附图说明

图1为线状多孔钛酸锂材料的制备流程图a

图2为实施例1钛酸锂材料为尖晶石型钛酸锂晶相的xrd图;

图3为实施例1钛酸锂材料为线状结构的sem图;

图4为实施例1线状钛酸锂材料为多孔结构的tem图;

图5为实施例1线状多孔钛酸锂材料的高分辨透射hrtem图;

图6为实施例1线状多孔钛酸锂材料的tem及相应的选区电子衍射(黑色圆圈区域)图;

图7为实施例1线状多孔单晶钛酸锂材料的高分辨sem形貌图;

图8为实施例1线状多孔单晶钛酸锂材料的形貌结构示意图;

图9为实施例1线状多孔单晶钛酸锂材料的bet吸脱附曲线及孔径分布(插图)图;

图10为实施例1线状多孔单晶钛酸锂材料作为电极材料的锂离子电池在不同充放电速率下的放电容量图;

图11为线状多孔钛酸锂材料的制备流程图b。

具体实施方式

以下通过具体实施例详细说明本发明的实施过程和产生的有益效果,旨在帮助阅读者更好地理解本发明的实质和特点,不作为对本案可实施范围的限定。

实施例1

按照图1制备线状多孔钛酸锂材料的流程。首先将2克异丙醇钛分散于100毫升水中,后加入5毫升浓度为30%的过氧化氢,搅拌形成含有钛的过氧络合物悬浊液。接着,往上述过氧络合物悬浊液中添加3.5克氢氧化锂,搅拌形成浅黄色透明溶液。随后,将上述浅黄色透明溶液加热至80摄氏度后恒温搅拌6小时,获得线状结构的过氧化钛酸锂白色产物,停止反应并分离获得白色固体。随后,将上述白色固体干燥后放入200摄氏度的烘箱中恒温退火处理20小时,获得线状结构无定型钛酸锂。接着,将上述无定型钛酸锂与水的比例按照质量比为1:10000的量将无定型钛酸锂浸泡在水中,在搅拌条件下浸泡12小时,后分离干燥。最后,将上述浸泡后干燥的无定型钛酸锂于550摄氏度下加热4小时,获得线状多孔钛酸锂材料。

线状多孔钛酸锂材料的xrd晶相图谱如图2所示,与标准的尖晶石型钛酸锂(pdf卡片编号为49-0207)的标准峰完全重合,证实为尖晶石型钛酸锂。

线状多孔钛酸锂材料的sem形貌图谱如图3所示,可以看出,线状结构的长径比大于10,其中,长径比为10至100的线状结构所占的比例高达百分之八十以上。图中还可以看出,线状多孔钛酸锂材料的直径为20纳米至1微米,长度为1微米至50微米,其中,直径为50纳米至500纳米,长度为5微米至20微米的线状结构所占的比例高达百分之六十。

线状多孔钛酸锂材料的tem形貌图谱如图4所示,可以看出,线状钛酸锂材料为多孔结构,多孔结构中孔的大小为2纳米至50纳米,其中,孔径的大小为5纳米至20纳米的孔所占的比例高达百分之九十以上。

线状多孔钛酸锂材料的高分辨透射hrtem图谱如图5所示,可以看出,线状多孔钛酸锂材料的结构由多个颗粒组成,其中这些颗粒具有定向的排列生长方向,沿着<001>方向定向排列生长。

线状多孔钛酸锂材料的tem图谱及相应的选区电子衍射(黑色圆圈区域)如图6所示,可以看出,线状多孔钛酸锂材料整体为单晶结构,单晶的长轴取向为<001>方向。

线状多孔单晶钛酸锂材料的高分辨sem形貌图谱如图7所示,可以看出,线状多孔单晶钛酸锂材料为矩形柱或多个矩形柱结构,具有平整和相互垂直的侧面;通过与透射电镜及选区电子衍射实验结果相结合,可以证实该材料的侧面为{110}晶面,材料形貌结构的示意图如图8所示。

线状多孔单晶钛酸锂材料的bet吸脱附曲线及孔径分布(插图)如图9所示,可以看出,线状多孔单晶钛酸锂材料具有较大的比表面积,为56.6m2/g;孔径分布为2纳米至50纳米。

线状多孔单晶钛酸锂材料作为电极材料的锂离子电池在不同充放电速率下的放电容量测试结果如图10所示。锂离子电池电极的制备采用刮涂方法,首先按照钛酸锂产物:superp:聚偏氟乙烯(pvdf)=7:2:1的质量比,以n-甲基吡咯烷酮(nmp)为溶剂混成浆料,再用刮涂机把浆料均匀的涂覆在铜箔上,后在手套箱中以金属锂做对电极,1mol/llipf6/ec-dmc-emc(1:1:1)作为电解液,glassfiber作为隔膜,组装成型号为cr2032的纽扣电池进行电化学测试。图10可以看出,由于材料为线状、单晶、多孔结构,其中,线状长轴以及单晶特性有利于电子的长轴有效迁移,多孔结构有利于锂离子的快速嵌入与嵌出,多孔结构还可增加钛酸锂的比表面积,有利于电解液与电极的接触面积,减少电流密度,因此,该结构材料具有优异锂离子电池快速充放电性能,在1c、2c、5c、10c、15c、20c、50c的不同充放电速率下,电池容量分别保持在220、210、204、198、198、198、198mahg-1,是目前报道的钛酸锂材料中容量最高的结构材料。

实施例2

按照图1制备线状多孔钛酸锂材料的流程。首先将0.3克硫酸钛分散于100毫升水中,后加入2克的过氧化尿素,搅拌形成含有钛的过氧络合物悬浊液。接着,往上述过氧络合物悬浊液中添加1克过氧化锂,搅拌形成浅黄色透明溶液。随后,将上述浅黄色透明溶液加热至60摄氏度后恒温搅拌24小时,获得线状结构的过氧化钛酸锂白色产物,停止反应并分离获得白色固体。随后,将上述白色固体干燥后放入150摄氏度的烘箱中恒温退火处理24小时,获得线状结构无定型钛酸锂。接着,将上述无定型钛酸锂与水的比例按照质量比为1:1000的量将无定型钛酸锂浸泡在水中,在搅拌条件下浸泡24小时,后分离干燥。最后,将上述浸泡后干燥的无定型钛酸锂于350摄氏度下加热24小时,获得线状多孔钛酸锂材料。得到的线状多孔钛酸锂材料形态结构与实施例1接近。以本实施例线状多孔钛酸锂材料作为电极材料制备的锂离子电池在不同充放电速率下的放电容量测试结果也与实施例1接近。

实施例3

按照图1制备线状多孔钛酸锂材料的流程。首先将8克水合钛酸分散于80毫升水中,后加入25毫升浓度为30%的过氧化氢,搅拌形成含有钛的过氧络合物悬浊液。接着,往上述过氧络合物悬浊液中添加3克氧化锂,搅拌形成浅黄色透明溶液。随后,将上述浅黄色透明溶液加热至100摄氏度后恒温搅拌1小时,获得线状结构的过氧化钛酸锂白色产物,停止反应并分离获得白色固体。随后,将上述白色固体干燥后放入250摄氏度的烘箱中恒温退火处理2小时,获得线状结构无定型钛酸锂。接着,将上述无定型钛酸锂与水的比例按照质量比为1:100000的量将无定型钛酸锂浸泡在水中,在搅拌条件下浸泡24小时,后分离干燥。最后,将上述浸泡后干燥的无定型钛酸锂于850摄氏度下加热1小时,获得线状多孔钛酸锂材料。得到的线状多孔钛酸锂材料形态结构与实施例1接近。以本实施例线状多孔钛酸锂材料作为电极材料制备的锂离子电池在不同充放电速率下的放电容量测试结果也与实施例1接近。

实施例4

按照图1制备线状多孔钛酸锂材料的流程。首先将3克水合硫酸氧钛分散于100毫升水中,后加入5毫升浓度为过氧化乙酸,搅拌形成含有钛的过氧络合物悬浊液。接着,往上述过氧络合物悬浊液中添加3克超氧化锂,搅拌形成浅黄色透明溶液。随后,将上述浅黄色透明溶液加热至90摄氏度后恒温搅拌3小时,获得线状结构的过氧化钛酸锂白色产物,停止反应并分离获得白色固体。随后,将上述白色固体干燥后放入180摄氏度的烘箱中恒温退火处理15小时,获得线状结构无定型钛酸锂。接着,将上述无定型钛酸锂与水的比例按照质量比为1:50000的量将无定型钛酸锂浸泡在水中,在搅拌条件下浸泡15小时,后分离干燥。最后,将上述浸泡后干燥的无定型钛酸锂于650摄氏度下加热3小时,获得线状多孔钛酸锂材料。得到的线状多孔钛酸锂材料形态结构与实施例1接近。以本实施例线状多孔钛酸锂材料作为电极材料制备的锂离子电池在不同充放电速率下的放电容量测试结果也与实施例1接近。

实施例5

按照图1制备线状多孔钛酸锂材料的流程。首先将3克钛酸四丁脂分散于100毫升水中,后加入6毫升浓度为过氧化氢,搅拌形成含有钛的过氧络合物悬浊液。接着,往上述过氧络合物悬浊液中添加3克氢氧化锂,搅拌形成浅黄色透明溶液。随后,将上述浅黄色透明溶液加热至70摄氏度后恒温搅拌12小时,获得线状结构的过氧化钛酸锂白色产物,停止反应并分离获得白色固体。随后,将上述白色固体干燥后放入220摄氏度的烘箱中恒温退火处理10小时,获得线状结构无定型钛酸锂。接着,将上述无定型钛酸锂与水的比例按照质量比为1:5000的量将无定型钛酸锂浸泡在水中,在搅拌条件下浸泡12小时,后分离干燥。最后,将上述浸泡后干燥的无定型钛酸锂于450摄氏度下加热6小时,获得线状多孔钛酸锂材料。得到的线状多孔钛酸锂材料形态结构与实施例1接近。以本实施例线状多孔钛酸锂材料作为电极材料制备的锂离子电池在不同充放电速率下的放电容量测试结果也与实施例1接近。

实施例6

按照图1制备线状多孔钛酸锂材料的流程。首先将3克钛酸四丁脂分散于100毫升浓度为千分之一的羟丙基甲基纤维素水溶液中,后加入6毫升浓度为过氧化氢,搅拌形成含有钛的过氧络合物悬浊液。接着,往上述过氧络合物悬浊液中添加3克氢氧化锂,搅拌形成浅黄色透明溶液。随后,将上述浅黄色透明溶液加热至75摄氏度后恒温搅拌10小时,获得线状结构的过氧化钛酸锂白色产物,停止反应并分离获得白色固体。随后,将上述白色固体干燥后放入200摄氏度的烘箱中恒温退火处理15小时,获得线状结构无定型钛酸锂。接着,将上述无定型钛酸锂与水的比例按照质量比为1:8000的量将无定型钛酸锂浸泡在水中,在搅拌条件下浸泡18小时,后分离干燥。最后,将上述浸泡后干燥的无定型钛酸锂于500摄氏度下加热8小时,获得线状多孔钛酸锂材料。得到的线状多孔钛酸锂材料形态结构与实施例1接近。以本实施例线状多孔钛酸锂材料作为电极材料制备的锂离子电池在不同充放电速率下的放电容量测试结果也与实施例1接近。

实施例7

按照图1制备线状多孔钛酸锂材料的流程。首先将2克异丙醇钛分散于100毫升浓度为千分之五的聚乙烯醇水溶液中,后加入5毫升浓度为过氧化氢,搅拌形成含有钛的过氧络合物悬浊液。接着,往上述过氧络合物悬浊液中添加3.5克氢氧化锂,搅拌形成浅黄色透明溶液。随后,将上述浅黄色透明溶液加热至85摄氏度后恒温搅拌6小时,获得线状结构的过氧化钛酸锂白色产物,停止反应并分离获得白色固体。随后,将上述白色固体干燥后放入240摄氏度的烘箱中恒温退火处理10小时,获得线状结构无定型钛酸锂。接着,将上述无定型钛酸锂与水的比例按照质量比为1:80000的量将无定型钛酸锂浸泡在水中,在搅拌条件下浸泡10小时,后分离干燥。最后,将上述浸泡后干燥的无定型钛酸锂于600摄氏度下加热6小时,获得线状多孔钛酸锂材料。得到的线状多孔钛酸锂材料形态结构与实施例1接近。以本实施例线状多孔钛酸锂材料作为电极材料制备的锂离子电池在不同充放电速率下的放电容量测试结果也与实施例1接近。

实施例8

按照图11制备线状多孔钛酸锂材料的流程。首先将1.5克异丙醇钛分散于100毫升水中,后加入4毫升浓度为30%的过氧化氢,搅拌形成含有钛的过氧络合物悬浊液。接着,往上述过氧络合物悬浊液中添加3克氢氧化锂,搅拌形成浅黄色透明溶液。随后,将上述浅黄色透明溶液加热至75摄氏度后恒温搅拌8小时,获得线状结构的过氧化钛酸锂白色产物,停止反应并分离获得白色固体。随后,将上述白色固体干燥后放入200摄氏度的烘箱中恒温退火处理20小时,获得线状结构无定型钛酸锂。接着,将上述获得的线状结构无定型钛酸锂用去离子水多次洗涤后放入0.05摩尔/升的硝酸溶液进行氢离子交换,氢离子交换后用去离子水多次洗涤,直到洗涤液ph接近中性并干燥,得到线状结构钛酸。后将上述线状结构钛酸放入100毫升浓度为0.5摩尔/升的氢氧化锂溶液中,搅拌浸泡24小时进行锂离子交换,后分离干燥。最后,将上述干燥后样品于550摄氏度下加热4小时,获得线状多孔钛酸锂材料。得到的线状多孔钛酸锂材料形态结构与实施例1接近。以本实施例线状多孔钛酸锂材料作为电极材料制备的锂离子电池在不同充放电速率下的放电容量测试结果也与实施例1接近。

实施例9

按照图11制备线状多孔钛酸锂材料的流程。首先将0.5克硫酸钛分散于100毫升水中,后加入2.5克的过氧化尿素,搅拌形成含有钛的过氧络合物悬浊液。接着,往上述过氧络合物悬浊液中添加1.2克过氧化锂,搅拌形成浅黄色透明溶液。随后,将上述浅黄色透明溶液加热至65摄氏度后恒温搅拌20小时,获得线状结构的过氧化钛酸锂白色产物,停止反应并分离获得白色固体。随后,将上述白色固体干燥后放入160摄氏度的烘箱中恒温退火处理24小时,获得线状结构无定型钛酸锂。接着,将上述获得的线状结构无定型钛酸锂用去离子水多次洗涤后放入0.001摩尔/升的盐酸溶液进行氢离子交换,氢离子交换后用去离子水多次洗涤,直到洗涤液ph接近中性并干燥,得到线状结构钛酸。后将上述线状结构钛酸放入100毫升浓度为0.1摩尔/升的氢氧化锂溶液中,搅拌浸泡24小时进行锂离子交换,后分离干燥。最后,将上述干燥后样品于350摄氏度下加热24小时,获得线状多孔钛酸锂材料。该多孔结构钛酸锂的主要晶相为尖晶石型,含有少量的锐钛矿相相二氧化钛晶相。得到的线状多孔钛酸锂材料形态结构与实施例1接近。以本实施例线状多孔钛酸锂材料作为电极材料制备的锂离子电池在不同充放电速率下的放电容量测试结果也与实施例1接近。

实施例10

按照图11制备线状多孔钛酸锂材料的流程。首先将8克钛酸分散于80毫升水中,后加入25毫升浓度为30%的过氧化氢,搅拌形成含有钛的过氧络合物悬浊液。接着,往上述过氧络合物悬浊液中添加3克氧化锂,搅拌形成浅黄色透明溶液。随后,将上述浅黄色透明溶液加热至100摄氏度后恒温搅拌2小时,获得线状结构的过氧化钛酸锂白色产物,停止反应并分离获得白色固体。随后,将上述白色固体干燥后放入250摄氏度的烘箱中恒温退火处理4小时,获得线状结构无定型钛酸锂。接着,将上述获得的线状结构无定型钛酸锂用去离子水多次洗涤后放入0.1摩尔/升的醋酸溶液进行氢离子交换,氢离子交换后用去离子水多次洗涤,直到洗涤液ph接近中性并干燥,得到线状结构钛酸。后将上述线状结构钛酸放入100毫升浓度为1摩尔/升的绿化锂溶液中,搅拌浸泡24小时进行锂离子交换,后分离干燥。最后,将上述干燥后样品于850摄氏度下加热2小时,获得线状多孔钛酸锂材料。该多孔结构钛酸锂的主要晶相为尖晶石型,含有少量的单斜晶系钛酸锂晶相。得到的线状多孔钛酸锂材料形态结构与实施例1接近。以本实施例线状多孔钛酸锂材料作为电极材料制备的锂离子电池在不同充放电速率下的放电容量测试结果也与实施例1接近。

实施例11

按照图11制备线状多孔钛酸锂材料的流程。首先将2.5克异丙醇钛分散于100毫升浓度为千分之八的聚乙烯醇水溶液中,后加入6毫升浓度为过氧化氢,搅拌形成含有钛的过氧络合物悬浊液。接着,往上述过氧络合物悬浊液中添加4克氢氧化锂,搅拌形成浅黄色透明溶液。随后,将上述浅黄色透明溶液加热至80摄氏度后恒温搅拌8小时,获得线状结构的过氧化钛酸锂白色产物,停止反应并分离获得白色固体。随后,将上述白色固体干燥后放入220摄氏度的烘箱中恒温退火处理16小时,获得线状结构无定型钛酸锂。接着,将上述获得的线状结构无定型钛酸锂用去离子水多次洗涤后放入0.01摩尔/升的硫酸溶液进行氢离子交换,氢离子交换后用去离子水多次洗涤,直到洗涤液ph接近中性并干燥,得到线状结构钛酸。后将上述线状结构钛酸放入100毫升浓度为0.4摩尔/升的醋酸锂溶液中,搅拌浸泡24小时进行锂离子交换,后分离干燥。最后,将上述干燥后样品放入50毫升的水中,于150摄氏度下水热反应12小时,获得线状多孔钛酸锂材料。得到的线状多孔钛酸锂材料形态结构与实施例1接近。以本实施例线状多孔钛酸锂材料作为电极材料制备的锂离子电池在不同充放电速率下的放电容量测试结果也与实施例1接近。

实施例12

按照图11制备线状多孔钛酸锂材料的流程。首先将3克水合硫酸氧钛分散于100毫升水中,后加入5毫升浓度为过氧化乙酸,搅拌形成含有钛的过氧络合物悬浊液。接着,往上述过氧络合物悬浊液中添加3克超氧化锂,搅拌形成浅黄色透明溶液。随后,将上述浅黄色透明溶液加热至90摄氏度后恒温搅拌3小时,获得线状结构的过氧化钛酸锂白色产物,停止反应并分离获得白色固体。随后,将上述白色固体干燥后放入180摄氏度的烘箱中恒温退火处理15小时,获得线状结构无定型钛酸锂。接着,将上述获得的线状结构无定型钛酸锂用去离子水多次洗涤后放入0.02摩尔/升的硝酸溶液进行氢离子交换,氢离子交换后用去离子水多次洗涤,直到洗涤液ph接近中性并干燥,得到线状结构钛酸。后将上述线状结构钛酸放入100毫升浓度为0.6摩尔/升的硝酸锂溶液中,搅拌浸泡24小时进行锂离子交换,后分离干燥。后将上述干燥后样品放入50毫升的水中,于100摄氏度下水热反应24小时,获得线状多孔钛酸锂材料。得到的线状多孔钛酸锂材料形态结构与实施例1接近。以本实施例线状多孔钛酸锂材料作为电极材料制备的锂离子电池在不同充放电速率下的放电容量测试结果也与实施例1接近。

实施例13

按照图11制备线状多孔钛酸锂材料的流程。首先将2.5克钛酸四丁脂分散于100毫升水中,后加入5毫升浓度为过氧化氢,搅拌形成含有钛的过氧络合物悬浊液。接着,往上述过氧络合物悬浊液中添加2.8克氢氧化锂,搅拌形成浅黄色透明溶液。随后,将上述浅黄色透明溶液加热至75摄氏度后恒温搅拌10小时,获得线状结构的过氧化钛酸锂白色产物,停止反应并分离获得白色固体。随后,将上述白色固体干燥后放入200摄氏度的烘箱中恒温退火处理16小时,获得线状结构无定型钛酸锂。接着,将上述获得的线状结构无定型钛酸锂用去离子水多次洗涤后放入0.05摩尔/升的盐酸溶液进行氢离子交换,氢离子交换后用去离子水多次洗涤,直到洗涤液ph接近中性并干燥,得到线状结构钛酸。后将上述线状结构钛酸放入100毫升浓度为0.8摩尔/升的柠檬酸锂溶液中,搅拌浸泡24小时进行锂离子交换,后分离干燥。后将上述干燥后样品放入50毫升的水中,于200摄氏度下水热反应6小时,获得线状多孔钛酸锂材料。得到的线状多孔钛酸锂材料形态结构与实施例1接近。以本实施例线状多孔钛酸锂材料作为电极材料制备的锂离子电池在不同充放电速率下的放电容量测试结果也与实施例1接近。

实施例14

按照图11制备线状多孔钛酸锂材料的流程。首先将2克四氟化钛分散于100毫升浓度为千分之二的羟丙基甲基纤维素水溶液中,后加入5毫升浓度为过氧化氢,搅拌形成含有钛的过氧络合物悬浊液。接着,往上述过氧络合物悬浊液中添加3克氢氧化锂,搅拌形成浅黄色透明溶液。随后,将上述浅黄色透明溶液加热至70摄氏度后恒温搅拌12小时,获得线状结构的过氧化钛酸锂白色产物,停止反应并分离获得白色固体。随后,将上述白色固体干燥后放入200摄氏度的烘箱中恒温退火处理15小时,获得线状结构无定型钛酸锂。接着,将上述获得的线状结构无定型钛酸锂用去离子水多次洗涤后放入0.05摩尔/升的硝酸溶液进行氢离子交换,氢离子交换后用去离子水多次洗涤,直到洗涤液ph接近中性并干燥,得到线状结构钛酸。后将上述线状结构钛酸放入100毫升浓度为0.6摩尔/升的氢氧化锂溶液中,搅拌浸泡24小时进行锂离子交换,后分离干燥。后将上述干燥后样品放入50毫升的水中,于120摄氏度下水热反应1小时。最后,将上述产物分离干燥后,于500摄氏度下加热3小时,获得线状多孔钛酸锂材料。得到的线状多孔钛酸锂材料形态结构与实施例1接近。以本实施例线状多孔钛酸锂材料作为电极材料制备的锂离子电池在不同充放电速率下的放电容量测试结果也与实施例1接近。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1