半导体器件及其制造方法

文档序号:6806520阅读:142来源:国知局
专利名称:半导体器件及其制造方法
技术领域
本发明涉及一种采用设在玻璃等之类制成的绝缘衬底上的TFT(薄膜晶体管)的半导体器件,更具体地说,涉及一种可用于有源矩阵型液晶显示器中的半导体器件。
玻璃等之类制成的绝缘衬底上设有若干TFT的半导体器件,已知的有图像传感器和采用这些TFT作为像素激励器的有源矩阵型液晶显示装置。
这些装置中使用的TFT通常采用薄膜状硅半导体。薄膜状硅半导体大致分为两种类型,即非晶硅半导体(a-Si)和晶体硅半导体。最常用的是非晶硅半导体,因为这种半导体制造温度低,可较容易地用气相法制造出来,因而生产率高。然而,非晶体硅半导体在诸如导电性之类的物理性能方面比晶体硅半导体差,所以历来都迫切要求研制出一种制造晶体硅半导体制成的TFT的方法,以便将来得出速率更高的特性。历来已知的晶体硅半导体有多晶硅、微晶硅、含晶体成分的非晶硅和处于晶态性能与非晶态性能之间的中间状态的半非晶硅等等。
制造具有这些晶态性能的薄膜硅半导体的方法,已知有下列几种(1)制造薄膜时直接形成晶体薄膜。
(2)先制造非晶薄膜,再加上热能,从而使其具晶态性能。
(3)先制造非晶半导体薄膜,再加上热能,从而使其具晶态性能。
然而,在方法(1)中,要均匀地在衬底的整个上表面上形成半导体物理性能优异的薄膜,在技术上有困难。此外,由于薄膜成形温度高,达600℃或以上,因而成本方面有问题,以致不能用便宜的玻璃作为衬底。在方法(2)中,举目前最常用的准分子激光器的例子的情况来说,首先由于激光束照射的范围小,因而产生生产率低的问题。此外,激光束在稳定性方面也不足以均匀处理大理大面积衬底的整个上表面,因而目前深信,这个方法是下一代的技术课题。在方法(3)中,与方法(1)和方法(2)相比较,有这样的好处,即它能适应衬底大面积的情况。但却需要600℃或更高的温度,从应用便宜的玻璃的观点来看,需要进一步降低加热温度。特别是,目前液晶显示装置的体积越来越大,因此,同样需要采用大幅玻璃衬底。采用这种大幅玻璃衬底时,会出现一个重大问题,即半导体制造过程中必然出现的衬底在加热过程中的收缩或变形破坏了掩模套准等工序的精度。尤其是在目前最常用的Corning 7059玻璃的情况下,扭变点是593℃,因而普通的热结晶法会使衬底大部分畸变。此外,除温度问题外,由于目前的工艺要求晶化的加热时间达数十小时时或以上,因而也要求缩短加热时间。
本发明是为解决上述问题而提出的。更具体地说,本发明的目的是应用通过加热晶化非晶硅形成的晶化薄膜以制造晶体硅半导体形成的薄膜的方法,提供降低晶化所需的温度和缩短晶化所需的时间的一种工艺。用本发明的工艺制备出来的晶体硅半导体,其物理性能比起那些用普通工艺制造的晶体硅半导体相同或更好,甚至还可以应用到TFT的有源层区域上。
本发明的另一个目的,是应用上述方法有选择地在衬底上形成性能合乎要求的TFT。
本发明者同人就上述制造非晶硅半导体薄膜的方法用CVD(化学汽相淀积法)法或溅射法进行了实验,通过加热来使如此形成的薄膜晶化,并研究了实验的结果。
首先研究了在玻璃衬底上形成非晶硅薄膜通过加热进行晶化的机理。结果,我们观察到晶体是从玻璃衬底与非晶硅之间的界面开始生长的,且当薄膜的厚度超过一定值时演变成垂直于衬底前表面的柱形。
我们认为,上述现象是由于玻璃衬底与非晶硅薄膜之间的界面存在形成晶体生长基础的晶核(形成晶体生长基础的种子),非晶硅薄膜和晶体即从该晶核生长的。我们认为,这种晶核是存在于衬底表面的少量金属元素杂质或存在于玻璃表面的晶体成分(我们认为,玻璃衬底表面存在有氧化硅的晶体成分,即所谓晶化玻璃)。
因此我们认为,更积极地引入晶核可以降低晶化温度,为证明这个效果,在衬底上形成少量另外的金属,在该金属上于是形成有非晶硅制成的薄膜。接着又进行了通过加热进行晶化的实验。结果证实了,在衬底上加几种金属时,晶化温度下降,果然如预料的那样发生了以杂质作为晶核的晶体生长现象。于是我们更详细地研究了多种杂质金属能降低温度的机理。多种杂质金属为镍(Ni)、铁(Fe)、钴(Co)、钯(Pd)和铂(Pt)。
晶化过程可分为两个阶段,即初始生核阶段和从晶核产生的晶体生长阶段。我们测定了直到在给定温度下细晶在点样图中产生所经过的时间,以此来研究初始产生晶核的速率。事先制备由上述杂质金属制成的薄膜时制成的非晶硅薄膜,其上述时间在任何情况下都缩短了,同时证实了,引入晶核时,具有降低晶化温度的作用。此外,我们还改变加热时间来研究晶粒在晶核产生之后的生长过程。结果发现,在金属膜上形成的非晶硅薄膜晶化时,甚至晶体生长在晶核生长之后的速率也显著增加。这出乎我们的意料之外。但在现有情况下,这个机理得不到解释,我们假设发生了某种催化作用。
在任何情况下,有一点是可以肯定的,即在含有少量某种金属的薄膜上形成非晶硅制成的薄膜再通过加热连同上述两种作用进行晶化时,在580℃或以下的温度历时大约四小时可得出充分的晶态性能,这是按惯例所不能预料的。具有这种作用的杂质金属中,效果最显著和为本发明者同人所选用的材料是镍。
现在举例说明镍如何具有这种作用。在用等离子体CVD法的未经过任何处理的衬底(Corning 7059)上(即衬底上不形成小量镍制成的薄膜)形成非晶硅制成的薄膜是通过在氮气氛中加热进行晶化的情况下,若加热温度为600℃,则加热时间需要10小时或以上。然而,在采用在形成有小量镍制成的薄膜的衬底上形成的非晶硅制成的薄膜的情况下,加热大约四小时即可达到同样的晶化状态。这时对晶化的评价是采用拉曼光谱进行的。即使从这一点也可知道,镍的作用是非常大的。
从上述说明可知,在小量镍制成的薄膜上形成非晶硅制成的薄膜的情况下,可以降低晶化温度并缩短晶化所需的时间。假设用这种工艺制造TFT,这里就此进行更详细的说明。稍后即将说明,即使镍薄膜不仅是在衬底上(即非晶硅薄膜底侧)而且也在非晶硅薄膜上形成,还是可以获得同样的效果,在离子注入工艺和等离子体工艺中也是如此。因此以下在本说明书中,一系列这类工艺都叫做“小量镍加入”法。此外,制造非晶硅薄膜时也可以加入小量的镍。
首先说明小量镍加入法。
应该肯定的是,无论是用在衬底上形成小量镍制成的薄膜然后形成非晶硅制成的薄膜的方法或是用先形成非晶硅薄膜再形成小量镍的薄膜的方法都可以加小量的镍,因为这两种方法都同样具有降温效果。此外,薄膜成形的方法可以采用溅射法、汽相淀积法、CVD法和采用等离子体的方法,这样就局限于某特殊方法或为该方法所限制。然而,当小量镍制成的薄膜是在衬底上形成时,实际上值得注意的是先在Corning 7059玻璃衬底上形成氧化硅制成的薄膜(垫底薄膜),然后再在其上形成小量镍制成的薄膜,而不是直接在Corning 7059衬底上形成小量镍制成的薄膜。这是因为在此情况下重要的一点是使晶化在低温下进行,使硅直接与镍接触,而在Corning 7059型玻璃的情况下,硅以外的成分妨碍了硅与镍之间的接触或反应。
作为小量镍的加入方法,甚至在用离子注入法加镍代替将镍薄膜形成得使其与非晶硅的上部分或下部分接触的作法的情况下,证实了可以取得基本上相同的效果。至于镍的量,加入1×1015原子/立方厘米或以上的镍时,证实了晶化温度下降。然而,当加入量为5×1019原子/立方厘米或以上时,拉曼光谱中的峰的形状与单是硅物质的显然不同。因此最好采用1×1015原子/立方厘米至1×1019原子/立方厘米的范围。镍的密度为5×1019原子/立方厘米或以上时,局部有Ni Si产生,从而使半导体的特性变坏。镍的密度为1×1015原子/立厘米或以下时,镍的催化作用变差。在晶化状态下,随着镍密度的下降,得出的效果更优异。
其次说明加入小量镍情况下的晶体结构。如上所述,在不加镍的情况下,我们知道,各晶核是从例如衬底的界面等之类的晶核无规则地出现的,晶体地从各晶核无规则地生长成一定厚度的薄膜,至于薄膜更厚时,晶体就呈柱形生长,其取向(110)通常是取垂直于衬底的方向。当然,可以看到晶体在整个薄膜上基本上均匀生长。相反,在这时加有小时镍的TFT的情况下,有这样的特点,即晶体在加有镍的部位的生长与在靠近该部位的生长不同。就是说,在加有镍的部位,通过透射电子束显微照相经探明,所加入的镍或镍与硅的化合物构成晶核,同样,在不加入镍的情况下,生长出基本上垂直于衬底的柱形晶体。这时,即使在靠近上述小量镍不直接加入的部位,也证实了晶体是在低温下进行的。在该部分,观察到晶体呈针状或柱状平行于衬底生长的这种特殊的晶体生长现象。观察到晶体横向平行于衬底生长是从加入的小量镍最大为数百微米的部位开始的,此外还发现,随着时间的推移和温度的升高,生长量成比例增加。举例说,在550℃下历时四小时可以观察到40微米的生长幅度。
我们认为,晶体是以针形或柱形的形成从上述镍直接加入的部位平行于衬底生长的,且晶粒间界的影响在生长方向上是很小的。就是说,由于晶体生长是以针状或柱状的形式进行的,晶粒边界在该方向的影响是极小的。
这里让我们看看有源矩阵型液晶显示装置。应该指出,在有源矩阵型液晶显示装置中,外围电路TFT所要求的特性是与像素部分的TFT所要求的特性不同的。就是说,制造外围电路驱动器的TFT,为让导通状态的大电流流过,必须具有高的迁移率,而制造像素部分的TFT为了提高电荷保持能力不是提高迁移率,而是要求抑制截止状态电流。
因此,在应用本发明的情况下,采用上述晶体在平行衬底的方向生长的晶体硅薄膜,且外围电路用的TFT构制得使其源极和漏极在平行于晶体生长方向的方向形成,而像素使用的TFT构制得使其源极和漏极在垂直于晶体生长方向的方向形成。就是说,外围电路的TFT构制得使载流子流动时最大限度地使其不受晶界的影响,而其像素用的TFT则构制得使载流子流动时越过晶界,从而使源极与漏极间的电阻高,以降低截止状态的电流。
上述结构的原理是,利用载流子在源极与漏极之间的流通,令源极与漏极的方向(源极与漏极之间连线的方向)平行于或垂直于上述晶体生长的方向,从而制取合乎性能的TFT。就是说,其基本原理如下。载流子移动时,选取使载流子平行于呈针状或柱状形式生长的晶体的晶界流动(即平行于晶体生长方向的方向)或使载流子垂直于呈针状或柱状形式生长的晶界流动(即垂直于晶体生长方向的方向),从而制取迁移率高的TFT或载止状态电流小的TFT。
用晶体生长方向平行于衬底表面的晶体硅薄膜制造TFT时,源极和漏极各区都沿晶体生长方向形成,因而能制取载流子的流动几乎不受晶界影响的迁移率高的TFT。此外,源极和漏极垂直于晶体生长的方向形成,因而载流子的运动受晶界的影响,从而可制取截止状态电流小的TFT。因此,这些TFT能否与众不同地制造出来,取决于如何调定在源极与漏极之间相对于晶体生长方向流动的载流子流动方向。
附在本说明书中且构成本说明书的一部分的附图,与本说明书结合起来,用以说明本发明的目的、优点和原理。附图中

图1是本发明一个实施例的半导体器件的示意图;
图2A至2D示出了本发明实施例的半导体器件的制造过程的剖视图;
图3是本发明实施例半导体器件的示意图;
图4A至4D示出了本发明实施例的半导体器件的制造过程的剖视图;
图5是本发明实施例的半导体器件的示意图。
现在参看附图更详细地说明本发明的一个实施例。
图1示出了本发明一个实施例的半导体器件的示意图。图1是液晶显示器从其一个上表面看法的视图,可以看到呈矩阵形式的像素部分,和外围电路部分。本实施例是各像素的TFT和构成外围电路的TFT在绝缘衬底(例如玻璃衬底)上形成的一个实例。在本实施例中,采用晶体生长方向平行于衬底的晶体硅薄膜作为构成TFT的半导体薄膜,用作外围电路的TFT则设计得使载流子在TFT工作时的流动方向取得使其平行于晶体硅薄膜的晶体生长方向,用作像素部分的TFT则设计得使载流子在TFT工作时的流动方向垂直于晶体硅薄膜的晶体生长方向。
以下图2A至2D中所示的是构成外围电路的NTFT和PTFT互补电路的制造过程,图4A至4D中所示的是形成像素的NTFT的制造过程。这两个过程是在同一个衬底上进行的,且共同的过程是同时进行的。就是说,图2A至2D分别与图4A至4D对应得使图2A的过程与图4A的过程同时时行,图2B的过程与图4B的过程同时进行。
图2A至2D示出了构成外围电路的NTFT和PTFT的互补电路的制造过程,图4A至4D示出了设在像素上的NTFT的制造过程。首先,用溅射法在玻璃衬底(Corning 7059)上形成厚2000埃的氮化硅垫底薄膜。接着,用金属掩模制成掩模,在垫底薄膜102上形成氧化硅薄膜等。连同掩模103一起,垫底薄膜102以多个狭缝的形式暴露出来。就是说,图1A的情况从顶面看去时,垫底薄膜102呈多个狭缝的形式暴露出来,其它部分则掩蔽起来。这时,在图4A至4D所示的像素部分的TFT中,有一个部分中的垫底薄膜102以多个狭缝的形式在纸面的正侧或后侧暴露出来。这里参照图5说明这个关系。图5中,沿A-A′线截取的剖面对应于图4C或4D。图4A至4D中,编号115表示沟道形成区。如图5中所示,在对应于图2A的过程中,在用编号100表示的区域内,垫底薄膜呈多个狭缝的形式暴露出来。
加上上述掩模103之后,用溅射法在掩模103上形成厚5至200埃(例如20埃)的硅化镍薄膜(化学式NiSix,0.4≤X≤2.5,例如,X=2.0)。接着,除去掩模103,于是区域100上局部形成硅化镍薄膜。就是说,小量的镍局部加到区域100上。
下一部工序是用等离子体CVD法在区域100上形成厚500至1500埃(例如1000埃)的本征i型的非晶硅薄膜104。然后在氢还原气氛中(氢分压最好为0.1至1个大气压)或惰性气氛(大气压)中将薄膜104在550℃下退火四小时,使其晶化。退火温度可取450℃或以上,但若退火温度高,该方法会变得与普通的方法一样。因此退火温度以450至550℃为宜。
这时,在局部形成有镍硅薄膜的区域100中,硅薄膜104在垂直于衬底101的方向上晶化。这时,在箭头105所示的区域100的周边区域中,晶体从区域100朝侧向(在平行于衬底的方向)生长。接着,从稍后即将谈到的可知,在图2A至2D所示的外围电路部分的TFT中,源区和漏区是在晶体生长方向上形成的。此外,从图5中可知,在设在橡素部分上的TFT中,源极与漏极的连线垂直于箭头105所示的晶体生长方向。在上述晶体生长的时间,在平行于衬底方向的晶体生长距离在40微米左右。
经过上述过程,非晶薄膜晶化,从而制取晶体硅薄膜104。接着,分离各元件,并除去不同的晶体硅薄膜104,于是形成元件区。在该过程中,若TFT的有源层(源区和漏区以及形成有沟道形成区的部分)取40微米以内,则有源层可由图2A至2D中的晶体硅薄膜构成。当然,若至少沟道形成区由晶体硅薄膜构成,则还可以增加有源区的长度。
这之后,用溅射法在元件区上形成1000埃厚的氧化硅薄膜106,作为栅极绝缘薄膜。溅射时,以氧化硅作靶,溅射时的衬底温度为200至400℃,例如,350℃,且溅射气氛中含氧和氩时,氩对氧的比值取0至0.5,例如0.1或以上。接下去的工序是用溅射法在薄膜106上形成厚6000至8000埃(例如6000埃)的铝膜(含0.1至2%的硅)。氧化硅薄膜106和铝膜的形成过程最好依次进行。
接着,将铝膜制成一定的形状使其形成栅电极107和109。不言而喻,这些过程在图2C和4C中是同时进行的。此外,对铝电极进行阳极氧化处理,从而在电极上形成氧化膜108和110。该阳极氧化处理是在含1%至5%酒石酸的乙二醇溶液中进行的。得出的氧化层108和110的厚度为2000埃。鉴于氧化物108和110的厚度达到在接下去将进行的离子掺杂工序中偏离栅区所需要的厚度,因而偏离栅区的长度可在上述阳极氧化过程中确定。
接着,以栅电极107、栅电极107周边的氧化层108、栅电极109和其周边的氧化物层110为掩模,用离子掺杂法将杂质(磷和硼)注入有源区中。作为掺杂气,这里采用磷化氢(PH3)和乙硼烷(B2H6),前者的加速电压为60至90千伏;例如65千伏,后者的加速电压为40至80千伏,例如65千伏。剂量为1×1015至8×1015厘米-2例如,磷为2×1015厘米-2,硼为5×1015厘米-2。掺杂时,无需掺杂的部位用光致抗蚀剂盖起来,以便局部掺入相应的元素。结果,分别形成n型杂质区114和116以及P型杂质区111和113,从而分别形成P沟道TFT(PTFT)区和n沟道TFT(NTFT)区,如图2C中所示。此外,与此同时,如图4C和5中所示,可以形成n沟道TFT。
这之后,进行退火,即用激光束照射来激活因离子注入而产生的杂质。激光束采用KrF准分子激光(波长248纳米,脉冲宽度20纳秒),但也可采用各种不同的激光,激光束照射的条件是,能量密度200至400毫焦/平方厘米,例如250毫焦/平方厘米,发射次数2至10次,例如,每处发射两次。发射激光束时,将衬底加热到200至450℃左右有好处。在用激光进行退火的过程中,由于镍已分散到事先已晶化的部位,因而用激光束照射就不难进行再晶化,从而不难激活已掺以杂质形成P型的掺杂区111和113以及已掺以杂质形成n型的掺杂区114和116。
其次,在外围电路部分中,如图2D中所示,用等离子体CVD法形成厚6000埃的氧化硅薄膜118,作为层间绝缘体,再在氮化硅薄膜118上开接触孔,然后用金属材料,例如多层氮化钛和铝制成的薄膜,制取TFT的各电极和配线117、120和119。此外,在像素部分,如图4D中所示,形成氧化硅层间绝缘体并在其上开设接触孔之后,在其上形成构成像素电极的ITO电极212,再形成金属配线213和214。最后在350℃下在1个大气压的氢气氛中退火30分钟,从而完成TFT电路或TFT(图1D和4D)。
在图2D所示的结构中,为示出局部加镍的部位与TFT之间的关系,在图3中示出了图2D半导体器件从顶面看去的示意图。图3中,将小量镍局部加到用编号100表示的部位中,然后通过热退火合晶体从该部位横向(在纸表面的左右方向)如箭头105所示的那样生长。然后在晶体生长已横向发展的部位中,形成源区111、漏区113和沟道形成区112,作为PFET。同样,形成源区114、漏区116和沟道形成区115作为NFET。就是说,在外围电路部分中,在源极与漏极之间,载流子流动的方向与晶体生长的方向105一致。因此,由于载流子在流动的过程中没有通过晶界,因而可使迁移率特别高。
另一方面,在形成于图4D所示的像素部分中的NTFT中,如图5中所示,由于在源区和漏区中流动的载流子垂直于晶体生长的方向105,这些载流子流动时必然越过大量晶界。就是说,源极与漏极之间的电阻增高,导通状态电流值和截止状态电流值都减小。然而,由于可以减小截止状态电流的绝对值,因而提高了像素电极(在图4D的情况为ITO 电极212)保持电荷的功能。因此,若已求出所要求的导通/截止比,可以选取图4D和5所示的结构,将截止状态电流小的TFT应用到像素电极上。
在本实施例中,引入Ni的方法采用了这样的方法在非晶硅薄膜104下面的垫底薄膜102的表面上局部形成Ni薄膜(它特别薄,因而难以将其视为薄膜),然后令晶体从该部分生长。不然也可以在形成非晶硅薄膜104之后,往其上部表面加入小量镍。就是说,晶体生长可以从非晶硅薄膜上部表面或下部表面开始。此外也可采用先形成非晶硅薄膜再用离子掺杂法往非晶硅薄膜104中注入镍离子的方法。此外,还可以不形成镍薄膜而用等离子体处理法加入小量的镍。
图2D中所示的电路是具有PTFT和NTFT的互补型CMOS结构。不然在上述过程中,也可以同时制取两个TFT,然后中从其中间切开,从而能同时制造分立的两个TFT。
在有源矩阵型液晶显示器中,外围电路部分的TFT由令晶体沿平行于载流子流动方向生长得出的晶体硅薄膜构成,像素部分的TFT则由令晶体沿垂直于载流子流动方向生长得出的晶体硅薄膜构成,从而使外围电路可以构制得可以进行高速操作,像素部分可以构制得使其形成保持电荷所需要的截止状态电流值小的TFT。
上述对本发明的一些最佳实施例所作的说明是为了举例说明和介绍而进行的;这里并不想毫无遗漏地详尽说明本发明或把本发明限制在所公开的完全一模一样的形式,根据上述教导或通过对本发明的实践是可以作出种种修改和提出各种方案的。选取和说明上述实施例是为了说明本发明的原理及其实际应用,使本技术领域的行家们可以在各种不同的实施例中并用各种不同适用用于特定设想的用途的修改方案应用本发明。我们的意图是,本发明的范围由本说明书所附的权利要求书及其等效内容确定。
权利要求
1.一种半导体器件,其特征在于,它包括一个衬底;至少有第一和第二薄膜晶体管,设在所述衬底上,各所述薄膜晶体管都有一层晶体硅层,该层中晶体生长的方向平行于所述衬底表面;其中所述第一薄膜晶体管中的硅层,其晶体生长方向与载流子通过该硅层的方向成一个第一角度,所述第二薄膜晶体管中的硅层,其晶体生长方向与载流子通过该硅层的方向成一个第二角度,所述第二角度与所述第一角度不同。
2.一种半导体器件,其特征在于,它包括一个衬底,具有有源矩阵型液晶显示器用的外围电路部分和像素部分;多个第一薄膜晶体管,设在衬底的外围电路部分中;和多个第二薄膜晶体管,设在衬底的像素部分中,各所述第一和第二薄膜晶体管都有一层晶体硅层,该层中晶体生长的方向平行于所述衬底的表面;其中,所述多个第一薄膜晶体管中硅层的晶体生长方向与载流子通过所述硅层的方向成一定的第一角度,所述多个第二薄膜晶体管中硅层的晶体生长方向与载流子通过所述硅层的方向成一定的第二角度,所述第二角度与所述第一角度不同。
3.如权利要求1或2所述的半导体器件,其特征在于,所述第一角度约为0度,所述第二角度约为90度。
4.制造半导体器件的一种方法,其特征在于,它包括下列步骤在衬底上形成基本上非晶体的硅薄膜;在形成所述硅薄膜之前或之后引入金属元素以促进所述硅薄膜晶化;通过加热使所述硅薄膜晶化,从而使晶体沿基本上平行于所述衬底表面的方向在毗邻加有所述金属元素的部分的区中生长;和用所述硅薄膜区形成多个薄膜晶体管;其中,所述薄膜晶体管的一部分配置得使其晶体硅薄膜的晶体生长方向与载流子在其中流动的方向成第一角度,所述薄膜晶体管的另一部分配置得使其晶体硅薄膜的晶体生长方向与载流子在其中流动的方向成第二角度,所述第一角度与所述第二角度不同。
5.如权利要求4所述的方法,其特征在于,所述第一角度约为0度,所述第二角度约为90度。
6.如权利要求4或5所述的方法,其特征在于,所述金属元素至少是一个选自由Ni,Co,Pd和Pt组成的元素群的元素。
7.制造半导体器件的一种方法,其特征在于,它包括下列步骤制备一个具有有源矩阵型液晶显示器用的外围电路部分和像素部分的衬底;在所述衬底上形成基本上非晶体的硅薄膜;在形成所述硅薄膜之前或之后引入金属元素,供促进所述硅薄膜晶化之用;通过加热使所述硅薄膜晶化,从而使晶体在基本上平行于所述衬底的方向上在毗邻加有所述金属元素的部分的区域中生长;和用所述硅薄膜区形成多个薄膜晶体管;其中所述薄膜晶体管的第一部分配置得使其晶体硅薄膜的晶体生长方向与载流子在其中流动的方向成第一角度,所述薄膜晶体管的第二部分配置得使其晶体硅薄膜的晶体生长方向与载流子在其中的流动方向成第二角度,所述第一角度与所述第二角度不同;且薄膜晶体管的所述第一部分设在衬底的外围电路部分中,薄膜晶体管的所述第二部分设在衬底的像素部分中。
8.如权利要求7所述的方法,其特征在于,所述第一角度约为0度,所述第二角度约为90度。
9.如权利要求7或8所述的方法,其特征在于,所述金属元素是至少一个选自由Ni、Co、Pd和Pt组成的元素群的元素。
全文摘要
一种有源矩阵和液晶显示器,其外围电路部分中配置有迁移率高能容许大量导通状态电流流过的TFT,其像素部分中配置有截止状态电流小的TFT。这些性能不同的TFT是采用晶体生长方向平行于衬底的晶体硅薄膜构成的。就是说,令晶体生长方向与载流子流动方向之间形成的角度彼此不同,从而控制载流子流动时受到的阻力进而确定TFT的性能。
文档编号H01L21/84GK1108804SQ9410908
公开日1995年9月20日 申请日期1994年8月10日 优先权日1993年8月10日
发明者船田文明, 森田达夫, 田仲广久, 张宏勇, 高山徹 申请人:株式会社半导体能源研究所, 夏普公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1